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Abstract

Alterations in immune-related pathways are common hallmarks of cancer. A comprehensive 

understanding of how cancer mutations rewire immune signaling networks and functional output 

across cancer types is instrumental to realize the full potential of immunotherapy. Here we 

systematically interrogated somatic mutations involved in immune signaling that alter immune 

responses in cancer patients. To do so, we developed a Network-based Integrative model to 

Prioritize Potential immune respondER genes (NIPPER). Identified mutations were enriched in 

essential protein domains and genes identified by NIPPER were associated with responsiveness to 

multiple immunotherapy modalities. These genes were used to devise an interactome network 

propagation framework integrated with drug-associated gene signatures to identify potential 

immunomodulatory drug candidates. Together, our systems-level analysis results help interpret the 

heterogeneous immune responses among patients and serve as a resource for future functional 

studies and targeted therapeutics.

Introduction

Immunotherapy has been considered as a promising strategy for treatment of various types 

of cancer. Although these immunotherapy methods have made remarkable success, only a 

minority of patients are observed to respond to the treatment with cytotoxic T lymphocyte 

antigen-4 (CTLA-4) or programmed death receptor-1 (PD-1) blockade (1). There is a 

clinical need to identify predictive biomarkers and to understand the potential mechanisms 

of immunotherapy resistance.

With the development of high-throughput sequencing technology, recent evidence has 

pointed to a number of predictive biomarkers, such as tumor mutational burden (TMB) (2), 

neoantigen burden (3), PD-L1 or PD-L2 mRNA expression (4), epigenetic markers and 

immune cell infiltration profiles (5). With these predictive biomarkers in hand, machine 

learning-based methods are being built to predict the immunotherapy response. However, it 

is challenging to integrate different biomarkers. Moreover, increasing studies are beginning 

to reveal the underlying mechanisms of immunotherapy resistance. The expression of 

immune-related genes (6), insufficient immune cell infiltration (7), oncogenic pathway 

activity (8) as well as metabolism dysregulation (9) have all been related to therapy 

resistance. Nonetheless, additional insights are still needed for a comprehensive 

understanding of the mechanisms of immunotherapy resistance.
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In addition, genes do not function in isolation but rather interact extensively with each other, 

and therefore any genetic abnormality is not restricted to the gene product that it encodes 

(10). The emerging tools of network- or pathway-based medicine offer a valuable platform 

to explore the predictive biomarkers as well as to understand the dysregulation pattern of 

cancer-related pathways. Previous studies by The Cancer Genome Atlas (TCGA) have 

systematically analyzed the alteration landscape of cancer-related signaling pathways (11). 

However, we still lack the knowledge about the alteration pattern of immune-related 

pathways across cancer type.

To further refine both the genomic and transcriptomic derived events associated with 

immune infiltration and response to immunotherapy, we first charted the detailed 

perturbation landscape of immune-related pathways. A network-based immunogenomics 

model with scoring systems was designed to identify modulation in signaling networks 

associated with immunogenicity. Furthermore, using a network propagation framework 

integrated with drug associated gene signatures we discovered potential immunomodulatory 

drug candidates. These results can help elucidate the functionally relevant mechanisms of 

immune-related pathway alterations and might inform potential immunotherapy treatment 

options.

Materials and Methods

Human Immunome

Human immune-related genes were obtained from the ImmPort project (http://

www.immport.org) (12). In total, 1811 genes in 17 immune-related pathways were obtained. 

In addition, we also obtained genes that are identified to be essential to immune response 

from recent literature (13,14). These genes were defined as essential immunotherapy genes 

and grouped into the 18th pathway. In total, 2,273 immune-related genes were obtained.

TCGA Patient Cohort

The results in our analysis are based upon datasets generated by TCGA Research Network 

(http://cancergenome.nih.gov/). We analyzed 33 different TCGA projects, each project 

represents a specific cancer type, including KIRC, kidney renal clear cell carcinoma; KIRP, 

kidney renal papillary cell carcinoma; KICH, kidney chromophobe; LGG, brain lower grade 

glioma; GBM, glioblastoma multiforme; BRCA, breast cancer; LUSC, lung squamous cell 

carcinoma; LUAD, lung adenocarcinoma; READ, rectum adenocarcinoma; COAD, colon 

adenocarcinoma; UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial 

carcinoma; OV, ovarian serous cystadenocarcinoma; HNSC, head and neck squamous 

carcinoma; THCA, thyroid carcinoma; PRAD, prostate adenocarcinoma; STAD, stomach 

adenocarcinoma; SKCM, skin cutaneous melanoma; BLCA, bladder urothelial carcinoma; 

LIHC, liver hepatocellular carcinoma; CESC, cervical squamous cell carcinoma and 

endocervical adenocarcinoma; ACC, adrenocortical carcinoma; PCPG, pheochromocytoma 

and paraganglioma; SARC, sarcoma; LAML, acute myeloid leukemia; PAAD, pancreatic 

adenocarcinoma; ESCA, esophageal carcinoma; TGCT, testicular germ cell tumors; THYM, 

thymoma; MESO, mesothelioma; UVM, uveal melanoma; DLBC, lymphoid neoplasm 

diffuse large B-cell lymphoma; CHOL, cholangiocarcinoma.
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Molecular and Clinical Datasets across Cancer Types

Somatic mutations were obtained from the publicly available TCGA MAF file (“MC3”) 

which covers 10,224 patients (15). This dataset was directly downloaded from Synapse 

under the number of syn7214402. Six calling methods were applied and numbers of filters 

were applied. All these mutations were subjected to ANNOVAR (16) and we obtained the 

conservation and MetaSVM score for each mutation (17).

RNA-seq data were obtained from the TCGA project via the R-package “TCGAbiolinks”, 

which was specifically developed for integrative analysis with GDC data. We downloaded 

the Fragments Per Kilobase of transcript per Million mapped reads (FPKM)-based gene 

expression for 33 types of cancer. In addition, we also obtained the raw read counts for each 

gene in these samples. The clinical information for patients of 33 cancer types was 

downloaded from TCGA project via the R-package “TCGAbiolinks”, including the survival 

status, stages, grades, survival time.

Moreover, we obtained the gene expression of two cohorts treated with immunotherapy. The 

first cohorts (GSE35640) included metastatic melanoma patients treated with MAGE-A3 

immunotherapeutic (18). Clinical benefit included objective responders (complete and 

partial) according to RECIST 1.0 (19). Only 22 responders and 34 non-responders were used 

in our analysis. Another cohort (GSE78220) included melanoma biopsies treated with anti-

PD-1 therapy (20). We analyzed gene expression of 5 complete responders and 13 

progressive disease samples.

Functional assay of mutations in cell lines

All cell lines used in the study were obtained from ATCC, and were authenticated by short 

tandem repeat (STR) profiling and tested for the absence of mycoplasma. Cells were 

passaged twice from collection or thawing for use in experiments. In vitro cell viability 

assays for mutations were adapted from one of our recent studies (21). Two cell lines BaF3 

and MCF10A were used and mutation functional calls, including activating, inactivating, 

inhibitory, non-inhibitory and neutral were determined by comparing with the corresponding 

wild-type counterparts. We used the consensus calls that were consistent in both cell lines.

Tumor Purity Estimation and Immune Cell Deconvolution

ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using 

Expression data) was used to estimate the immune score, stromal score and tumor purity of 

each patients across 33 cancer types (22). The FPKM-based gene expression profiles were 

used as input of this method. In addition, TIMER (https://cistrome.shinyapps.io/timer/) was 

used to estimate the abundances of member cell types in a mixed cell population, using gene 

expression data (23).

Pathway Mutation Burden Score

Pathway Mutation Burden (PMB) score was defined to evaluate whether the immune 

pathways were likely to mutate in a specific cancer type. This score considers the proportion 

of mutated genes as well as the coverage of patients in each cancer type. For an immune 

pathway i in cancer type j, the score is defined as following:
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PMB Pij =
mij
mi

*
nij
nj

Where mij is the number of mutated immune genes in pathway i; mi is the total number of 

genes in pathway i; nij is the number of patients of cancer j that with gene mutations in 

pathway i; and nj is the total number of patients sequenced in cancer j.

Immune Response-related Scoring System

Here, we considered three immune response-related scores estimated from gene expression. 

The immune score that represented the infiltration of immune cells in tumor tissue was 

assessed based on ESTIMATE (22). The MHC score was formulated from the gene 

expression levels of the “core” MHC-I set (including HLA-A, HLA-B, HLA-C, TAP1, 

TAP2, NLRC5, PSMB9, PSMB8 and B2M) (24). The FPKMs of genes were first log-

transformed and then median-centered. The mean expression levels of these core genes was 

defined as the MHC score. The cytolytic activity (CYT score) was based on transcript levels 

of two key cytolytic effectors, granzyme A (GZMA) and perforin (PRF1), found in previous 

studies (25).

Classification of Patients with Different Immune Responses

To investigate whether the immune-related scores could be used to classify the patients with 

different immune responses to immunotherapy, we obtained gene expression profiles of 

patients with metastatic melanoma treated with MAGE‑A3 immunotherapy (25) or anti-PD1 

(20). The three types of immune response-related scores were calculated for each patient. 

Next, we used the Receiver Operator Characteristic (ROC) Curve Analysis and precision-

recall curve to evaluate the effects of these scores. This process was performed by using 

‘ROCR’ package in R program. Additional analysis was performed using patients from the 

TIDE server (26).

Identification of Protein Regions Associated with Immune Response

The domainXplorer algorithm was used to identify the protein regions that are associated 

with immune scores (27). The protein functional regions were defined as protein domains in 

Pfam or intrinsically disordered regions identified by Foldindex. In addition, potential 

domains identified by AIDA (28) were also included in our analysis. Here, we only focused 

on immune genes-related functional regions.

In brief, domainXplorer used three statistical tests to evaluate whether mutations in a 

functional protein region were correlated with the immune response-related scores (27). The 

first linear model was defined as follow:

ImS = β0 + β1*T + β2*D

Where “ImS” is the immune score of each patient, “T” is the tissue of origin of each patient 

(here is the cancer type), and “D” indicates whether the functional region is mutated or not. 
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In the next step, Wilcox rank sum test was used to compare the immune response-related 

scores in patients with mutations in the functional region being analyzed against those with 

mutations in other regions of the same immune gene (Test-2) or those without mutations in 

the immune gene at all (Test-3). Protein regions with p1<0.05, p2<0.05 and p3<0.05 were 

identified as to be associated with immune response. In addition, we also identified the 

protein regions that were correlated with the proportion of immune cell infiltration based on 

the same method.

Differential Expression Analysis

To identify differentially expressed genes in each cancer type, we downloaded raw RNA-seq 

counts for all tumor samples, compared to normal tissues. We then used Limma-Voom 

(29,30) to identify the genes and considered the tumor purity as a factor. Genes with p-

values less than 0.05 and four-fold changes in expression were identified as differentially 

expressed genes in each cancer type.

To evaluate the similarity of cancer types based on the differentially expressed immune 

genes, we calculated the Jaccard index for each pair of cancer

Jaccard index Ci, Cj =
DEGi ∩ DEGj
DEGi ∪ DEGj

Where DEGi and DEGj are the differentially expressed immune genes in cancer type i and j. 

The directions of differentially expressed genes were not considered in our analysis.

Gene Set Enrichment Analysis

Gene Set Enrichment Analysis was used to identify the enriched immune pathways by 

differentially expressed genes in each cancer type (31). First, genes were ranked by negative 

log10 of the differential expression analysis-derived FDR multiplied by the sign of the 

logFC (log fold change). The “weighted” enrichment statistics were calculated for 

enrichment or depletion of each immune pathway in specific cancer type.

Prediction of Neoantigens and Functional Screen of Mutations

The somatic mutations were collected from TCGA project and we obtained the HLA alleles 

for tumor samples from TCIA (https://tcia.at/home) (32). Next, NetMHCpan 4.0 was 

employed for neoantigen prediction based on the information on mutations and HLA alleles 

(33). All the wild-type and mutated peptides with 8–11 amino acids were extracted and 

predicted for the binding affinity. Rank of the predicted affinity was compared to a set of 

random natural peptides. Rank threshold for strong binding peptides was 0.5% and for weak 

binding peptides was 2.0%. A cutoff of 0.5% was used to define mutations giving rise to 

neoantigens. The predicted binding affinity was in nanomolar units.

Network-based Prioritization of Immunome-related Genes and Drug Discovery

Human protein-protein network was integrated into our analysis to prioritize immune 

dysregulated genes. First, we extracted the subnetwork formed by immune-related genes 

from an integrated functional network (34). The main component of this subnetwork 
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consists 6,060 interactions among 1,202 immune-related genes. Next, the immune genes 

were ranked based on the correlation between gene expression and immune scores, MHC 

scores and CYT scores. Top 50 genes with higher positive- or negative-correlation with 

immune, MHC and CYT scores were selected as seed genes. In addition, the genes which 

mutations are associated with immune-related scores were also integrated as seed genes. To 

simulate the propagation of the genetic alterations through the network, we employed the 

random walk with restart (35). When an immune gene in the network is ranked in top 50, a 

value “1” is initially assigned to the gene. Then the genetic alterations are propagated along 

the neighbors such that the genetic alteration probability was calculated for all genes in the 

network according to the following equation:

Pt + 1 = αAPt + 1 − α P0

Where P0 is the initial binary probability vector, A denotes a degree-normalized adjacency 

matrix of the immune subnetwork, and α determines the diffusion degree of the genetic 

influence through the network. We used the optimal value (α = 0.7) in our analysis (36). 

After numbers of iteration, we obtained the final probability for each gene in the network. 

Genes with greater score than average probability were identified as immune dysregulated 

genes for each cancer type.

Next, we integrated drug associated gene signatures to identify the drug candidates for each 

cancer type. We first obtained the expression signature genes from The Connectivity Map 

(also known as CMAP) (37). For each drug, there are two types of signature genes, one is 

the up-regulated genes and the other one is the down-regulated genes. We used 

hypergeometric test to evaluate whether the drug-perturbed gene signatures were enriched in 

cancer-specific immune gene sets. For each cancer type, we obtained the p-value and then all 

the p-values across 33 cancer types were combined to a combined p-value.

pcombined = ∑w*z p
∑w2 ,

Where w is the weight for the individual p-values, and z is the z-score of p-values. Here, we 

set the same weights for all individual p-values. The drugs with adjusted p-values less than 

0.01 were identified. We obtained the drugs that had up-regulated/down-regulated gene 

signatures enriched for genes positively/negatively correlated with immune scores.

Survival Analysis

The patients were divided into two groups based on the median expression of specific 

immune gene. Log-rank test was used to evaluate the survival difference between two 

groups. Genes with p-values less than 0.05 were considered as significant.
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Results

Genome and Transcriptome-based Immune Response Prediction

Tumor mutational burden (TMB), a measurement of the overall number of genetic 

alterations observed in a cancer sample, has been suggested as a potentially prognostic 

marker for immunotherapy (2). In addition, several gene signatures have also been proposed 

to predict the immune response of patients (Figure 1A). We first evaluated whether if three 

distinct proposed immune gene expression signatures were associated with immunotherapy 

response: 1) immune score, which is a measure of total immune infiltrate into the tumor; 2) 

MHC score, which is a measure of antigen presentation required for tumor cell recognition 

by T cells and subsequent T cell-mediated killing; and 3) cytolytic activity, which is a 

measure of cytolytic enzymes used by immune cells to kill tumor cells. Recombinant 

MAGE-A3 protein combined with immunostimulant AS02B or AS15, has been 

administered to patients with early metastatic melanoma (18). Based on the gene expression 

data in response to treatment with MAGE‑A3 immunotherapy, we found that the patients 

that responded to immunotherapy had significantly higher immune scores (p=0.003), MHC 

scores (p=1.7e-4) and cytolytic activity (p=0.007, Figure 1B). Moreover, we found that these 

three immune-related scores indeed distinguished the responder from non-responder patients 

with area under the curve of the receiver operator characteristic (AUROC) from 0.71 to 0.79 

(Figure 1C). To further validate this, we analyzed another gene expression dataset for 

patients with melanoma treated with anti-PD-1 immune checkpoint blockade (20). We also 

found that patients which were responsive to the PD-1 immunotherapy exhibited higher 

immune-related scores (Figure S1A). The AUROCs for classification ranged from 0.52 to 

0.85, and the precision-recall curves showed clear separation of responders versus non-

responders (Figure S1B-D), which was similar to the results obtained from gene signatures 

in previous studies (38). These results suggest that the immune-related scores can potentially 

reflect the immune milieu of tumors in patients and help identify specific factors that may 

modulate these environments.

We next explored the generalizability of these scoring systems in predicting patient immune 

responses across cancer types. We first calculated the three immune-related scores (immune 

score, MHC score and cytolytic activity) for all tumor patients from the TCGA project 

(Figure 1D). We found that the distributions of the immune-related scores were diverse 

across 33 cancer types. For example, tumors from patients with kidney renal clear cell 

carcinoma (KIRC) exhibited higher immune-related scores, and immune checkpoint 

blockade has shown promising results for front-line treatment of KIRC in multiple phase III 

clinical trials (39). Moreover, although the three immune-related scores appeared to be 

correlated with each other, the Pearson Correlation Coefficients (PCC) ranged from 0.51–

0.79 (Figure 1E). This observation implied that these scores might be complementary with 

each other, therefore integrating these scores would facilitate the identification of novel 

candidate gene targets for immunotherapy.

Immune Mutational Burden Analysis Identifies Critical Pathways and Genes

It has been suggested that the mutations in immune pathways could impact tumor-immune 

interactions (40). It is unclear, however, how the immune mutational burden (IMB) is 
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associated with patient outcome. Moreover, it seems that the mutation burdens across 

pathways are varied (11). Therefore it remains elusive if and how mutations in immune-

related pathways contribute to higher mutation burden. To systematically investigate the 

global functional genomic landscape of immune-related genes, we manually curated 2,273 

immune-related genes from literature (12,13). These genes were further classified into 18 

immune-related pathways (Figure 2A). Next, we analyzed whole exomes from 100 

melanoma patients treated with CTLA-4 blockade (41). We first calculated the number of 

mutations (tumor mutation burden, TMB) and the number of mutations located in immune-

related genes (defined as immune mutation burden, IMB). We further compared TBM and 

IMB between responders and non-responders. The mutation burden and immune burden of 

responders were significantly higher than those of non-responders (Figure S2A, p<0.05). In 

addition, mutation burden and immune burden could predict immune response with similar 

power (Figure S2B, AUCs=0.68). Furthermore, we calculated the IMB for each patient in 

TCGA cohort. We found that the cancer types that are likely to respond well to 

immunotherapy had higher proportion of immune-related gene mutations, such as skin 

cutaneous melanoma (SKCM) and kidney cancer (Figure S2C). These results suggest that 

the immune burden is a useful indicator of immune response; target sequencing of immune-

related genes would help predict the immune response of patients.

Next, we defined a Pathway Mutation Burden (PMB) score to evaluate to what extent each 

immune-related pathway is perturbed by genomic alterations in tumor. This score is 

calculated based on the mutation frequency and the proportion of mutated genes in each 

pathway. We found that the essential genes identified by CRISPR-Cas9 KO screens (13) had 

higher PMB scores across cancer types (Figure 2B). Moreover, we observed another 

pathway-cytokine receptors (CRs) with higher PMB scores in LUSC, SKCM and DLBC 

(Figure 2B). We next focused on the CR mutations in LUSC (Figure 2C). Consistent with 

previous studies, the mutations in CR pathway exhibited a mutual exclusive pattern (42). 

Moreover, the mutations in CR pathway had higher functional impact scores than other 

mutations evaluated by metaSVM (17) (Figure S2D). The top-1 gene (PLXNA4) ranked by 

mutation frequency was mutated in approximately 19% of lung cancer patients. PLXNA4 

was shown previously to promote tumor progression and tumor angiogenesis by activating 

VEGF and FGF signaling (43). We further found that the expression of PLXNA4 was 

correlated with the patients’ survival in LUSC (Figure S2E, p=0.017). These results suggest 

that the mutations in cytokine receptors pathway might play critical roles in cancer and the 

proposed PMB index could help prioritizing key mutations in cancer pathways.

Widespread Transcriptional Alterations of Human Immunome across Cancer Types

Next, we interrogated if and to what extent the human immunome is altered in cancer at the 

gene expression level. We identified differentially expressed genes across 18 cancer types 

with more than five normal samples. As tumor purity may affect the identification of 

differentially expressed genes (44), we first estimated the tumor purity of each sample 

(Figure S3A) and identified the differentially expressed genes using tumor purity as a co-

variable in the regression model. We found that the immune-related genes were significantly 

perturbed in cancer when compared to other coding genes (Figure 3A and Figure S3B, p-

values<0.05 for all cancer types, Fisher’s exact test). The Odd Ratios (ORs) of immune 
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genes vs non-immune genes were higher than 1.0 in all cancer types. These results indicate 

that these genes could play a role in promoting tumor growth.

Cancer types with similar tissue origins often show similar transcriptome profiles (45). Next, 

we calculated the Jaccard index for each pair of cancer based on the similarity of 

differentially expressed immune-related genes (see details in Methods). We found that 

cancer lineages with similar tissue origin were clustered together (Figure 3B), such as lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), cholangiocarcinoma 

(CHOL) and liver hepatocellular carcinoma (LIHC), and three types of kidney cancer. These 

results indicate that these cancer types show immunome profiles within similar tumor 

microenvironment.

In addition, we ranked all genes based on their differential expression and used gene set 

enrichment analysis (GSEA) to explore which immune-related pathways were likely to show 

transcriptional perturbation. 16/18 immune-related pathways were significantly altered in at 

least one cancer type (Figure 3C). The antigen processing and presentation, cytokines and 

cytokines receptors pathways were perturbed in more than 16 cancer types (Table S1). 

Moreover, we found that these immune-related pathways showed consistent trend (enriched 

or depleted) across cancer types. For instance, while tumors have been observed to down-

regulate antigen presentation for immune escape (46), we found antigen processing and 

presentation pathway was likely to be activated in breast invasive carcinoma and 

glioblastoma (BRCA and GBM, Figure 3C-D and Figure S3C). In addition, cytokines and 

cytokine receptors pathways were repressed in BRCA and GBM (Figure 3E-F and Figure 

S3D, FDR<0.001). Moreover, we performed expression analysis based on immunological 

gene signatures in MSigDB (47), which provides more specific immune pathways. In total, 

4,872 immune-related gene signatures were analyzed. We found that approximately 67.3% 

of these immunological gene signatures were enriched in differentially expressed genes in at 

least one cancer type (Figure S4). Moreover, there were 27 gene signatures significantly 

enriched in >11 cancer types (Table S2). These results suggest that immunologically relevant 

genes are likely to be perturbed in cancer.

Critical Regions of Genes Associated with Immune Response

Growing evidence suggests that mutations in certain genes influence the immune response 

(27). Identification of these genes may provide valuable insights for improving 

immunotherapy. Thus, we explored ‘domainXplorer’ to identify critical regions of immune 

genes that are associated with immune response in cancer (27). Given the importance of the 

proposed immune-related scores in predicting immune response, we next determined 

whether cancer mutations in immunity candidate driver regions were significantly correlated 

with these scores (Table S3). Our analysis yielded a total of 209 protein regions in 145 

immune-related genes that are likely associated with cancer immunity (Figure 4A). 

Specifically, mutations in seven genes (UBXN1, LTBP2, STAT1, NGFR, NRAS, MET and 

LTBP4) were significantly correlated with all of three types of immune-related scores. 

LTBP4, a member of the latent TGFβ binding protein gene family, had been linked to 

several human diseases (48). We found that patients with EGF_CA domain mutations 

exhibited significantly higher immune scores, MHC scores and cytolytic activity (Figure 4B, 
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p<0.05). Moreover, we also identified mutations of STAT1 significantly correlated with 

these scores, which was consistent with previous observation that STAT1 played an 

important role in the innate immune response (49). These results collectively expand the 

catalog of potential cancer immune drivers and highlight the importance of taking into 

account the protein structural context to identify patients that are likely to clinically benefit 

from immunotherapy.

Somatic Mutations Associated with Immune Cell Infiltration

Our above analyses identified candidate protein regions that are potentially correlated with 

immune response. However, we are still lack of knowledge about the potential mechanism. 

An emerging role in treatment response has been attributed to immune cell infiltration in 

human tumors (7). Thus, we next explored to what extent the mutations in these regions 

were correlated with immune cell infiltration. We first identified the protein regions whose 

mutations were significantly correlated with the abundance of six tumor-infiltrating immune 

cells (TIIC) subsets (B cells, CD4 T cells, CD8 T cells, macrophages, neutrophils, and 

dendritic cells) (50). We also identified the proteins that were associated with B cell receptor 

(BCR) and TCR diversity, by CPK (CDR3s per kb of reads) that evaluates the clonotype 

diversity (51). We found that both MHC and CYT scores showed significant association 

with the expansion of tumor-infiltrating B cells after correction for tumor purity (Figure 

S5A). In addition, MHC score was weakly associated with TCR diversity, potentially due to 

clonal expansion of tumor antigen-specific T cell populations. CYT score on the other hand 

was strongly correlated with CPK (Figure S5B). We found that the protein regions that were 

correlated with immune score, MHC score and cytolytic activity were significantly 

overlapped with those correlated with TIIC abundance (Figure 4C). Especially, there were a 

higher number of protein regions correlated with CD8 T cells, neutrophils, and dendritic 

cells.

Specifically, we found that seven genes, whose mutations correlated with all three types of 

immune-related scores, were associated with at least one type of immune cell abundance 

(Figure 4D). For example, patients with LTBP4 mutations exhibited significantly higher 

abundance of CD8 T cells and neutrophils (Figure 4E). CD8+ T cells are crucial mediators 

of anti-tumor immune response and the targets of checkpoint blockade (52), while the role 

of neutrophils is complicated as they can exert either tumor enhancing or tumor clearance 

effect (53). Moreover, we found that not only the genomic variants in LTBP4 were 

correlated with immune cell abundance, but patients with copy number alterations also 

exhibited significantly different abundance (Figure S5C). These results suggest that the 

genomic alterations might contribute to immunotherapy response through affecting the 

immune cell infiltration in cancer.

Critical Genes Enriched for Neoantigens in Cancer

Increasing studies have demonstrated that mutation-derived neoantigens form a major 

‘active ingredient’ of successful cancer immunotherapies (3). Next, we predicted the 

neoantigens that were derived from mutations of TCGA project based on NetMHC (33). 

There was a limited proportion of neoantigens resulting from mutations in protein coding 

genes and approximately 1.2% of all mutations in immune-related genes could potentially 
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generate neoantigens (Figure 5A). This is consistent with a recent study showing that 

neoantigens arose from mutations in only about 60% of the genes (54), while the majority of 

neoantigens might originate from alternative or noncoding sources. We found that the 

immunologically-relevant genes (from ImmPort) tended to generate significantly more 

neoantigens (such as PIK3CA, MUC4, EGFR) compared with coding genes in general 

(Figure 5A, p=1.18e-4, Fisher’s exact test). Approximately 25% of the mutations in 

PIK3CA and HRAS could generate neoantigens (Figure 5B). This result is consistent with 

the observation that RAS plays a role in immunotherapy (55).

Next, we focused on mutations in PIK3CA and EGFR that give rise to neoantigens. Based 

on the viability-based functional screen in two cell lines (Ba/F3 and MCF10A) (21), we 

found that the mutations that encode neoantigens were likely to be activating mutations in 

both cell lines (Figure 5C–5D). For example, we identified 46 missense mutations that could 

generate neoantigens in PIK3CA. Among these mutations, 41 mutations were in the 

functional dataset. We found that 40 mutations were activating mutations and one was 

inactivating mutations. Moreover, we identified a mutation cluster (including R38C/H, 

E81K, R88Q, R93W, K111E and R115L) in PIK3CA (Figure 5E). For EGFR, we identified 

17 mutations that could generate neoantigens. In total, 14 mutations were screen for function 

and 11 mutations were activating, two were neutral and 1 inconclusive in two cell lines 

(Figure 5D). We also found seven mutations formed a cluster in 3D (including R108K, 

R252/P/C/H and A189V/D, Figure 5E). We hypothesize that functional mutations which 

cause a conformational change in the protein may be more likely to be recognized by MHC 

molecules for immune pruning, but if these mutations subsequently suppress inflammatory 

signaling it may allow for proliferation of tumor cells with activating mutations.

Prioritization of Candidate Immune Responders Based on Immunome Network

Our above results indicate widespread genomic and transcriptome perturbations in the 

cancer immunome network. An integrated landscape of these perturbations offers a basis for 

further advancing our understanding of the immune regulation in cancer. Thus, we proposed 

a Network-based Integrative model to Prioritize Potential immune respondER genes 

(NIPPER) (Figure 6A). Briefly, we first identified the genes whose mutations or expression 

were significantly correlated with immune scsores, MHC scores and CYT scores. These 

genes were then mapped to an immune-related protein-protein interaction (PPI) network, 

which consisted of 6,060 interactions among 1,202 immune-related genes. Next, the 

mutational effects were propagated in the PPI network. Finally, the genes with driver 

probability greater than expected were identified as immune response-related signature 

genes. This process was repeated for all cancer types. Here, the genes positively/negatively 

correlated with immune-related scores were analyzed, separately.

Based on the proposed network-based model, we identified 39 genes as signature genes in 

33 cancer types (Figure 6B). High expressions of these genes were likely to be correlated 

with immune-related scores. These genes were involved in 11 immune-related pathways, 

and 8 genes (such as STAT1, B2M, TAP1 and TAP2) had been identified as essential genes 

in immune response. Moreover, we found that these candidate immune response-related 

genes were clustered together as modules in the PPI network (Figure 6C). Seven of the 8 
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essential immune genes were linked in a dense module, and STAT1 was clustered together 

with more novel immune response-related genes. Interestingly, we identified one candidate 

gene-PDIA3, which linked 7 known essential genes. The expression of this gene was 

correlated with the patients’ survival in several cancer types, including CESC, LUAD, 

HNSC and GBM (Figure 6D and Figure S6). These observations suggest that this gene may 

play critical roles in immunotherapy, which is consistent with the conclusion of one recent 

study (56).

Next, we validated these genes in a cohort of melanoma that underwent treatment with 

adoptive T cell transfer (24). We found that the expression of these genes could classify the 

responder and non-responder patients with an AUC of 0.713 (Figure 6E). This is similar 

with the results based on PD1 or PDL1 expression. In another cohort of patients with 

melanoma treated with anti-PD1, we found that the power of NIPPER was higher than PD1 

and PDL1 expression-based and similar as TMB-based methods (Figure S7). We also used 

TIDE to compare our gene signatures with other public signatures in 17 datasets (26). Our 

NIPPER signatures achieve AUCs>0.6 in most (9/15) datasets (Figure S8). Moreover, the 

average expression of these genes was significantly associated with improved overall 

survival (Figure 6F, log-rank p=0.02). Taken together, these results indicate that signaling 

networks identified by NIPPER are relevant to response to multiple immunotherapy 

modalities, and may offer insight on critical signaling cascades that can be targeted to 

improve immunotherapy outcomes.

Mutation-Perturbed HLA Binding and Potential Immune-related Drugs

Next, we evaluated mutations in the genes identified by NIPPER in different cancers. Here, 

all mutations in prioritized genes across cancer types were analyzed. We found that the 

mutations in these genes were likely to alter the binding affinity of HLAs (Figure 7A, 

p<0.001, Wilcox’s rank sum test). Specifically, we identified 135 mutations in 28 genes that 

perturbed binding of HLAs (Figure 7B and Table S4). These mutations were distributed in 

various types of cancer. We identified six mutations in PIK3R1 (encoding p85α) that 

reduced binding of HLAs (Figure 7B) and some mutations clustered in a possibly functional 

spot (Figure 7C). Consistently, we identified two mutations (N564D and K567E) that 

increased growth of cancer cell lines (Figure 7D). These results suggest that our network-

based method helps identify cancer functional mutations by their change in binding affinity 

to HLAs.

Identification of candidate small molecule drugs is critical for the immunotherapy in cancer. 

Herein we identified candidate drugs that could increase the expression of identified immune 

gene signatures based on GSEA analysis (Figure 6A). We obtained more than 6,000 small 

molecules and their perturbation gene signatures from The Connectivity Map (57). We 

identified 49 small molecules that significantly perturbed the expression of immune gene 

signatures (p<0.05, Figure 7E and Table S5). Interestingly, we identified propofol as the top 

one small molecule for increased immune response. Evidence had shown that propofol could 

possibly induce a favorable immune response in terms of preservation of IL-2/IL-4 and 

CD4+/CD8+ T cell ratio in the perioperative period for breast cancer (58). In vitro and in 

vivo studies had also suggested that propofol could independently reduce migration of 
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cancer cells and metastasis (59). Taken together, these results suggest that the network-based 

integrative model not only can identify immune response-related gene signatures, it also 

helps prioritize candidate drugs for immunotherapy in cancer.

Discussion

Systematically understanding the regulation of immune systems opens more avenues for 

cancer immunotherapy with a potent clinical efficacy. By integration of pan-cancer omics 

datasets, we have examined human tumor correlations in the context of immune-related 

pathways to an extent that is not previously possible. High-throughput gene expression data 

have been widely used to investigate differentially expressed genes in various types of 

cancer. Strikingly, we observed extensive immunological gene signatures with widespread 

perturbation in cancer compared with normal samples. These deregulated immunologically 

relevant genes are enriched in ‘antigen processing and presentation’, ‘cytokines’ and 

‘cytokines receptors’ pathways. Cytokines are critical molecular messengers for cells of the 

immune system to communicate with one another, which can directly stimulate immune 

effector cells and enhance tumor cell recognition. Increasing studies have demonstrated that 

cytokines have broad anti-tumor activity (60). Our analysis revealed that there are 

widespread perturbations of cytokine pathways in more than 80% of cancer types. A more 

detailed understanding of cytokine pathway regulation will provide new opportunities for 

improving cancer immunotherapy.

It is still unclear which factors are key players in regulating the immunome homeostasis. 

Thus, we systematically analyzed two types of genetic regulation (including CNVs and 

eQTLs) in immune genes (Figure S9A-C). We found that a number of immunologically 

relevant genes recurrently dysregulated in various types of cancer. For example, up-

regulation of BIRC5 is correlated with CNV amplification (61); and down-regulation of 

CCL14 is correlated with CNV deletion across cancer types. Moreover, eQTLs analysis 

revealed a hotspot locus that modulates the expression of DEFB1 (Figure S10A-D), which 

might function through perturbation of CTCF binding. While a number of immune-related 

genes show correlation between copy number variations/mutations and gene expression, the 

relationship is weak and could not fully explain immune-related transcriptome perturbations. 

Thus, it is likely that other genetic (such as post-transcriptional regulation) or epigenetic 

variables (such as DNA methylation or histone modification) also contribute to the 

transcriptome perturbations in cancer.

Prior studies have proposed that the immune score, MHC score and CYT score are 

correlated with immune response. For example, Rooney et al. quantified the cytolytic 

activity and identified associated properties across 18 tumor types (25). We found that these 

three scores that interrogate different aspects of immune signaling are complementary with 

each other, providing more information than any one signature alone. Further information 

was gained by utilization of a network-based approach, specifically a random walk with 

restart network propagation, which considers both the mutations in individual genes as well 

as the topology of interactions between the corresponding proteins. Integration of the 

network topology information has been demonstrated to have much higher accuracy in 

identifying cancer-related genes (62). Thus, we proposed an integrated network model to 
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predict the critical signaling cascades for immunotherapy response. This method identified 

several well-known immune response-related genes, such as B2M (63), TAP1 (64) and 

TAPBP (65), as well as several novel genes such as PDIA3. Moreover, we predicted 

candidate small molecules that may sensitize to immunotherapy based on whether the 

treatment could induce the expression of these signature immune genes. In particular, 

propofol was identified as the top-ranked drug candidates for immunotherapy. Propofol is 

the most commonly used in clinical anesthesia and propofol exhibits a good inhibitory effect 

on tumor recurrence and metastasis (59). Our current study found that propofol likely 

induces the expression of immune response-related genes, which may contribute to 

improved efficacy of immunotherapy.

Taken together, our integrative analysis of the human immunome across cancer types reveals 

several candidate gene and mutation markers that may be critical for understanding patient 

responses to immunotherapy. Future studies will need to evaluate the potential molecular 

functions of our identified signaling cascades by low-throughput experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

This study demonstrates that integration of multi-omics data can help identify critical 

molecular determinants for effective targeted therapeutics.
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Figure-1. Immune response prediction signatures in cancer.
(A) Literature curated immune response prediction signatures. (B) Boxplots show the 

distribution of Immune score, MHC score and CYT score in immune responder vs non-

responder patients. (C) Receiver operating characteristics (ROC) analysis of immune score, 

MHC score and CYT score from each prediction. The AUCs and 95% confidence levels are 

labeled. (D) The distribution of immune score, MHC score and CYT score across 33 cancer 

types in TCGA cohort. Cancers are ranked by their median scores. (E) Scatter plots show the 
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correlation between immune score, MHC score and CYT score across cancer types. 

***p<0.001.
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Figure-2. Critical mutated immunological pathways and genes in cancer.
(A) Human immune pathways and number of genes in each pathway. In total, 2,273 

immune-related genes in 18 pathways are analyzed. (B) The PMB score for each immune-

related pathway in cancer. Each dot represents a pathway in a specific cancer type. The 

immune score is calculated as the product of the proportion of mutated genes in the pathway 

and the percentage of mutated samples. Pathways are ranked by the PMB score. (C) The 

mutations of genes in cytokine receptor pathway in LUSC. Genes were ranked by the 

mutation frequency.
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Figure-3. Widespread transcriptome alterations of human immunome in cancer.
(A) The proportion of differentially expressed immunogically relevant genes and all human 

genes. The odds ratios and 95% confidence levels of Fisher’s exact tests are shown in the 

right panel. All p-values are less than 0.05 for 18 cancer types with at least fiver normal 

samples. (B) Cluster of cancer types based on the similarity (Jaccard index) of differentially 

expressed immune genes. Cancer types of similar tissue origins are clustered together. (C) 

Heat map shows the p-values and enrichment scores for the differentially expressed genes 

enriched in immune-related pathways. Each row represents a cancer type and each column 

represents an immune-related pathway. The sizes of dots show the -log (p-values) and the 

colors of dots show enrichment scores. The bar plots below the heat map show the number 

of cancer types enriched for each pathway. (D) - (F) Gene Set Enrichment Analysis shows 

enrichment or depletion of cytokines, cytokines receptors and activated antigen processing 

and presentation in breast cancer. The horizontal bar in graded color from red to blue 

represents the rank-ordered, non-redundant list of all genes. The vertical black lines 

represent the projection of immune genes in each pathway onto the ranked gene list. (D) for 
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antigen processing and presentation pathway, (E) for cytokines pathway and (F) for pathway 

cytokines receptors in breast cancer.
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Figure-4. Critical protein-regions related to immune response in cancer.
(A) The distribution of p-values for testing the association of protein regions and immune 

response scores. The bottom Venn plot shows the overlap of protein-regions that are related 

with immune score, MHC score and CYT score. The seven overlap genes were shown. (B) 

Representative mutated protein regions that are related to immune response in cancer. The 

mutations in the EGF_CA domain of LTBP4 gene are shown. The up-panel shows the 

mutations in the LTBP4 and the domain region is marked by green and mutations are shown 

as red balls. The immune score, MHC score and CYT score distributions of the samples with 

domain mutations, other region mutations and wild-type (WT) are shown in the bottom-

panel. ***, p<0.01, Wilcox’s rank sum test. (C) The overlap of protein regions whose 

mutations were correlated with immune response scores and immune cell infiltration. Square 

color reflects the number of overlapped protein regions. ‘No cross’ indicates p<0.05. (D) 

The overlapped seven genes mutation associated with distinct immune cell infiltration. (E) 

The distribution of immune cell infiltration for patients with in-domain mutations, outside-
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domain mutations and wild type of LTBP4 gene. Left for CD8+ T cells and right for 

neutrophils.
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Figure-5. Neoantigen enriched in immunologically relevant genes.
(A) The left panel shows the proportion of neoantigens in immune gene compared to all 

coding genes (p=1.18e-4, Fisher’s exact test). The right panel shows the distribution of 

binding affinity of HLAs in wild-type and mutated peptides (p<2.2e-16, Wilcox’s rank sum 

test). (B) Number of neoantigens in immune-related genes. The barplots show the number of 

neoantigens generated from each immune-related gene. The red dot line shows the number 

of neoantigens/number of total mutations in each gene. (C) Distribution of the mutations in 

PIK3CA that generate neoantigens. (D) Distribution of the mutations in EGFR that generate 

neoantigens. (E) The left and right panels show the 3D structure of PIK3CA and EGFR, red 

dots represent the mutations in the same cluster. The middle panels show the proportion of 

functional mutations, the green bars for mutations encoding neoantigens and grey bars for 

all screened mutations. **p<0.05 for Fisher’s exact test.
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Figure-6. Network-based immune responder candidate identification.
(A) Flowchart to identify potential personalized immune responder genes and candidate 

drugs for each patient. For each cancer type, expression or mutations of genes that are 

correlated with immune response scores are mapped to an immune gene-gene interaction 

network. The immune response correlation is propagated via network links and new 

responder genes are identified based on random walk method. Drug perturbed gene 

signatures (n=6,100) are integrated for identification of the drugs that enriched the candidate 

immune responder genes (FDR<0.01) in specific patients. (B) Top ranked immune response 

score-related genes across cancer types. Genes are ranked by the number of cancer types that 

show correlation between gene expression and immune response scores. (C) Top-ranked 39 

genes are identified and the corresponding pathways are shown. The subnetworks formed by 

these 39 genes are shown in the up-panel with node colors indicating whether they are 
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identified by the CRISPR-Cas9. (D) The expression of PDIA3 (linked more known essential 

immune genes) is correlated with patients’ survival in GBM. (E) ROC curve for the 

classification of patient response to immunotherapy based on candidate genes. (F) Kaplan-

Meier survival curves for patients classified by the average expression of candidate genes.
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Figure-7. Candidate HLA-perturbing mutations and immune-response related small molecules.
(A) The distribution of HLA binding affinity for wild-type (yellow) and mutated peptides 

(blue) for all NIPPER prioritized genes. ***p<0.001, Wilcox’s rank sum test. (B) The 

number of mutations that alter binding of HLAs. (C) The 3D structure of candidate 

mutations in PIK3R1. (D) The relative growth rate of wild-type and mutant PIK3R1 cells in 

two cell line models. (E) Candidate immune-response related drugs and the corresponding p-

values in cancer types predicted by network-based method.
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