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Abstract

Purpose—The fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images for 

guiding targeted prostate biopsy has significantly improved the biopsy yield of aggressive cancers. 

A key component of MR–TRUS fusion is image registration. However, it is very challenging to 

obtain a robust automatic MR–TRUS registration due to the large appearance difference between 

the two imaging modalities. The work presented in this paper aims to tackle this problem by 

addressing two challenges: (i) the definition of a suitable similarity metric and (ii) the 

determination of a suitable optimization strategy.

Methods—This work proposes the use of a deep convolutional neural network to learn a 

similarity metric for MR–TRUS registration. We also use a composite optimization strategy that 

explores the solution space in order to search for a suitable initialization for the second-order 

optimization of the learned metric. Further, a multi-pass approach is used in order to smooth the 

metric for optimization.

Results—The learned similarity metric outperforms the classical mutual information and also the 

state-of-the-art MIND feature-based methods. The results indicate that the overall registration 

framework has a large capture range. The proposed deep similarity metric-based approach 

obtained a mean TRE of 3.86mm (with an initial TRE of 16mm) for this challenging problem.

Conclusion—A similarity metric that is learned using a deep neural network can be used to 

assess the quality of any given image registration and can be used in conjunction with the 

aforementioned optimization framework to perform automatic registration that is robust to poor 

initialization.
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Introduction

Prostate cancer is among the main causes of cancer death in men in the USA [18]. Although 

transrectal ultrasound (TRUS) usually has low sensitivity with respect to prostate cancer, it is 

still the most commonly used imaging modality for guiding prostate biopsy. On the other 

hand, multi-parametric magnetic resonance (MR) imaging has been shown to have good 

sensitivity and specificity for identifying a prostate cancer lesion. This is an expensive and 

time-consuming procedure. Over the past decade, studies have shown that the fusion of 

TRUS and MR images for guiding prostate biopsies for cancer diagnosis provides clinical 

benefit by limiting the rate of false-negative prostate cancer diagnoses [13,17].

Image registration is a key component for multimodal image fusion, which generally refers 

to the process by which two or more image volumes and their corresponding features 

(acquired from different sensors, points of view, imaging modalities, etc.) are aligned into 

the same coordinate space. Medical images that are acquired from different imaging 

modalities use different imaging physics, which creates unique advantages and 

disadvantages. Relatively unique information about the imaged volume is provided by each 

modality. Image fusion through registration can integrate the complementary information 

from multimodal images to help achieve more accurate diagnosis and treatment [15]. In the 

case of MR–TRUS fusion, the real-time imaging and cost-effective properties of TRUS can 

be well complemented by the high prostate cancer identification accuracy of MR imaging 

for image-guided prostate interventions [4]. Mutual information is the most common pixel-

based similarity metric for multi-modality image registration and utilizes the statistical 

information associated with the image volumes obtained from different modalities [12,24]. 

However, the correspondence between the alignment with maximum mutual information and 

the expert alignment for difficult multimodal registration tasks is typically poor because of 

the inadequate description of the image alignment using pixel intensity mapping. Due to the 

difficulties associated with directly registering TRUS and MR images, this registration is 

commonly performed using surface-based methods through shape modeling and the use of 

feature descriptors [6,7,9,14,26]. For example, Sun et al. [22] used the modality independent 

neighborhood descriptor (MIND) [7] to map the voxels that constitute the MR and TRUS 

volumes to a descriptor value for comparison. In their image registration framework, the 

sum of squared differences between the MIND descriptors at the corresponding locations in 

MR and TRUS images is used as the similarity metric. Although they were able to obtain 

good registration results in many cases, the quantification of similarity was done using 

manually crafted feature mapping and can limit the registration performance when the 

initialization is far from the underlying registration. Sparks et al. [20] developed a fully 

automatic registration approach utilizing image segmentations to address the appearance 

difference between the two modalities [20]. However, such registration techniques cannot 

guarantee adequate voxel-to-voxel correspondence of internal structures because these 
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approaches are primarily influenced by the information that is extracted from voxels 

proximal to the boundary of the prostate. Unlike the approaches described in the works 

discussed above, our method uses raw pixel data as its input and uses learned features for 

estimating the image similarity.

Recently, several works have used deep neural networks to learn application-specific 

similarity metrics for image registration tasks [2,19,25]. Although these existing similarity 

metric learning methods outperform mutual information and other manually defined metrics 

for their applications, the existing deep learning-based methods deal with multi-modal 

images that share largely similar views or relatively simple intensity mappings (for example 

MR–CT or T1–T2 weighted MR images). In our application, the prostate in MR and TRUS 

looks very different in terms of not only image intensities but also fields of view, which is a 

much more challenging problem. In this paper, we propose a deep learning-based approach 

directly registering the two imaging modalities using image pixel intensities. Our primary 

contributions are twofold. First, we propose designing a CNN with a skip connection to 

learn the target registration error (TRE) between 3D MR and TRUS images to act as image 

similarity metric for registration. Second, we propose a differential evolution initialized 

Newton-based optimization (DINO) method to perform the optimization and expand the 

capture range of the registration. To efficiently explore the solution space and also enhance 

the capture range, the proposed approach uses differential evolution, followed by the local 

second-order algorithm—BFGS. The application of the developed approach shows 

promising performance and also advantages over the classical mutual information and 

MIND-based approaches [23].

The rest of the paper is organized as follows. Section 2 presents the details of the proposed 

method. Section 3 describes how the convolutional neural network used for learning the 

similarity metric is trained. The experimental results are given in Sect. 4. Finally, Sect. 5 

draws the conclusions and briefly discusses our future work.

Methods

In this section, details of the proposed method are presented. In our application, the 

transformation is limited to be rigid. Thus, there are three translation and three rotation 

parameters θR = {Tx, Ty, Tz, rx, ry, rz} in the transformation matrix R to be optimized. The 

reason that we chose to stay with rigid transformation is because it is the registration 

strategy that is most commonly used in clinical practice, which has also been shown able to 

obtain clinically significant results [1,17]. The rest of this section first briefly discusses 

convolutional neural networks (CNNs) to introduce some terminologies used in our 

proposed method. Then the proposed deep similarity metric learning method is presented. 

Finally, the optimization method used for learning the similarity metric is discussed.

Deep convolutional neural networks

A deep CNN is a neural network that stacks multiple different layers of neurons. CNN has 

been shown to be very useful for image analysis because of its parameter sharing nature and 

ability to model local neighborhoods in images. A CNN with a classical architecture 

typically consists of six types of layers: input layers, convolutional layers, activation 
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function layers, batch normalization (BN) layers, pooling layers, and fully connected (FC) 

layers [10,11]. The input layer consists of the inputted image volumes, as suggested by its 

name. The convolutional layers extract feature representations from images by computing 

the inner product between all of the filters and image patches. Each convolutional layer is 

usually followed by an activation function layer, which applies an element-wise activation 

function to the outputted feature map associated with the convolutional layer. A popular 

activation function is the rectified linear unit (ReLU), which is used in this work and can be 

expressed as

f(x) = x,  if x ≥ 0,
0,  otherwise.  (1)

The BN layers, which are also used in this work, reduce the amount of covariance shift to 

help the CNN adapt to different input intensity scales. The pooling layer is periodically 

inserted into a CNN to reduce the size of the feature maps, which not only lowers memory 

usage but also enlarges the receptive field of a network. The two most common types of 

pooling layers use max pooling and average pooling. FC layers connect neurons in one layer 

to every neuron in another layer and are usually used as the last few layers of network. An 

FC layer can give the CNN a “global view” of all the activations but also increase the risk of 

overfitting.

Deep similarity metric

In our proposed method, the determination of the similarity between MR and TRUS images 

is cast as a deep CNN-based regression problem. The CNN takes a pair of 3D MR and 

TRUS images as its input and outputs an estimate of the target registration error, which is 

used to assess the quality of an alignment. A 3D MR and TRUS image pair together 

constitute a single 2-channel image with each image in one channel. A 2-channel input is 

used because it outperforms other structures as indicated by [19,25]. The designed CNN 

consists of 9 volumetric convolutional layers that use a stride of 1 in each direction. 

Element-wise Relu activations are used at each layer in order to introduce nonlinearity to the 

model. A BN layer is used after the second convolutional layer and the concatenation in 

order to allow the model to be robust to different intensity scales. Furthermore, a skip 

connection is used to catenate the feature maps that are obtained at lower and higher levels 

in the network. The final fully connected layer outputs a scalar that is used to estimate the 

target registration error that assesses the quality of the registration. Figure 1 shows a diagram 

of the feed-forward CNN architecture described above.

Image registration

Intensity-based image registration that is performed iteratively can be defined by its choice 

of similarity metric, parameterizable transformation, interpolation strategy, and optimization 

strategy. Following initialization, the parameters that constitute the affine transformation of 

the moving image (TRUS) are updated iteratively according to the selected optimization 

strategy. Since the learned metric is nonconvex and nonsmooth, it is important to design a 

suitable optimization strategy to enhance the capture range. Many commonly used 

optimization methods could produce bad registrations for these difficult applications if the 
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moving image is not initialized in such a way that it is sufficiently close to the fixed image. 

The resulting affine transformation is then applied to map the moving image to the fixed 

image at each iteration. Because this mapping rarely results in direct pixel-to-pixel 

comparisons, robust interpolation (which is linear in this work) is necessary to establish the 

comparison (defined by the similarity metric) of the resulting two sets of pixel values that 

are associated with the moving and fixed images. In this paper, we plug the learned 

similarity metric into the classical image registration framework described above.

Because the designed CNN performs regression for each pair of images independently, the 

learned similarity metric can be nonsmooth and nonconvex. In order to address this, we use 

a multi-pass approach in our registration framework. Throughout the optimization that is 

used to perform the registration, the moving image is slightly perturbed N times and the 

average of the associated TRE estimates is used as the objective function evaluation, defined 

as

E I moving , I fixed  = 1
N ∑

n = 1

N
CNN g I moving , θn , I fixed  , (2)

where g(·) is a resampling function to resample the moving image by using the giving 

parameter θn. The perturbation parameter thetan consisting of both rotation and translation is 

uniformly sampled from the range of [−0.25mm, 0.25mm] for translation and [−1°, 1°] for 

rotation. In our implementation, we used N = 5. Larger N may lead to smoother curves but 

will result in higher computational cost.

In our work, to efficiently perform the optimization and expand the capture range of the 

registration method, we propose a differential evolution initialized Newton-based 

optimization (DINO) method. In the proposed method of DINO, differential evolution with 

early termination is first applied given an initialization. Then the result is used as the initial 

solution estimate for the Newton-based optimization strategy—the second-order Broyden–

Fletcher–Goldfarb–Shanno (BFGS), which approximates the Hessian that is used in typical 

Newton iterations by using low-rank updates.

We chose to utilize differential evolution because of its demonstrated efficiency in 

computationally intensive domains and its efficacy dealing with multimodal objective 

functions [21]. Differential evolution falls within a class of combinatorial, non-gradient-

based optimization strategies that is inspired by biological evolution and evolves a 

population of solutions as opposed to a single solution. It takes a set of possible solutions 

that purposefully span the solution space and uses random members of the population to 

evolve the population according to its mutation rate and recombination frequency. 

“Children” only replace “parents” if their objective function value—“fitness”—is closer to 

the global minimum. After the termination criteria is met, the most “fit” member of the final 

generation is selected. The algorithm implemented in the SciPy package [8] is used in our 

work and a maximum number of iterations/generations is adopted as the termination 

criterion.
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After truncated differential evolution is used to explore the solution space, the Newton-based 

optimization strategy (BFGS) that exhibits local, super linear convergence is used to 

determine the solution. The search radius that is associated with truncated differential 

evolution that is used in DINO is equal to 20mm (which is the maximum TRE that is used 

for training). The initial estimate that BFGS requires is provided by the output of the 

truncated differential evolution algorithm. This overall method (DINO) allows us to explore 

the solution space in order to expand our capture range. Differential evolution explored the 

solution space using a population size of 5 for 13 generations before termination and the 

resulting solution was used as the initialization for BFGS. Further, the “polish” argument 

was set to “False” in order to allow us to customize the optimization algorithm used after 

Differential Evolution. All other parameters for the optimizers were set to their defaults as 

indicated in Scipy [8]. A visualization of the convergence that is realized using both BFGS 

alone and DINO in order to optimize the learned similarity metric is given in Fig. 2. Note 

that the metric is not able to predict the TRE very well when the magnitude of the translation 

along the z-axis is larger than the maximum TRE associated with the training data.

Network training and assessment

Keras with TensorFlow as the backend [3] was the library that was used to construct the 

CNN. The network was trained with the popular optimizer ADAM with a learning rate of 

1e-5 using the mean squared error between the regressed TREs and the ground truth TREs 

as the loss function. Since it is quite difficult to assess the quality of a given 3D MR–TRUS 

registration, it is important to define robust strategies for generating the samples that are 

used to train the network and for training the network itself.

Training data generation

The network was trained by taking training image pairs that were registered manually by a 

medical expert who conducted the biopsy procedure and transforming the moving image 

using known rigid perturbations. Because these perturbations from ground truth are global, 

we are readily able to obtain the TRE that results from a given perturbation. In our work, 

TRE is defined as the mean Euclidean distance between the prostate surface points of the 

prostate in the warped moving image and the corresponding surface points of the prostate in 

the ground truth moving image. Therefore, fiducial points/landmarks are not involved. The 

TRE is equal to zero if the warped moving image and the ground truth moving image 

correspond exactly. As multiple surface points are used, the TRE appropriately reflects the 

rotatory perturbations. We feed the transformed image pair through our network and use the 

calculated TRE as the ground truth label in order to compute the loss function (mean 

squared error). The maximum registration error associated with the known perturbations was 

20mm. The transformation parameters are obtained as follows. Random values in either 

[−3,−1], [−3,−1], [−5,−1], [−12.5,−2.5], [−7.5,−2.5], [−7.5,−2.5] or [1,3], [1,3], [1,5], 

[2.5,12.5], [2.5,7.5], [2.5,7.5] are sampled uniformly to obtain values for tX, tY, tZ, rotX, 

rotY, and rotZ, respectively. The smaller parameter values are excluded during training. The 

parameters are all then scaled according to the magnitude of the TRE associated with the 

resulting affine transformation matrix.
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Metric network training

Once the loss function, network architecture, and training data are defined, the next step is to 

determine the best optimizer to train our neural network. In our work, the following 

optimizers were tested: SGD, SGD with Nesterov momentum, RMSProp, Adagrad, Adam 

and Adadelta. Each method used a learning rate of 5 × 10−6 and each non-SGD method used 

the default epsilon values determined by Keras [3]. RMSProp uses a ρ value of 0.9. Results 

show that the Adam optimizer (which uses an adaptive learning rate, momentum and an 

exponentially decaying average) achieved superior performance.

In order to demonstrate the learned metric’s ability to predict the target registration error, we 

use known geometric perturbations from ground truth and compare the outputs obtained 

using mutual information and the learned similarity metric. The curves of metric values 

versus the ground truth perturbation values are shown in Fig. 3. The curves show that the 

global optimum of the learned similarity metric is significantly closer to the ground truth, 

expert alignment than that of mutual information. However, the lack of smoothness/

convexity of the learned metric is also apparent. This means that a robust optimization 

method is necessary. Without such a method, premature convergence to one of the local 

minimum could happen, which would significantly compromise the accuracy of the 

registration and fail to adequately utilize the superior learned metric.

Experiments

Materials

A total 679 sets of data from the National Institute of Health (NIH) have been used for 

experiments. The data were all acquired from different MR–TRUS fusion-guided prostate 

cancer biopsy procedures, under an IRB-approved clinical trial after written informed 

consent of the participants/patients was obtained. Each set contains a T2-weighted MR 

volume and a reconstructed 3D ultrasound volume. The MR volume has 512 × 512 × 26 

voxels with of a resolution 0.3 mm × 0.3 mm × 3 mm, acquired with endorectal coil. In this 

application, the TRUS volumes were acquired using an end-fire probe sweeping through the 

prostate from base to apex in axial view. The ultrasound volumes have varying sizes and 

resolutions that are determined by the ultrasound scanning parameters associated with the 

reconstruction algorithm. The data are split into training, validation, and test sets consisting 

of 539, 70, and 70 cases, respectively.

Registration results

It is necessary to determine the efficacy of the learned metric, to determine the efficacy of 

DINO, to demonstrate the utility of the multi-pass approach, and to assess the capture range 

associated with the proposed approach. The efficacy of the learned metric was determined 

by comparing its registration accuracy using DINO to that of both mutual information [24] 

and the sum of squared differences of the MIND descriptors of each image [7] using DINO. 

In order to demonstrate DINO’s robustness to poor initialization, initializations of 8mm and 

16mm are used for each method evaluation. The efficacy of the multi-pass approach is 

demonstrated by contrasting its results with those associated with the single-pass approach. 
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A visualization of the registration results obtained using both mutual information and the 

learned metric as the similarity metric and DINO as the optimizer are given in Fig. 4.

In addition to evaluating its capture range, DINO’s ability to produce accurate registrations 

using the learned metric is also be demonstrated. DINO’s performance is contrasted with 

that of BFGS [16] and Powell’s method [5] without any prior solution space exploration. 

The results displayed in Table 1 show that using the learned similarity metric results in more 

accurate registration that is robust to the registration error associated with the initialization. 

Furthermore, the performance of DINO is clearly superior to that of the other two 

optimization methods regardless of the initial registration error. Therefore, both the learned 

metric and DINO are needed in order to robustly obtain quality registrations. The mean and 

standard deviation are calculated using the TREs that result from performing 70 

registrations, one for each test case.

Implications and discussions

Our results indicate that the similarity metric that is learned by the CNN captures the TRE 

better than the mutual information and MIND-based metrics that are commonly used for 

multimodal registration. As a result, the TREs obtained using our registration framework are 

smaller than those obtained by the other two aforementioned intensity-based MR–TRUS 

registration approaches. The optimization strategy that we use (DINO) is also able to handle 

the nonconvex, nonsmooth morphology of the similarity metric. Further, the results show 

that the TRE obtained using our registration pipeline is relatively invariant to the quality of 

the initial alignment. The use of a distribution-based optimization strategy in the first stage 

provided the algorithm with a large capture range. This is an important result as small 

capture ranges limit many registration applications.

Although the proposed approach is robust to poor initializations and outperforms the 

previous state-of-the-art MIND-based registration with improved registration accuracy, extra 

local adjustment needs to be performed by physicians when targeting small lesions. Because 

inexperienced physicians may struggle with 3D MR–TRUS registration, it is important to 

design an automatic registration algorithm that is invariant to potentially poor initializations. 

Furthermore, our software allows a user to override the registration and saves the solution 

produced by either manual correction or fully automatic registration. It provides instant 

feedback to the user that assesses the quality of any alteration that is made using a simple 

forward pass through our CNN. A physician has the option to save any initialization or 

registration for later comparison, manually performing MR–TRUS registration that is 

assessed by the learned metric, and/or use DINO to automatically perform the registration by 

optimizing the learned metric. The variety of options that our software provides and its 

simple user interface are conducive to faster clinical adoption.

It should be noted that this work used a rigid transformation model instead of a deformable 

one, which inherently limits the registration accuracy due to the deformation of the prostate 

that occurs between image acquisitions. Rigid registration could be sufficient for our 

application most of the time as the deformation is rather limited. However, deep similarity-

based deformable registration will be investigated in the future for more comprehensive 

evaluation.
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Conclusion

The search for a metric of registration accuracy is driven by an evolving clinical need for 

more accurate registration of MR–TRUS volumes. Although fusion biopsy is dependent 

upon registration, it has been very challenging to achieve accurate registration due to the 

large appearance difference between TRUS and MR images. As MR gets more and more 

sensitive in the detection of small lesions, sampling those small lesions becomes 

increasingly dependent upon the targeting accuracy of the operator. A lack of reproducible 

metrics and standardization tools leads to a reduction in clinical impact, less uniform 

practice, and may limit the success of this novel technology in clinical practice.

In this paper, the developed similarity metric is learned using a custom convolutional neural 

network and demonstrates very promising performance using a composite optimization 

scheme to perform the registration. In our future work, we hope to explore methods to 

enforce desirable similarity metric morphology, investigate variants of our neural network 

training strategy, further speed up the registration, extend this approach to the deformable 

registration case, and encourage more computationally efficient and thorough exploration of 

the solution space in future works.
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Fig. 1. 
The architecture of the designed CNN that is used to learn the similarity metric
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Fig. 2. 
a The solution obtained using BFGS to optimize the learned metric using an initial TRE of 

16mm. b Visualization of the process through which a parent in the first generation of 

differential evolution produces a child in the second generation. The parent incorporates 

information from 3 other randomly selected members of the population within its generation 

to produce the child. This is repeated for every member of the population within the 

generation. An initial TRE of 16mm is used to produce the first generation, which 

deliberately spans the space according to the search radius. c The solution obtained using the 

most “fit” member of the population of the final generation of differential evolution 

(member with the lowest learned metric value) to initialize the BFGS algorithm
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Fig. 3. 
Curves that show the metric values that are outputted by the learned deep similarity metric 

using the multi-pass approach (blue) and mutual information (red) following a translation 

along the z-axis and b simultaneous rotations around all axes
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Fig. 4. 
Axial, coronal, and sagittal views of example registration results: a Initial alignment; b 
Registration performed by optimizing the mutual information (MI) using DINO; c 
Registration performed by optimizing the MIND similarity using DINO; d Registration 

performed by optimizing the learned metric using DINO
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