Skip to main content
. 2020 Nov 5;9:151. doi: 10.1186/s40249-020-00771-7

Table 3.

Alternative recurrent neural network models for the three cities

City Model Learning rate Dimensions of hidden layer Number of epochs MAPE (%)a MAPE (%)b MAPE (%)c
Xuzhou RNN1 0.05 3 500 16.14 15.99 16.46
RNN2 0.05 3 500 13.42 13.30 14.41
RNN3 0.2 3 150 13.08 11.95 12.07
RNN4 0.05 3 600 10.33 10.33 10.40
RNN5 0.05 5 600 8.45 8.25 8.54
RNN6 (RNN5 + MAS1) 0.05 3 1000 7.36 7.33 7.33
RNN7 (RNN5 + MAS2 + MST2) 0.05 3 800 6.38 6.31 6.42
RNN8 (RNN5 + MAT3 + MAS3 + MP3 + MST3) 0.05 5 600 4.78 4.89 4.97
RNN9 (RNN5 + MAS1 + MAS2 + MST2 + MAT3 + MAS3 + MP3 + MST3) 0.05 10 600 5.75 5.40 5.90
Nantong RNN1 0.05 3 500 21.91 21.99 21.78
RNN2 0.2 5 80 16.92 17.81 16.31
RNN3 0.2 3 150 13.82 14.26 13.86
RNN4 0.2 3 150 12.78 12.84 12.80
RNN5 0.2 5 100 11.38 11.44 11.24
RNN6 (RNN5 + MAS1 + MAH1) 0.05 5 1000 9.19 8.82 8.84
RNN7 (RNN5 + MAS2 + MAH2) 0.05 5 1000 8.58 8.26 8.52
RNN8 (RNN5 + MAS3 + MAH3) 0.05 10 800 8.87 8.79 8.69
RNN9 (RNN5 + MAS1 + MAH1 + MAS2 + MAH2 + MAS3 + MAH3) 0.05 5 800 8.79 9.21 9.19
Wuxi RNN1 0.1 10 150 23.76 23.81 23.77
RNN2 0.05 5 400 19.93 19.54 20.17
RNN3 0.05 10 250 18.23 17.84 18.59
RNN4 0.05 10 400 17.15 17.40 17.31
RNN5 0.05 5 600 14.10 13.93 13.95
RNN6 (RNN5 + MAT1 + MAP1 + MAS1 + MAH1 + MST1) 0.05 3 1500 13.01 13.39 13.04
RNN7 (RNN5 + MAS2) 0.1 5 800 12.62 12.36 12.80
RNN8 (RNN5 + MAT3 + MAS3 + MAH3) 0.05 10 1000 12.71 13.06 12.94
RNN9 (RNN5 + MAT1 + MAP1 + MAS1 + MAH1 + MST1 + MAS2 + MAT3 + MAS3 + MAH3) 0.1 3 1000 12.81 12.80 13.46

RNN recurrent neural network, MAPE mean absolute percentage error, MAT monthly average temperature, MAP monthly average atmospheric pressure, MAS monthly average wind speed, MAH monthly average relative humidity, MP monthly precipitation, MST monthly sunshine time, 1 1 month prior, 2 2 months prior, 3 3 months prior

a MAPE of the model with the testing set after the first training

b MAPE of the model with the testing set after the second training

c MAPE of the model with the testing set after the third training