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Abstract 

Purpose:  Nowadays Computer-Aided Diagnosis (CAD) models, particularly those based on deep learning, have been 
widely used to analyze histopathological images in breast cancer diagnosis. However, due to the limited availability 
of such images, it is always tedious to train deep learning models that require a huge amount of training data. In this 
paper, we propose a new deep learning-based CAD framework that can work with less amount of training data.

Methods:  We use pre-trained models to extract image features that can then be used with any classifier. Our pro-
posed features are extracted by the fusion of two different types of features (foreground and background) at two 
levels (whole-level and part-level). Foreground and background feature to capture information about different struc-
tures and their layout in microscopic images of breast tissues. Similarly, part-level and whole-level features capture are 
useful in detecting interesting regions scattered in high-resolution histopathological images at local and whole image 
levels. At each level, we use VGG16 models pre-trained on ImageNet and Places datasets to extract foreground and 
background features, respectively. All features are extracted from mid-level pooling layers of such models.

Results:  We show that proposed fused features with a Support Vector Classifier (SVM) produce better classification 
accuracy than recent methods on BACH dataset and our approach is orders of magnitude faster than the best per-
forming recent method (EMS-Net).

Conclusion:  We believe that our method would be another alternative in the diagnosis of breast cancer because of 
performance and prediction time.

Keywords:  Histopathological images, Breast cancer, Histology, Image classification, Deep learning, Computer-aided 
diagnosis
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Introduction
Breast Cancer (BC) is responsible for a high mortality 
rate of cancer in women worldwide. According to Cancer 
in Australia 2018 report,1 it is predicted that the breast 
cancer is the most commonly diagnosed in Australia, 
followed by prostate cancer. In breast cancer treatment, 
early diagnosis is imperative to prevent further complica-
tions. Various diagnostic tests, such as physical examina-
tion, mammography, magnetic resonance image (MRI), 
and ultrasound, have been used for years. However, 

Histopathological image analysis of tissue from needle 
biopsy is considered as the most effective test [38]. In this 
test, the tissue is stained with hematoxylin-eosin (H&E) 
to make the structures of interest (nucleus and cyto-
plasm of cells) visible under the microscope and patholo-
gist analyze the microscopic image for any abnormalities 
related to cancer.

Because the analysis of large and complex histopatho-
logical images by experts is time-consuming and prone to 
human bias [38], computer-aided diagnosis (CAD) tools 
based on machine learning algorithms such as classifica-
tion are used for efficiency with promising accuracy [3, 
17, 25, 36]. Recently, deep learning-based methods [5, 
18, 21, 23, 28] and deep ensemble learning methods [7, 
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24, 26, 38] have been extensively used in histopathologi-
cal images classification because of their superior perfor-
mance over traditional methods. These methods exploit 
the concept of transfer learning and use fine-tuned pre-
trained deep learning models to classify images or just 
to extract their features to use in other machine learn-
ing models. Fine-tuning pre-trained models to classify 
histopathological images are prone to overfitting due to 
the limited availability of such datasets. This could lead 
to counterproductive results if we do not perform proper 
data augmentation and hyperparameters tuning in the 
training step. This is because deep learning needs big 
data to achieve the appropriate patterns of the image.

In the meantime, feature extraction should also be 
performed carefully depending on the nature of images 
because all images may not be discriminated well by the 
same types of deep features extracted from pre-trained 
deep learning models. Specifically, we need to choose an 
appropriate layer of a pre-trained deep learning model 
for feature extraction depending on the nature of images 
of the study. Meanwhile, identifying areas of interest (cel-
lular regions) in high-resolution histopathological images 
is crucial as they offer important clues for better classifi-
cation. However, it is very challenging to capture all those 
clues with one type of feature. Most existing methods 
extract features either from certain segments of an image 
(part-level) [37, 38] or the entire image (whole-level) [1, 
2] only. In the meantime, they mostly focus on structures 
of interest (foreground) in an image ignoring the layout 
details (background). Meanwhile, they do not consider 
more than one type of feature. To this end, we believe 
that information from all these four components (fore-
ground features at whole-level, foreground features at 
part-level, background features at whole-level, and back-
ground features at part-level) can be useful in making 
predict decisions. This could be effective because we can 
analyze the same image using four different techniques. 
We can visualize four different kinds of visual features for 
each pooling layer ( p1 to p5 ) of VGG16 in Fig.  1. Note 
that p3 and p4 impart more discriminating information 
than other remaining layers.

In this work, we propose to combine the four types 
of features—foreground and background features 
extracted at both part-level and whole-levels. To cap-
ture scattered areas of interest in high-resolution 
microscopic images, a cropping strategy is used to 
divide the image into multiple sub-images. We also 
consider the entire image just in case if some inter-
esting regions are masked by cropping. Similarly, for 
both parts and whole images, we extract (i) foreground 
features—details of structures in the images, and (ii) 
background features—information about the layouts of 
structures in images. Specifically, foreground features 

capture details of structures in images such as shape, 
size, etc., whereas background features capture the 
peripheral information such as layout details present 
in the image. Similarly, to achieve the representative 
features of all sub-images at part-level, we aggregate 
part-level features of all sub-images using the average 
pooling technique, where we perform the element-wise 
average operation of the feature vectors of patches.

The main contributions of this paper are as follows: 

1.	 Propose a new feature extraction technique to rep-
resent histopathological images by the fusion of 
four types of features - foreground and background 
features at image parts and the whole image levels. 
We use a simple and popular deep learning model 
called VGG16 [29] to extract features. VGG16 has 
been shown to be effective to extract features for the 
classification of various types of images including 
scene images [30], histopathological images [1, 18], 
etc. Also, it has only five pooling layers that makes 
us easier to analyse compared to other deep learn-
ing models such as GoogleNet [32], ResNet-50 [13], 
Inception-V3 [34], etc. We use the VGG16 model 
pre-trained with the ImageNet [10] dataset to extract 
foreground features and VGG16 model pre-trained 
with the Places [39] dataset to extract background 
features.

2.	 To the best of our knowledge, we are the first to iden-
tify the importance of background features, which 
are achieved from Places pre-trained VGG16 model, 
for histopathological image representation. We also 
believe that foreground and background features are 

Fig. 1  Grad-CAM visualization of five pooling layers of VGG16 for the 
input image at whole-level and part-level using both foreground and 
background features, where p1 to p5 represent the five pooling layers 
of VGG16 models
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complementary to each other for the better represen-
tation of histopathological images.

3.	 Evaluate the effectiveness of the fusion of the four 
types of features in the breast cancer histopatho-
logical image classification with the Support Vector 
Machine (SVM) using the BreAst Cancer Histopa-
thology (BACH) dataset [2]. We empirically analyze 
the classification performance of the proposed fused 
features extracted from different pooling layers of 
the VGG16 models as they produce different feature 
maps of the histopathological images. We observed 
that the combination of features from pooling lay-
ers 3 and 4 produce the best classification result. Our 
CAD approach based on the proposed fusion of dif-
ferent types of features in the Support Vector Classi-
fier (SVM) [9] results in better classification perfor-
mance than existing CAD models for breast cancer 
histopathological image classification. In terms of 
run time, our approach is several orders of magni-
tude faster than the best performing state-of-the-art 
method called EMS-Net [38].

The rest of the paper is organized as follows. “Related 
works” section  reviews related works of histopathologi-
cal image representation and classification. “Materials 
and methods” section explains the materials and method 
for representation and classification. “Result and discus-
sion” section explains results and discussion about our 
proposed method. Finally, “Conclusion” section con-
cludes the paper with potential future directions.

Related works
In this section, we review related works of histopatho-
logical image representation and classification from two 
different perspectives, namely: traditional computer 
vision-based methods (“Traditional computer vision-
based methods” section) and deep learning-based meth-
ods (“Deep learning-based methods” section).

Traditional computer vision‑based methods
Inspired by the use of traditional low-level computer 
vision-based features in various image processing tasks, 
several researchers [3, 17, 25, 31, 36] have used them 
in histopathological image analysis. These features are 
extracted from the fundamental information of images 
such as intensity, colors, orientations, etc. Firstly, Qi et al. 
[25] presented a novel technique to segment the overlap-
ping cells using traditional methods such as object locali-
zation, mean shift clustering, and contour extraction. 
Similarly, Vink et al. [36] presented a modified AdaBoost 
algorithm to make two detectors that grab different char-
acteristics of nuclei in the nucleus detection purpose. 
Furthermore, Khan et  al. [17] established the geodesic 

geometric mean of regional co-variance descriptors to 
represent the histopathological microscopy images. Like-
wise, Barker et  al. [3] utilized shape, color, and texture 
information of local tiles of histopathological images for 
classification purposes. Similarly, considering the impor-
tance of multi-instance learning in this domain, Sudhar-
shan et  al. [31] proposed a multiple instance learning 
(MIL) framework based on traditional descriptors. 
Although these traditional computer vision algorithms 
are easy to implement, they have a limited classification 
performance, especially for complex images with inter-
class similarity and intra-class variations such as histo-
pathological images of breast tissues. Such methods are 
more suitable for specific types of images such as texture 
images, which are the spatial arrangement of colors or 
intensities.

Deep learning‑based methods
Deep learning [20], a machine learning model based on 
large neural networks, has been revolutionized image 
processing tasks including classification. Many interme-
diate layers in a deep learning model capture different 
hierarchical features for images that could provide useful 
information to discriminate images belonging to differ-
ent classes. Broadly Deep Learning Models (DLM) can 
be categorized generally into two types: (1) user-defined 
models and (2) pre-trained models. If we design our deep 
learning model ourselves by adding several stacked layers 
and their associated activations with backpropagation, it 
is called user-defined deep learning models. These types 
of modes are appropriate if we have enough data to train 
them, otherwise, they suffer from the overfitting prob-
lem because deep learning models learn patterns using 
a large number of data. Similarly, there are several deep 
learning models already designed by previous researchers 
which are pre-trained with large image collections such 
as ImageNet [10], Places [39], etc. The main advantage 
of these pre-trained models is transfer learning. Such 
models can be used as base models to transfer knowledge 
from the original domain (e.g., ImageNet) to new target 
domains (e.g., histopathological images) either by fine-
tuning them for image classification in the target domain 
directly or use them to extract features to represent tar-
get domain images. There are several state-of-the-art 
pre-trained deep learning models available.

Because of the superior performance of deep learn-
ing models in computer vision and image processing, 
researchers also started using them in breast cancer 
diagnosis [1, 5, 7, 12, 12, 15, 18, 19, 21, 23, 24, 26, 28, 
37, 38]. Initially, to leverage the benefit of deep learning 
with machine learning, Araujo et al. [1] combined DLM 
and SVM to classify breast cancer histology images. In 
their model, DLM was used as a feature extractor model, 
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whereas SVM was used as a classifier. Mehta et  al. [21] 
designed Y-Net by adding a parallel branch to U-Net [11] 
for the simultaneous segmentation and classification. 
Similarly, to take the advantage of multi-instance learn-
ing with deep learning, Campanella et  al. [5] presented 
a concept of deep multiple instances learning (MIL) for 
the classification and localization of histopathological 
images. Histopathological images are bigger and thus, 
patch-level information can provide discriminating clues 
for the classification. To capture the patch-level informa-
tion to some extent, Nazeri et al. [23] established a two-
stage DLM for the patch-wise network and image-wise 
network to classify breast cancer-related images into four 
classes. Furthermore, Kwok et al. [19] classified the histo-
pathological images using the pre-trained Incep.-Resnet-
V2 [33] model, where the patches of such images were 
extracted for the training and classification. Roy et al. [28] 
proposed a patch-based convolutional neural network for 
the classification of histopathological images. Gandom-
kar et al. [12] proposed a model, called MuDeRN, based 
on the ImageNet pre-trained ResNet model [13] to clas-
sify histopathological images. Jiang et al. [15] designed a 
novel convolutional neural network to classify the breast 
cancer histopathological images. Yan et  al. [37] utilized 
fine-tuned Inception-V3 [34] to extract the features from 
the intermediate layers and fused them using long short 
term memory (LSTM) for the classification of breast can-
cer histopathological images. To utilize the efficacy of 
pre-trained models without fine-tuning in achieving the 
prominent features for the image representation tasks, 
Abhinav et al. [18] utilized VGG-16 model to extract the 
features of the histopathological images. They extracted 
features from five pooling layers after performing global 
average pooling (GAP) operation on each of them. And 
then, performed classification using Random Forest [4] 
and SVM [35].

Furthermore, the combination of different deep learn-
ing models (DLMs) helps to leverage different types of 
information in images. Some of the recent works have 
used such ensemble learning. Firstly, Makarchuk et  al. 
[24] extracted features of the microscopy patches using 
ResNet34 [13] and DenseNet [14] and trained using 
XGBoost classifier [6] for the classification purposes. 
This helps to learn different discriminating information 
from these two deep learning models. Similarly, Rakh-
lin et al. [26] also extracted features using several DLMs 
and classified using gradient boosted trees algorithm 
[16]. Similarly, Chennamsetty et al. [7] also designed an 
ensemble of three DLMs, each of which was trained on 
different configurations that won the BACH challenge 
[2]. Recently, Yang et  al. [38] presented an ensemble 
model, called EMS-Net, of DLMs using multi-scale fea-
tures and fine-tuning of several pre-trained models. Their 

model requires labor-intensive fine-tuning tasks on vari-
ous pre-trained models to obtain the optimal set of pre-
trained models.

In summary, the existing deep learning methods used 
in the classification of breast cancer histopathologi-
cal images have two limitations. First, existing methods 
used as feature extractors extract features based on either 
whole-level or part-level only, which have a limited clas-
sification ability. This is because such methods are not 
able to capture interesting semantic regions over high-
resolution images. Second, no matter whether the model 
is standalone or ensemble, it suffers from overfitting and 
underfitting because of limited data. Moreover, the fine-
tuning tasks are time-consuming on such deep learning 
models. In breast cancer diagnosis, there is a necessity to 
work on a limited amount of data without compromising 
its classification accuracy.

Materials and methods
In this section, we explain the materials to be used in our 
method. Also, we present the step-wise procedure of our 
method.

Dataset
The ICIAR (International Conference on Image Analy-
sis and Recognition) 2018 BreAst Cancer Histopathol-
ogy (BACH) dataset [2] is used in our experiment. This 
dataset contains 400 labeled H&E stained histopathologi-
cal images of breast tissues with a size of 2, 048× 1, 536 
pixels. As we are using a patch of size h× w = 224 × 224 
and stride s = 224 in patch extraction (“Patch extraction” 
section) as done by Yang et  al. [38], each image results 
in 54 sub-images (i.e., N = 54 ) for part-level features 
extraction. The dataset contains four classes as normal, 
benign, in  situ, and invasive, where each category con-
tains 100 images. We prepared 5 sets of random train/
test split in the ratio of 4:1 per class and report the aver-
age accuracy. This provides a total of 320 images as train-
ing and a total of 80 images as testing. We use the same 
split ratio as used by Yang et  al. [38] recently. Example 
images from each of the four classes are shown in Fig. 2.

Implementation
We use the Keras [8] implementation in Python [27] of 
the pre-trained VGG16 models. Similarly, we imple-
ment all our feature extraction and classification logic 
in Python. We used the Support Vector Machine 
(SVM) implemented in Sklearn2 with radial basis func-
tion (RBF) kernel. We tune the cost parameter C in the 
range {1, 2, . . . , 200} and fix gamma parameter to 1e−04. 

2  https​://sciki​t-learn​.org/stabl​e/about​.html.

https://scikit-learn.org/stable/about.html
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Additionally, we evaluated our proposed features using 
Multilayer Perceptron Algorithm (MLP) [22], Random 
Forest (RF) [4], and XGBoost [6]. The detailed optimal 
parameter settings of these three algorithms are men-
tioned in Table 1. All the experiments are conducted on 
a computer with NVIDIA GeForce GTX 1050 GPU with 
4GB GDDR5 VRAM.

VGG‑Net
VGG-Net is one of the simple, yet powerful pre-trained 
deep learning model proposed by Simonyan et  al. [29]. 
It has five variants starting from VGG-A to VGG-E. All 
variants consist of three types of layers (convolution lay-
ers, Pooling layers, and Fully connected layers). Among 
such five variants, one of the models, called VGG-D 
(VGG16), has been mostly used in the image analysis. 
VGG16 model has 16 weight layers, among which five 
layers are Pooling layers. Pooling layers reduce the fea-
tures by using either max pooling or avg pooling opera-
tion on the Convolution layers. Meanwhile, Convolution 
layers extract the features by using different Kernel size 
coupled with appropriate activation functions such as 
Sigmoid, Tanh, Relu, etc.

Because the VGG16 model has only five Pooling layers 
that provide meaningful semantic information, it is very 
easy and convenient to utilize them quickly for image 
analysis. Furthermore, it has shown that such models 
provide prominent performance for various image anal-
ysis ranging from scene image [30] to recent medical 
image analysis tasks [1, 18]. Note that deep learning mod-
els such as VGG16 impart visual information according 
to the data they are trained with. For example, VGG16 
models pre-trained with ImageNet [10] and Places [39] 
provide the foreground and background information, 
respectively. These two pieces of information represent 
two different kinds of information related to the input 
image, which would play an important role in its better 
representation.

Proposed method
We believe that more information about interesting 
regions and their orientation high-resolution histopatho-
logical images can be captured by combining different 
types of features (see detail in Figs. 1, 3). Hence, we pro-
pose to extract hybrid features by combining four types 
of features—foreground (structure interesting regions 
such as shape, size, etc.) and background (layout of inter-
esting regions) feature at both part-level and whole-level. 
Using VGG16 models that have been pre-trained with 
ImageNet and Places, we extract both features (fore-
ground and background) at both levels. Also, we believe 
that mid-level features (those from intermediate layers) 
of VGG16 models are more appropriate for histopatho-
logical images. Low-level features are more generic, 
which may not be suitable in this case because histo-
pathological images are not like texture images requiring 

Fig. 2  Sampled example H&E images from four classes of the BACH 
dataset: a normal, b benign, c in situ, and d invasive

Table 1  Detailed optimal parameters of three algorithms

Algorithm Description

MLP Network: (728,256,4), optimizer: Adam, Epoch: 50, and batch 
size: 8

RF Number of estimators=100, bootstrap=True, max_
features=’sqrt’

XGBoost Objective=“reg:linear”, random state=42

Fig. 3  Diagram showing the features map of the corresponding 
input image at whole-level and part-level using both foreground and 
background features, where p1 to p5 represent the five pooling layers 
of VGG16 models
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low-level information. Similarly, the high-level features 
are more specific to objects or scenes in the real-world 
which are not applicable in the case of histopathologi-
cal images. Empirically, we find that the combination of 
features from the third and fourth pooling layers produce 
better classification accuracy (analysis of features from 
different pooling layers is in “Analysis of pooling layers” 
section). So, we combine foreground and background 
features from the third and fourth pooling layers at whole 
and part levels. The overall pipeline of the proposed 
method is shown in Fig. 4.

We discuss the step-wise procedure to achieve our 
proposed hybrid features in the next four subsections: 
patch extraction (“Patch extraction” section), part-level 
feature extraction (“Part-level feature extraction” sec-
tion), whole-level feature extraction (““Whole-level fea-
ture extraction” section” section), features aggregation to 
achieve the final features (“Features aggregation” section).

Patch extraction
To capture part-level features of an image, we extract 
non-overlapping patches of the image using simi-
lar approach as employed by Yang et  al. [38]. Given an 
input image of size H ×W  ( height × width ), a patch of 
size h× w is moved with a stride of s on the input image 
resulting in N patch images.

In this paper, we used the patch size of 224 × 224 and 
stride size of s = 224 because our pre-trained model 
VGG16 has been trained on images of that size. Equa-
tion  1 yields N patches per image, each with 224 × 224 
pixels. This helps to extract features related to local level 
interesting regions. The block diagram to extract patches 
and corresponding features in the part-level is shown in 
Fig. 5. We represent N non-overlapping uniform patches 
of an image I as {I1, I2, . . . IN }.

(1)N =

(⌊

H − h

s

⌋

+ 1

)

×

(⌊

W − w

s

⌋

+ 1

)

.

Fig. 4  Block diagram of the proposed method, where FWj(I) and FPj(I) represents the foreground features extracted from jth pooling layers 
( j ∈ {3, 4} ) at whole-level and part-level, respectively. Similarly, BWj(I) and BPj(I) represents the background features extracted from the jth pooling 
layer at whole-level and part-level, respectively
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Part‑level feature extraction
After the extraction of uniform non-overlapping local 
patches from each image, we extract corresponding deep 
features of each patch and aggregate them to achieve the 
combined patch-level features representing an image as in 
Fig.  5. We extract the patch-level features based on fore-
ground and background information from VGG16 pre-
trained on ImageNet (VGG16I) and Places (VGG16P), 
respectively. To achieve the aggregated foreground features 
and background features of all N patches of an image I from 
the jth pooling layer, we perform mean pooling to leverage 
both higher and lower activation values, as seen in Eqs. (2)–
(3). FPj(I) and BPj(I) represent the Foreground and Back-
ground features of image I at Part-level from the jth pooling 
layer, respectively. VGG16Ij(Ii) and VGG16Pj(Ii) represent 
deep features of patch image Ii extracted from the jth pool-
ing layers of VGG16 models pre-trained on the ImageNet 
and Places datasets, respectively. Note that the order of 
patches does not affect the end result (aggregated features) 
because we apply average pooling in our method. Thus, 
the patch extraction and its arrangement of features can be 
done in any order for the aggregation purpose.

where fpj(Ii) = VGG16Ij(Ii).

(2)FPj(I) = Mean{fpj(I1), fpj(I2), . . . fpj(IN )},

where bpj(Ii) = VGG16Pj(Ii).

Whole‑level feature extraction
To extract deep features from whole images, we first 
resize images to 224 × 224 pixels because pre-trained 
VGG16 models were trained on 224 × 224 images. Then, 
we feed such resized images into VGG16 models and 
extract both foreground and background features accord-
ingly. We use whole-level images to capture information 
about interesting regions that are not achieved or missed 
by part-level techniques. Equations (4)–(5).

where FWj(I) and BWj(I) represent the Foreground and 
Background features of image I at Whole-level from jth 
pooling layer, respectively.

Features aggregation
To achieve the final hybrid features of image I (H(I)), 
we aggregate all part-level and whole-level features 

(3)BPj(I) = Mean{bpj(I1), bpj(I2), . . . bpj(IN )},

(4)FWj(I) =VGG16Ij(I),

(5)BWj(I) =VGG16Pj(I),

Fig. 5  Patch-level features extraction for the proposed method. Note that the diagram utlizes the jth pooling layer to extract the aggregated fore-
ground ( (FPj(I) ) and background features ( BPj(I) ) using both foreground (F) and background (B) information
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(Eqs.  (2)–(5)) from the 3rd and 4th pooling layers using 
simple and easy technique, Concat pooling (Eq.  6), as 
suggested by Sitaula et  al. [30]. Concat pooling is the 
best to perform aggregation of different types of features 
because it preserves multiple information uniformly than 
other methods such as min, max, mean, etc.

This aggregation results in the fusion of eight types of 
features, both foreground and background features at 
parts and whole levels for the features extracted from the 
3rd and 4th pooling layers of VGG16 models. Because 
the size of features from the 3rd layer of VGG16 model is 
256 and that from the 4th pooling layers is 512, the size of 
the final hybrid features H is 3072.

Result and discussion
In this section, we present the results of experiments 
conducted to evaluate the performance of our proposed 
hybrid deep features in the classification of breast can-
cer histopathological images using the Support Vector 
Machine (SVM) classifier [9].

Comparison with state‑of‑the‑art methods
We compared the performance of our method with four 
recent state-of-the-art methods for the classification of 
breast cancer histopathological images based on the clas-
sification accuracy and computation time. Additionally, 

(6)H(I) = {FPj(I),BPj(I), FWj(I),BWj(I)}
4
j=3

we listed the accuracy of our method using four machine 
learning algorithm, including SVM algorithm. The clas-
sification accuracy and computation time results are pro-
vided in Tables 2 and 3, respectively. The listed results are 
the average over five train-test sets. To minimize the bias, 
we compared our results with the published results of the 
state-of-the-art methods on the BACH dataset.

In Table 2, we can see that our method outperformed 
all the previous methods. EMS-Net [38] had competitive 
accuracy to our method (worse by 0.50%), whereas other 
contenders were significantly worse with differences 
between 5% to 15%. With our proposed features, we 
observed that SVM surpasses the three other classifiers 
(MLP, RF, and XGBoost) with at least 7% higher accuracy.

Furthermore, while comparing our method with the 
closest contender very recent state-of-the-art method of 
EMS-Net [38] in terms of computation time (Table  3), 
our method was several orders of magnitude faster. 
Their run time results for both training and testing are 
not comparable. Our method was able to achieve bet-
ter classification accuracy than EMS-Net in significantly 
lower run time. It is interesting to note that our GPU 
configuration (NVIDIA GeForce GTX 1050 GPU with 
4GB GDDR5 VRAM) is not as good as the one reported 
in the EMS-Net paper (NVIDIA GeForce GTX 1080Ti 
GPU with 32GB memory). Despite working in such a 
low power machine, we can achieve orders of magnitude 
faster run time than EMS-Net.

In summary, our proposed feature extraction method 
provides an effective representation of breast tissue histo-
pathology images for cancer diagnosis in terms of accuracy 
and computation time. Because EMS-Net used an ensem-
ble of fine-tuned pre-trained models for image classifica-
tion directly, it requires heavy data augmentation to avoid 
overfitting as the size of training images is quite small in this 
case. However, we used pre-trained deep learning models 
for feature extraction and it does not require data augmen-
tation. While being very simple and fast, our approach is 
very effective in achieving state-of-the-art classification 
accuracy. Furthermore, our features can be used with any 
other classifiers. Thus, we believe that it can be very useful 
to health practitioners in breast cancer diagnosis.

Analysis of pooling layers
We analyzed the effectiveness of features extracted from 
each of the five pooling layers of VGG16 models in the 
classification accuracy. The detail results are presented in 
Table  4. The results show that all types of features (FP, 
FW, BP, BW, FP + FW + BP + BW  ) extracted from the 
4th pooling layer produced better classification accuracy 
than the other remaining layers. This proves our hypoth-
esis that mid-level features are more appropriate to rep-
resent histopathological images. Among different types 

Table 2  Classification accuracy (%) of  our method 
and recent existing state-of-the-art methods

Bold value indicates the best accuracy

Methods Accuracy (%)

DCNN+SVM, 2017 [1] 77.8

Pre-trained VGG-16, 2018 [2] 83.0

Ensemble of three DCNNs, 2018 [2] 87.0

Kwok et al., 2018 [19] 87.0

Makarchuk et al., 2018 [24] 90.0

EMS-Net, 2019 [38] 91.7

Our hybrid features + SVM 92.2
Our hybrid features + MLP 85.2

Our hybrid features + RF 80.2

Our hybrid features + XGBoost 82.7

Table 3  Computation time (seconds) for  features extrac-
tion, training, and testing

Bold values indicate the best computation time

Method Feat. extraction Train. Test.

EMS-Net, 2019 [38] – 608,400 400

Ours 1483.84 0.35 0.06
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of features extracted from the 4th pooling layer, the com-
bined features ( FP + FW + BP + BW  ) produced bet-
ter results than any one type of feature. This shows the 
benefit of combining different types of features. Other 
interesting observations in Table 4 are: (i) foreground fea-
tures produced better results than corresponding back-
ground features indicating that foreground information 
provides more class discrimination power, and (ii) part-
level features produced better results than correspond-
ing whole-level features indicating that part-level (local) 
information provide more class discrimination power.

We also analysed if adding combined 
( FP + FW + BP + BW  ) features from other pooling lay-
ers (1st,2nd,3rd or 5th) with those extracted from the 4th 
pooling layer improves the classification accuracy. The 
results are presented in Table  5. It is interesting to see 
that the concatenation of features from layers {1st, 4th}, 
{2nd, 4th} and {3rd, 4th} produced better accuracy than 
just using features from the 4th layer, whereas {5th, 4th} 
produced the worse result. The concatenation of com-
bined features from the 3rd and 4th layers produced the 
largest improvement of 1.5% over the accuracy produced 
by features from the 4th layer only.

Class‑wise analysis of our method
To analyze the effectiveness of our method in differ-
entiating each of the four classes in the BACH dataset, 

we calculated class-wise Precision, Recall, and F1-score 
which are reported in Table 6. We also used the confu-
sion matrix to see the distribution of images into differ-
ent classes or categories (Fig. 6). These results show that 
our proposed method is consistently good in discriminat-
ing all four classes.

Conclusion
In this paper, we proposed a combined model for fea-
ture extraction to represent histopathological images 
capturing information in the images from different per-
spectives. We combine foreground and background fea-
tures at image parts and whole levels extracted from two 
mid-level (third and fourth) pooling layers of pre-trained 
VGG16 models. Foreground and background feature 
to capture information about areas of interest and their 
layout in microscopic histopathological images of breast 
tissues. Part-level and whole-level features are useful to 
detect interesting regions scattered in high-resolution his-
topathological images at local and whole image levels. We 
demonstrate the effectiveness of our proposed features in 
the classification of H&E stained histopathological images 
of breast tissues using the Support Vector Machine (SVM) 
classifier. Our experimental results in the BACH breast 
cancer dataset show that our method produces better 
classification accuracy compared to four existing state-of-
the-art classification models proposed for breast cancer 
histopathological image classification. Its performance is 
fairly consistent in differentiating all classes (i.e., detecting 
different types of cancer). Our proposed method is orders 
of magnitude faster than the best performing state-of-the-
art method of EMS-Net. Also, we are planning to design 
a new patch-based deep learning model for the classifi-
cation of histopathological images. Note that augmenta-
tion in patch level could provide significant information 
than whole level because whole image level augmentation 
mostly shifts the ROIs. Additionally, we will focus on the 
domain-specific augmentation techniques to increase the 
datasets for training our model.

Because of its effectiveness and efficiency, we believe 
that our proposal will be useful to support pathologists 

Table 4  Classification accuracies (%) of features extracted 
from the five pooling layers

Bold values indicate the best accuracy

FP and FW represent the foreground features using corresponding pooling 
layer at part-level and whole-level, respectively. Similarly, BP and BW represent 
background features using the corresponding layer at part-level and whole-
level, respectively. Combined features in the last row are the combination of all 
four types of features ( FP + FW + BP + BW)

Features type Pooling layer

1st 2nd 3rd 4th 5th

FP 61.0 68.5 81.2 88.0 86.5

FW 57.2 66.2 79.0 83.0 78.0

BP 61.5 66.2 78.5 85.0 80.5

BW 57.7 64.7 76.7 78.5 68.5

Combined 63.2 83.2 85.7 90.7 85.2

Table 5  Classification accuracy (%) of  concatenation 
of  combined ( FP + FW + BP + BW  ) features achieved 
from the 4th pooling layer and each of the other four pool-
ing layers ({jth, 4th} where  j ∈ {1, 2, 3, 5})

Bold value indicates the best accuracy

{1st, 4th} {2nd, 4th} {3rd, 4th} {5th, 4th}

91.0 91.5 92.2 87.5

Table 6  Average performance (%) using per  class Preci-
sion, Recall, and F1-score on the testing set of BACH data-
set

Bold values indicate the best performance

Class Precision Recall F1-score

Normal 90.0 90.0 90.0

Benign 91.0 89.0 90.0

In situ 94.0 94.0 93.0

Invasive 93.0 96.0 94.0
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Fig. 6  Confusion matrix of our method on the testing split of a Set 1, b Set 2, c Set 3, d Set 4, and e Set 5
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and clinicians in fast and early detection of breast cancer. 
The main implication of our study is that histopathologi-
cal images need to be analyzed from different perspec-
tives as interesting clues important for diagnosis might 
be anywhere in the complex high-resolution microscopic 
images.

However, the technique we proposed in this paper may 
not be suitable for other types of medical images such as 
x-ray scans, CT scans, Colonoscopy scans owing to their 
differing layout structures and visual contents. So, in the 
future, we would like to extend our idea to other types of 
medical images.
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