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Abstract

Cancers that arise from BRCA1 germline mutations are deficient for homologous recombination 

(HR) DNA repair and are sensitive to DNA damaging agents such as platinum and PARP 

inhibitors (PARPi). In vertebrate organisms, knockout of critical HR genes including BRCA1 and 

BRCA2 is lethal because HR is required for genome replication. Thus, cancers must develop 

strategies to cope with loss of HR activity. Furthermore, as established tumors respond to 

chemotherapy selection pressure, additional genetic adaptations transition cancers to an HR-

proficient state. In this review, we discuss biological mechanisms that influence the ability of 

BRCA1-mutant cancers to perform HR. Furthermore, we consider how the HR status fluctuates 

throughout the cancer life course, from tumor initiation to the development of therapy refractory 

disease.
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Introduction

BRCA1/2 gene mutations account for the majority of hereditary forms of breast and ovarian 

cancer (1). It is broadly accepted that both BRCA1 and BRCA2 proteins suppress the 

formation of tumors by facilitating homologous recombination (HR) DNA repair, which in 

turn, ensures genomic stability (2–4). Breaks frequently arise during DNA replication, and 

HR is required for DNA replication fork restart (5). Because HR is critical for genome 

duplication, it is obligatory for the viability of vertebrate organisms. Indeed, genetic 

disruption of critical HR factors, including Brca1, Brca2 and Rad51, can induce early 

embryonic lethality in mice (6–12). In striking contrast, BRCA1/2 mutant cancers are highly 

proliferative and malignant, despite being defective for HR. This apparent paradox raises 

several questions; including, why are cancers, but not normal cells, able to thrive without 

HR? Alternatively, do BRCA1/2 mutant cancers retain residual HR activity? And, what are 

the biological mechanisms that provide HR in the absence of BRCA proteins?
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The HR status of tumors is highly consequential for cancer patients. In particular, PARP 

inhibitors (PARPi) and platinum generate DNA damage during replication, which is usually 

repaired by the HR machinery (13–16). Patients with BRCA1/2 mutation-containing tumors 

gain most benefit from PARPi therapy. In a portion of patients, PARPi provides long-term 

anti-tumor activity. However, in other cases, PARPi has minimal activity, despite the 

presence of BRCA1/2 mutations and presumed HR-deficiency. Moreover, the majority of 

tumors are initially responsive, but then develop resistance (17–24). Often, cancers that are 

HR-deficient go on to acquire molecular adaptations that transition them to an HR-proficient 

state (25,26). The paradigm that BRCA1 mutations are equal to HR deficiency may be over 

simplistic, and BRCA1 mutation-containing cancers likely adapt strategies to maintain some 

level of HR. In this review, we focus on the relationships between BRCA1 mutations, HR 

and cancer. We explore the concept that HR is not an all-or-nothing occurrence but a 

spectrum, and that where a tumor stands on this spectrum may have therapeutic relevance.

BRCA1 domains govern function

The human BRCA1 gene comprises over 81 kilobases of DNA on chromosome 17. The 

largest transcript encodes an 1863 amino acid (aa) protein with an approximate mass of 220 

kDa, referred to as BRCA1 full-length or p220. Within the full-length peptide, there are 

conserved RING, coiled-coil (CC), and BRCT domains, as well as a central unstructured 

region encoded by exon 11 that accounts for over half of the total protein (Figure 1A) 

(27,28). The molecular activity of BRCA1 within HR stems from protein interactions and 

the formation of distinct multi-protein complexes. BRCA1-BARD1 interact via their 

respective N-terminal RING domains. The BRCA1 BRCT repeats engender a 

phosphopeptide binding region that facilitates protein interactions, including CtIP, 

ABRAXAS, and BACH1. In contrast, the BRCA1 CC domain is only known to form a 

single direct protein interaction with the CC domain of PALB2 (27). Although the function 

of exon 11 is not clear, due to its large size, mutations in this region account for nearly 30% 

of pathogenic BRCA1 mutations (29).

BRCA1-BARD1 and HR

BRCA1 has several well-defined functions that contribute to the overall proficiency of HR. 

The BRCA1-BARD1 heterodimer is an E3 ubiquitin ligase, but the importance of this 

activity in HR is unclear (30–34). BRCA1-BARD1 E3 ligase substrates have been reported 

to include histone H2A and CtIP (33,34). The BRCA1I26A mutation is not found in cancer 

patients but disrupts E3 ligase activity, and there are conflicting reports regarding the degree 

to which this mutation is deleterious, with multiple studies showing little or no impact on 

HR or DNA damage sensitivity (31,35–37). In contrast, the physical association of BRCA1-

BARD1 is crucial for the stability of each protein. The BRCA1C61G missense mutation is 

found in cancer patients and prevents BARD1 heterodimerization. Consequently, there is 

decreased expression of both proteins, loss of HR and DNA damage sensitivity (38–43). 

BRCA1-BARD1 have also been shown to directly interact with, and enhance the 

recombinase activity of, RAD51 (44).
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Another critical function of BARD1 is to localize BRCA1 to sites of DNA damage. The 

BARD1-BRCT domain binds to poly-ADP ribose (PAR) and targets the heterodimer to 

double stranded DNA breaks (DSBs) early on in the response to DNA damage (45). 

However, at later time points, the BARD1-BRCT domain interacts with Lysine 9-

dimethylated histone H3 (H3K9me2), which is mediated primarily by HP1γ, and is required 

for focal accumulation (46). Moreover, a screen identified the BARD1-ANK domain as 

efficiently binding H4 not methylated at lysine 20 (H4K20me0). BARD1ΔAnk failed to be 

recruited to chromatin and resulted in cellular sensitivity to PARPi (37). The BRCA1-BRCT 

domain also contributes to recruitment to DSBs through an ABRAXAS-RAP80 complex 

(47–49). The interplay between these various mechanisms of BRCA1-BARD1 recruitment 

to chromatin and DSB sites is unclear.

BRCA1 and DNA end resection

The degradation of double stranded (ds)DNA to single stranded (ss)DNA overhangs by 

nucleases is termed DNA end resection and is required to initiate HR. Perhaps the most 

recognized function of BRCA1 in HR is in counteracting the 53BP1-RIF1-shieldin complex 

(50,51). A plethora of studies have emerged over recent years that have identified proteins 

that comprise the 53BP1-RIF1-shieldin-complex, which functions to inhibit DNA end 

resection. However, the precise biological mechanism by which BRCA1 counters this 

complex and activates resection is less clear. BRCA1 may physically displace 53BP1 

(31,52), or recruit phosphatases that dephosphorylate 53BP1 and result in loss of RIF1 

binding (53). Additionally, the exon 11 region and BRCT domain of BRCA1 have 

independently been shown to prevent RIF1 accumulation at DSBs (54,55). Moreover, the 

BRCA1-BRCT domain promotes CtIP localization to DSB foci, which in turn stimulates 

MRE11 nuclease activity. Key studies have shown that the BRCA1-CtIP interaction, 

although not crucial for end resection to occur, increases the efficiency and speed of 

resection (56–59).

BRCA1-PALB2 promotes RAD51 loading

Seminal studies published in 2009 uncovered a principal function of BRCA1 within HR. 

Here, BRCA1 was shown to directly bind to PALB2 via each proteins respective CC 

domains, resulting in the formation of a macro complex consisting of BRCA1-PALB2-

BRCA2-RAD51 (60–62). The latter promotes the loading of RAD51 onto resected ssDNA, 

generating RAD51 filaments that are primed for strand invasion. Cell lines engineered to 

express PALB2 or BRCA1 mutations that disrupt the CC domains are defective for RAD51 

foci formation (60–62). However, there remains debate regarding whether this is a critical 

interaction and function of BRCA1, or something that can be readily bypassed. Specifically, 

because 53BP1 knockout (KO) can rescue HR via the restoration of DNA end resection in 

BRCA1 mutant cells, the significance of the BRCA1-PALB2 interaction is contentious. 

Recent studies have addressed this question, demonstrating that BRCA1 hypomorphs that 

retain the CC domain are required for efficient 53BP1 KO-mediated restoration of RAD51 

foci (55,63,64). Other studies have shown that cell lines expected to be BRCA1 null had 

efficient RAD51 foci in the setting of 53BP1 deficiency (65–67). Therefore, in the context of 

53BP1 KO, BRCA1-independent PALB2-BRCA2-RAD51 loading appears to be highly 
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variable, and potentially cell line-dependent. Moreover, BRCA1-independent PALB2 

loading has been demonstrated to occur via mechanisms that depend on ATR and RNF168 

activity (68–71). In summary, the BRCA1 protein has a multi-faceted and complex role 

within HR, with prominent actions in initiating DNA end resection and promoting RAD51 

loading.

BRCA1 and replication fork protection

Proteins that are involved in HR are often also required to protect DNA fibers from nuclease 

mediated degradation in response to DNA replication fork stalling agents such as 

hydroxyurea (HU). The fork protection (FP) function of BRCA1 and BRCA2 appears to be 

distinct from their HR activities, with several separation-of-function mutations documented 

(72–74). For example, Brca1 CC domain mutations are highly disruptive to HR, but do not 

impact FP (55). Similarly, in mouse cells, Brca1-ΔRING was defective for HR but proficient 

for FP (70). In contrast, the Brca1-Δ11 protein is defective for both FP and HR (55,70,75). 

Some studies have shown FP disruptive mutations have minor effects on cell viability, others 

indicate more substantial effects on viability and response to therapy (74–77). Interestingly, 

proteins that are defective for fork protection, such as Brca1-ΔRING and Brca1-Δ11, retain 

the ability to provide residual HR, and can play a role in PARPi resistance upon selection 

pressure (29,78), although the precise interplay between partial HR and FP has not been 

addressed.

A requirement for HR in genome replication

HR is required to restart replication forks that pause after encountering spontaneously 

arising breaks and problematic DNA sequences or structures. While yeast and bacteria can 

replicate their genomes in the absence of essential HR genes such as RecA/RAD51 and 

RAD52, the same is not true for vertebrate cells (5,79–82). BRCA1, BRCA2 and RAD51 
genetic KO all result in early embryonic lethality in mice (6–12). BRCA2 deficiency as well 

as mutations that specifically disrupt the HR activity of the protein were shown to trigger 

replication stress that is transmitted to the next cell cycle through DNA under replication. 

The latter caused chromosome segregation and the presence of 53BP1 nuclear bodies in G1 

phase human breast epithelial cells, followed by senescence or apoptosis-associated loss of 

viability (76). Studies using DT40 chicken cells showed that genetic inactivation of RAD51 
caused cells to accumulate in G2/M before dying. Chromosome analyses presented multiple 

breaks spontaneously occurring in proliferating cells (83). Surprisingly, DT40 cells with 

BRCA1 KO cell can proliferate, although at a slower speed, possibly due to RAD51 

overexpression (84). In contrast, the human haploid HAP1 cell line is highly dependent on 

BRCA1 for viability, and a KO-knockin (KI) approach was able to identify potential 

pathogenic variants based on their ability to rescue cell proliferation (85).

BRCA1 and TP53 mutations

Given the importance of HR for DNA replication, BRCA1 defective cells and mice are 

inviable. Thus, cells that undergo transformation require epi/genetic events that permit for 

loss of BRCA1 to become advantageous and subject to positive selection. The most well-
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defined mechanism is the presence of TP53 mutations, which are invariably detected in 

BRCA1 mutant cancers (86,87). Loss of the p53-p21 signaling axis prevents DNA damage 

from triggering cell death (12,88). The ability of p53 and p21 KO to rescue viability in the 

presence of Brca1 mutations has been illustrated using mouse genetics. Nonetheless, the 

efficiency of rescue is variable, and dependent on the specific Brca1 mutation. For example, 

p53 KO rescues the embryonic viability of mice that are homozygous for hypomorphic 

Brca1 alleles (89–91). In contrast, p53 KO had little effect, beyond an extra day of 

embryonic life, on homozygous Brca1 null allele embryos (12,88,92). The latter suggests 

that TP53 mutations alone may be insufficient for some cancers to maintain viability; and 

that BRCA1 hypomorphic protein products, in conjunction with TP53 mutations, sustain 

viability. Significantly, while TP53 mutations abrogate DNA damage checkpoints, they do 

not explain how BRCA1 mutant cancers replicate their genome in the absence of HR.

BRCA1 hypomorphic proteins

The transformation process is thought to initiate when epithelial cells acquire TP53 
mutations, followed by loss of heterozygosity (LOH) at the BRCA1 locus (93). When the 

wild-type copy of BRCA1 is lost, the mutation-containing allele remains behind, which is 

unable to support HR and consequently lacks tumor suppressor activity. BRCA1 mutant 

cancers have extensive genomic instability; thus, a reasonable prediction might be that the 

remaining mutation-containing locus might also eventually be lost in a portion of cells. 

However, BRCA1 mutations are frequently detectable in established cancers, with few cases 

in which the locus is entirely absent (94–98). Similarly, established BRCA1 mutant cancer 

cell lines invariably retain the mutation-containing allele, regardless of passage number or 

culture conditions (29,99). Thus, in the absence of wild-type BRCA1, mutant alleles may be 

subject to positive selection. Indeed, several copies of the mutation-containing allele are 

often observed in tumors (discussed in more detail below).

BRCA1 missense mutations produce full-length proteins that can have hypomorphic activity. 

For example, mice with Brca1C61G mutant mammary cancers rapidly developed PARPi and 

cisplatin resistance due to increased expression of the Brca1C61G protein (100). Moreover, 

mice containing some Brca1 hypomorphic mutations can survive embryogenesis. 

Brca1CC/CC mice were born with Fanconi anemia-like defects, and Brca1 CC in-frame 

mutant proteins were capable of displacing RIF1-shieldin, thereby promoting DNA end 

resection, but were defective for RAD51 loading (55). In contrast, frameshift mutations that 

block the production of proteins are unable to contribute to HR. Nevertheless, there are 

several examples of BRCA1 frameshift mutations that are predicted to be unable to generate 

protein, but in fact produce unanticipated BRCA1 isoforms.

BRCA1 mutations that arise in the germline of patients can be broadly grouped by mutation 

location (Figure 1B). BRCA1 5’ located mutations, including 185delAG, can generate 

proteins that lack the RING, but contain all other domains, through initiating translation 

from start sites that are downstream of the mutation-induced stop codon (78,101). 

Meanwhile, BRCA1 exon 11 frameshift mutations remain capable of expressing the 

BRCA1-Δ11q alternative splice isoform, which is without exon 11, but contains all 

conserved functional domains (29,102). BRCA1-Δ11q can provide residual growth in the 
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presence of PARPi or cisplatin, but remains defective relative to the full-length protein. 

BRCA1 BRCT domain mutations are highly destabilizing and result in proteasomal 

degradation (103,104). However, gene re-arrangements can generate proteins that lack the 

entire BRCT domain, including the destabilizing mutation (105).

Proteins with folding issues may also be stabilized by HSP90 (106). BRCA1- ΔRING, -

ΔBRCT, and -Δ11q proteins can be readily detected under PARPi selection pressure and are 

capable of partially supporting RAD51 loading due to retention of the CC domain (63) 

(Figure 1B). However, lower levels of BRCA1 mutant protein expression are sometimes 

detected in the absence of PARPi selection pressure and likely support residual HR activity.

Typical methods used to quantify HR activity include the DR-GFP reporter, RAD51 foci 

formation, and PARPi colony assays. However, while these methods are effective at 

uncovering HR defects, they may lack the sensitivity required to detect residual HR activity. 

Our laboratory has adopted a modified colony assay that is capable of uncovering low levels 

of HR activity afforded by BRCA1 mutant proteins. The MDA-MB-436 breast cancer cell 

line has undetectable BRCA1 protein expression and is used to generate stable BRCA1 

cDNA addbacks with a lenti-virus expression system. We seed cells at increasing densities, 

and incubate with a low concentration of PARPi that prevents the negative control cDNA-

expressing cells from forming colonies, but has no effect on cells that express the BRCA1 

wild-type positive control. Hypomorphic proteins enable colonies to form when cells are 

seeded at higher densities, whereas negative control cells do not form any colonies. Using 

this approach, the ability of BRCA1 mutant proteins to provide residual HR can be 

visualized and quantified.

BRCA1 locus modifications

The paradigm for BRCA mutant cancer development is centered on the “two-hit” 

hypothesis, where one allele is lost, and the remaining has a mutation that results in loss-of-

function (107). However, recent insights suggest further complexity. In an analysis of 

patients with pathogenic germline mutations, depending on the cohort, 16-27% of BRCA1/2 
tumors analyzed fit the classic hypothesis where one allele was lost and the mutant allele 

remained. However, 23-42% lost the wild-type allele but had 2 copies of the mutant allele, 

and 16-36% had 3 copies of the mutant allele. Another 4-36% of tumors retained both the 

wild-type and mutant gene copy (98).

Retention of the wild-type allele has obvious implications for cancer development and 

therapeutic outcomes. Ovarian cancers that did not demonstrate LOH were associated with 

worse survival (98), likely from poorer response to platinum or PARPi therapies. Cancers 

that do not demonstrate LOH have additional driver mutations, such as KRAS or EGFR, and 

are better characterized by tumor lineage as opposed to BRCA mutation status (108). 

Possible explanations for retention of wild-type BRCA1 could be that HR re-wiring 

adaptations are not in place to support survival in the event of LOH. Alternatively, cancer 

promoting alterations occur prior to BRCA1 LOH and make the latter unnecessary.
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Cancer cell lines and PDX tumors often harbor several copies of the BRCA1 mutation-

containing allele (105). Extra copies permit for transcription from multiple alleles and may 

enhance mutant protein production. Moreover, the presence of a second allele has been 

shown to facilitate Alu-mediated rearrangements in the BRCA1 locus that enables the 

production of hypomorphic proteins (105). In summary, the presence and retention of single 

or multiple BRCA1 mutant alleles enables truncated protein isoforms to be expressed, which 

support residual HR and the viability of cancers.

RNF168-53BP1 and basal viability

While PARPi treatments induce high levels of expression of BRCA1 hypomorphs, during 

cancer initiation and prior to chemotherapy selection pressure, truncated BRCA1 protein 

expression may be low or absent, and alternative re-wiring mechanisms are required to 

support HR. Deletion of 53BP1 can restore resection and HR in Brca1 mutant mice and 

cancers (50,51). In the setting of Brca1 null alleles, 53bp1 KO was insufficient to provide 

robust HR and PARPi resistance, or genome stability and protection from tumor 

development. Nonetheless, 53bp1 KO did restore the ability of Brca1 null embryonic cells to 

divide and produced pups at close to the expected Mendelian rate (63,64). Thus, in addition 

to therapy resistance, modulation of the 53BP1 pathway may be pertinent to BRCA1 mutant 

tumor initiation (Figure 2).

Genetic disruption of proteins that are either up or downstream of 53BP1 can also restore 

end resection and HR. The RIF1-shieldin complex acts downstream of 53BP1, and KO of 

components have been shown to restore HR and promote PARPi resistance in a manner 

similar to 53BP1 (109). TRIP13 amplification also contributes to loss of shieldin complex 

activity (110). The RNF8-RNF168 pathway functions upstream and is required to recruit 

53BP1 to DSB sites. In response to DNA damage, RNF8 binds to phosphorylated MDC1 

and promotes the recruitment of RNF168, both are E3 ubiquitin ligases that conjugate Lys 

63-linked ubiquitin chains onto histone H2A. Additionally, RNF168 monoubiquitinates H2A 

at K13/15, which serves as a recruitment module for 53BP1 (111). Thus, depletion of 

RNF168 and RNF8 have both been shown to decrease 53BP1 recruitment and consequently 

promote DNA end resection in the absence of BRCA1 (70,112,113). Moreover, the TIRR 

protein interferes with 53BP1 recruitment and can influence HR activity (114).

In the setting of BRCA1 and 53BP1 deficiency, RNF8 and RNF168 ubiquitin activity 

contributes to BRCA1-independent RAD51 loading, likely through a direct interaction 

between RNF168 and PALB2 (69–71,113). Therefore, in BRCA1 and 53BP1 deficient cells, 

RNF168 may play a key role in regulating HR. In BRCA1 null cancers, RNF168 protein 

expression is finely regulated. Here, low levels of RNF168 protein expression were detected, 

and consequently reduced 53BP1 recruitment activated resection and provided residual HR. 

However, RNF168 remained essential and was required for RAD51 loading in the absence 

of BRCA1. Indeed, a further decrease in RNF168 expression abolished HR and was 

detrimental to cellular viability. Of note, BRCA1 mutant cells that expressed high levels of 

hypomorphic proteins retained the ability to promote residual HR without modulation of 

RNF168 expression, and were not dependent on reduced RNF168 for viability (113). Hence, 

residual HR may be supported by a variety of means, which are potentially determined by 
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whether mutant alleles are capable of expressing high enough levels of hypomorphic 

proteins.

RAD18 is another H2A-ubiquitin binding protein and is recruited to DSBs in an RNF168-

dependent manner. In studies where RNF168 was ectopically overexpressed in BRCA1 null 

cancers, DNA end resection was blocked via 53BP1 recruitment. Moreover, DNA repair 

events at stalled replication forks were redirected toward a break-induced replication (BIR)-

like mechanism through a RAD18-SLF1 signaling axis (115). Significantly, mutational 

signatures associated with tandem duplications arise from BIR-like events can be readily 

viewed in BRCA1 mutant cancer genomes (116,117). Thus, RNF168 is a master regulator of 

multiple aspects of DNA repair, particularly in the setting of BRCA1-deficiency.

BRCA1 mutations and therapeutics

Tumor HR status is a critical determinant of PARPi and platinum therapy response. In the 

standing paradigm, the BRCA1 wild-type genotype confers therapy resistance, and 

mutations sensitivity (13,14). In the clinical setting, BRCA1/2 mutant cancers demonstrate 

overall better progression free survival (PFS) than wild-type cancers from PARPi (17–24). 

However, PARPi’s have been particularly successful in ovarian cancers, where efficacy is 

observed in both BRCA wild-type and mutant cancers, and there is a wide spectrum of 

responses (118). BRCA wild-type ovarian cancers are thought to have defects in other HR 

genes that account for sensitivity, including PALB2, RAD51D, and multiple FANC genes 

(119,120).

Whether a particular group of BRCA mutations confer worse or better response to PARPi or 

impact the duration of effectiveness is an important question, but one that has not yet been 

fully resolved (121). Analyses of cohorts of ovarian cancer patients showed that BRCA1 
exon 11 mutation carriers may have worse overall response to platinum and overall survival 

(OS) compared to other mutation types (29,122). This may be due to expression of the 

BRCA1-Δ11q splice variant that can promote therapy resistance. However, there are many 

examples of patients with similar mutations, including those in BRCA1 exon 11, which have 

a complete, partial, as well as no response to PARPi. Thus, it does not appear that specific 

BRCA1 mutations can be used to predict therapy efficacy or the duration of PARPi response. 

A range of factors likely determine response and resistance, much of which, in the clinical 

setting, are unknown. The collection of paired PARPi pre- and post-resistant tumor samples 

from patients is currently limited and future efforts along this front will be crucial.

Insights into PARPi resistance mechanisms have largely come from studies using BRCA1 
mutant human cancer cell lines and mouse models, and are too numerous to review here 

(26). It should be noted they include non-HR related events; however, we will focus on 

mechanisms that restore HR. With respect to the role of BRCA1 mutations, we and others 

have observed increased expression of a range of BRCA1 truncated proteins in multiple 

human cancer cell lines (29,78,100,101,105,106,123). Importantly, RNAi or CRISPR/cas9 

targeting of truncated BRCA1 proteins reversed PARPi resistance. However, ectopic 

overexpression of truncated BRCA1 proteins only provided partial or low levels of HR and 

PARPi resistance. Although BRCA1 isoforms were not as efficient as wild-type, they did 
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enable significantly more colonies to grow in the presence of PARPi compared to cells that 

were null for BRCA1 expression (29,78,105). Thus, BRCA1 hypomorphs likely promote 

resistance in combination with additional events that together provide robust PARPi 

resistance. In several instances, we have observed reductions in 53BP1 protein levels in 

conjunction with BRCA1 hypomorph expression in cells that acquired PARPi resistance 

(63,106). In another example, BRCA1 hypomorphic protein expression was critical for 

PARP1 mutation-induced PARPi resistance (124).

BRCA1 mutant proteins might not be expressed at high enough levels or may have 

insufficient HR activity to induce resistance. Here, secondary mutations that restore the 

reading frame and expression of the full-length protein can promote resistance (26). Full-

length BRCA1 proteins are more efficient at promoting PARPi resistance, and a preference 

for reversion mutations might be expected. However, reversion mutations are only detected 

in a portion of PARPi resistant cancers (125), and determinants of the acquisition of 

reversion mutations versus other mechanisms of resistance are unclear. Conceivably, 

reversion mutations may be more readily generated than alternative translation, alternative 

splicing, and protein folding re-wiring events that are required for BRCA1 hypomorph 

protein expression. Of note, specific mutations do not appear to determine whether 

reversions occur or hypomorphs are expressed, as there are examples of both mechanisms in 

RING, exon 11 and BRCT mutation-containing cancers. Moreover, intra-tumoral 

heterogeneity could play a role in PARPi resistance. Additional studies of patient tumors are 

required to determine whether multiple mechanisms are engaged within the same tumor.

Implications and future directions

Despite progress, there is still much unknown, and hereditary BRCA mutations continue to 

significantly contribute to breast and ovarian cancer mortality. The process of HR is 

fundamental to the study of BRCA cancer. HR re-wiring mechanisms are emerging, but 

there are likely many additional means by which cells adapt to survive in the absence of 

wild-type BRCA1. Further complexities, such as the relationship between replication fork 

protection and HR will be important to decipher, particularly in determining their relative 

impact on cell viability and therapeutic response. Accumulating DNA damage also triggers 

luminal to basal/mesenchymal trans-differentiation events that permit for cells to tolerate 

BRCA1 loss (126). An understanding of these events and pathways could reveal additional 

therapeutic vulnerabilities.

During the development of BRCA1 mutant cancer, HR deficiency is advantageous, but in 

established tumors is an Achilles heel, providing a therapeutic window for targeting cancer 

cells over non-transformed cells. Consequently, HR-deficiency is often transient, and 

determined by therapy selection pressure (Figure 2). Retaining a state of HR-deficiency 

would prolong PARPi sensitivity and patient survival. While efforts are underway to develop 

therapeutics that target HR defective cells, the selective targeting of cancers that have 

acquired HR-proficiency may provide a complementary approach to PARPi. Moreover, loss 

of HR activity confers dependencies on alternative DNA repair pathways. Microhomology-

mediated end joining (MMEJ) has been shown to be one such pathway (127,128), and DNA 

polymerase theta inhibitors are under development (129,130). Continued research into the 
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basic biology of DNA repair pathways is of critical importance for the discovery of new and 

effective therapeutic targets. Finally, routine collection of tumor material from patients who 

have progressed on PARPi therapy will be of enormous benefit in understanding resistance 

and designing new treatments.
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Figure 1. 
Schematic representation of BRCA1 full-length and hypomorphic proteins that have been 

detected in cancers. (A) The full-length (p220) BRCA1 protein is depicted along with 

known functional domains and corresponding protein interactions. Amino acid (aa) residues 

corresponding to predicted domain start and end sites are indicated as well as potential 

functional activities of each domain. (B) BRCA1 cDNA is shown (above) with 

corresponding base pairs indicated. Redlines indicate regions where frameshift mutations 

may be present but remain capable of expressing either the BRCA1-ΔRING, BRCA1-Δ11q, 

or BRCA1-ΔBRCT proteins.
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Figure 2. 
The HR spectrum over the life course of a BRCA1 mutant cancer. Partial HR activity is 

likely required for tumor initiation and growth, but may also play a role in therapy 

resistance, and could account for some patients demonstrating poor responses in the 

treatment naïve setting. Dashed line indicates HR activity and solid line indicates cancer 

growth over time. Arrows along the x axis indicate significant events over the course of 

cancer development and progression. Shading colors correspond to cancer development, 

cancer growth, PARPi and Platinum therapy (P+P) responsiveness and resistant growth.
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