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Abstract

The contrast and resolution of images obtained with optical microscopes can be improved by 

deconvolution and computational fusion of multiple views of the same sample, but these methods 

are computationally expensive for large datasets. Here we describe theoretical and practical 

advances in algorithm and software design that result in image processing times ten to several 

thousand-fold faster compared with previous methods. First, we show that an ‘unmatched back 

projector’ accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least 

10-fold. Second, 3D image–based registration with a graphics processing unit enhances processing 

speed 10–100-fold over CPU processing. Third, deep learning can provide further acceleration, 

particularly for deconvolution with spatially varying point spread functions. We illustrate our 

methods from the subcellular to millimeter spatial scale on diverse samples, including single cells, 

embryos, and cleared tissue. Finally, we show performance enhancement on recently developed 

microscopes that have improved spatial resolution, including dual-view cleared tissue light-sheet 

microscopy and reflective lattice light-sheet microscopy.

Editorial summary

Microscopy datasets are processed orders-of-magnitude faster with improved algorithms and deep 

learning.
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Fluorescence microscopy enables imaging with submicron spatial resolution, molecular 

specificity and high contrast. These attributes allow direct interrogation of biological 

structure and function, yet intrinsic blurring and noise degrade fluorescence data, yielding an 

imperfect estimate of the underlying sample. Provided the imaging process can be 

characterized, such degradation can be partially reversed using deconvolution1,2, resulting in 

improved resolution and contrast. For example, given the point spread function (PSF) and 

data corrupted by Poisson noise (often dominant in fluorescence microscopy), the 

Richardson-Lucy deconvolution (RLD)3,4 procedure deblurs the estimate of the sample 

density with each iteration. In addition to deblurring, deconvolution can be used to combine 

multiple independent measurements taken on the same sample to produce an improved 

overall estimate of the sample5. This approach is especially useful in reconstructing super-

resolution images in structured illumination microscopy6,7 or in performing joint 

deconvolution to improve spatial resolution in multiview light-sheet microscopy8–12.

Iterative deconvolution has been useful in these applications, but obtaining a resolution-

limited result with RLD usually requires ten or more iterations. While the associated 

computational burden is manageable for single-view microscopes, deconvolving large 

multiview datasets can take days12,13, in many cases drastically exceeding the time for data 

acquisition.

Here we develop tools that address this problem. First, we show that in most cases the 

number of iterations can be reduced to 1 using an unmatched back projector, fundamentally 

speeding iterative deconvolution. Second, we optimize 3D image-based registration methods 

for efficient multiview fusion and deconvolution on graphics processing unit (GPU) cards. 

Finally, we show that computationally intensive deconvolution with a spatially varying PSF 

can be accelerated by using convolutional neural networks to ‘learn’ the relevant operations, 

provided that suitable training data can be assembled. These advances result in a speedup 

factor of ten to several thousand-fold over previous efforts. We illustrate the advantages on 

subcellular to macroscopic length scales, using samples that include single cells, zebrafish 

and nematode embryos, and mouse tissue. In addition to demonstrating improvements on 

super-resolution and large multiview datasets acquired with state-of-the-art microscopes, we 

also show that our methods enable the use of new microscopes, including dual-view, cleared 

tissue light-sheet microscopy and reflective lattice light-sheet microscopy.

Results

Drastically reducing the number of iterations in iterative deconvolution

Iterative deconvolution algorithms attempt to estimate the underlying sample density from 

noisy, blurred images. Important components of such algorithms are a ‘forward projector’, 

which describes the mapping from the desired image of the object to the noisy, blurred 

image measured by the microscope; and a ‘back projector’, which maps the measured image 

back onto the desired object image. For example, in RLD,

ek + 1 = ek   i
ek * f * b
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where ek is the k-th (current) estimate of the desired object image o, ek+1 is the (k+1)-th 

(future) estimate, i the measured image, f the forward projector, b the back projector, and * 

denotes convolution. The PSF is typically used for f, since f must accurately account for the 

blurring imparted by the band-limited microscope. b is traditionally ‘matched’ to f as its 

transpose (i.e. by flipping the PSF), but this is not the only possible choice. The field of 

radiology14 suggests that using an ‘unmatched’ back projector can accelerate this procedure. 

Specifically, in the unmatched variant of RLD, iterates were shown to move more rapidly 

toward desirable reconstructed images when the operator product of the forward projector 

and back projector had a flatter eigenvalue spectrum. To our knowledge this result has not 

been exploited in fluorescence microscopy. When the forward operator is a shift-invariant 

convolution, as is usually the case in microscopy, the number of iterations can be greatly 

reduced if b is chosen so that f * b tends toward a delta function (or equivalently, if the 

product of the magnitude of the Fourier Transforms (FT) of f and b approximates a constant 

in spatial frequency space, Fig. 1, Supplementary Notes 1, 2, 3). To study this effect, we 

began with images acquired with instant structured illumination microscopy (iSIM)15, a 

super-resolution technique. The iSIM PSF, or f, resembles a confocal PSF but with smaller 

spatial extent (Fig. 1a). Although b is typically chosen to be identical to f given the transpose 

symmetry of the iSIM PSF, we considered other choices with progressively smaller spatial 

extent (or equivalently, greater amplitude in the spatial frequency passband of the 

microscope, Fig. 1b, Methods). The last of these was a Butterworth filter designed 

specifically to ‘invert’ the native iSIM frequency response up to the resolution limit, 

resulting in a much flatter frequency response of |FT(f) × FT(b)| (Fig. 1c). Given its 

conceptual similarity to a Wiener filter, we termed this choice the ‘Wiener-Butterworth 

(WB) filter’.

When deconvolving images of 100 nm beads captured with a homebuilt iSIM, we found that 

our alternative b choices produced a resolution-limited result faster than the traditional back 

projector (Fig. 1d, Supplementary Fig. 1), with speedup factor correlating with the constancy 

of |FT(f) × FT(b)|. For example, the WB filter recovered the object’s resolution-limited size 

with only one iteration, whereas the traditional back projector required 15 iterations. The 

improved performance of the WB filter does not rely on an improved signal-to-noise ratio 

(SNR) in the input data (Supplementary Fig. 2), nor does it amplify noise more than other 

methods (Supplementary Fig. 3). We also compared the WB back projector to the classic 

Wiener filter employed in noniterative deconvolution. Here too we found that using the WB 

filter in RLD outperformed the classic Wiener filter (Supplementary Figs. 3, 4). Butterworth 

and WB back projectors both introduce unphysical negative values into the deconvolved 

reconstructions (Fig. 1b, Supplementary Fig. 5). However, since these values were small and 

typically located within the noise floor of each image, we set them to zero to yield 

reconstructions that were nearly identical to the conventional RLD results for these and other 

datasets presented in the paper (Supplementary Tables 1, 2).

In a simulation, we examined the relative performance of traditional and WB back projectors 

in resolving two lines separated by 1.6x the iSIM resolution limit (Fig. 1e, Supplementary 

Video 1). Using the same forward operator f affects the RLD procedure equivalently in both 

cases, but inspection of the term i
ek * f * b reveals that the WB filter applies a much larger 
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‘correction factor’ to ek, accelerating production of the final estimate. Further simulations 

based on more complex 3D objects confirmed this result, again finding that Gaussian, 

Butterworth and WB back projectors required fewer iterations to produce deconvolved 

images with similar (or better) image quality compared to traditional RLD (Supplementary 

Fig. 6, Supplementary Table 1).

Next, we applied these methods to images of fixed U2OS cells that were immunolabeled to 

highlight the outer mitochondrial membrane protein Tomm20 and acquired with iSIM (Fig. 

1f, g). Each of the back projectors improved signal-to-background and spatial resolution 

relative to the raw data, better revealing interior voids within the mitochondria. As before, 

however, using the unmatched back projectors also substantially reduced the number of 

iterations needed (Supplementary Video 2), a benefit that that also extended to time-lapse 

iSIM (Supplementary Video 3), confocal, widefield, and single-view light-sheet data 

(Supplementary Fig. 7).

Accelerating multiview deconvolution and registration

The more than 10-fold improvement in processing speed obtained for single-view 

deconvolution prompted us to investigate whether our method could also be applied to the 

more computationally-intensive task of multiview deconvolution. We began by applying our 

method to dual-view light-sheet microscopy (diSPIM9), using the WB back projector instead 

of the traditional transpose PSF to perform joint deconvolution on the two registered input 

views (Methods). As before, the WB back projector produced nearly identical results to the 

more traditional method, but with only 1 iteration (Supplementary Fig. 8), a 10-fold 

improvement in speed.

We used our method to reconstruct neuronal dynamics in developing C. elegans embryos, 

obtaining clear images of a subgroup of neurons’ plasma membranes labeled by GFP in a 

pan-nuclear mCherry background16 (Fig. 2a, Supplementary Videos 4–5). Post 

deconvolution, morphologies of neurons and nuclei were sufficiently well-resolved (Fig. 2b, 

c) that we could perform semi-automated lineaging17 to identify neurons selectively labeled 

by the fmi-1 promoter in this strain. The anterior neurons OLQV(L/R) are glutamatergic 

sensory neurons that facilitate head foraging and withdrawal reflexes. OLQVs are born after 

their progenitor cells (AB prpaaappa and AB plpaaappa) undergo a terminal cell division to 

produce OLQV(L or R) and sister cells (AB prpaaappap and AB plpaaappap) that undergo 

programmed cell death18,19. The progenitor cells first elaborate broad lamellipodial 

extensions towards the nose of the animal, which eventually become sensory dendrites (Fig. 

2d). Concomitant with the terminal cell division, the lamellipodial extensions become 

thinner and longer neurites consistent with the final morphological features of the dendrites. 

Dendrite extension then continues through what appears to be retrograde extension20. 

Perhaps forces generated during the terminal mitotic division help to create the 

morphological changes in dendrite shape. Although further experiments are needed to 

validate this hypothesis, the form of asymmetric division in which the mother cell does not 

round up during division and one daughter inherits the shape and polarity of the mother has 

been described previously in fish21 and in C. elegans22. Importantly, our reconstructions 
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allowed us to identify single cells in living embryos, and contextualize the morphological 

changes undergone by neurons during terminal cell divisions leading to dendrite biogenesis.

Our methods extend to imaging configurations with more views. For example, we acquired a 

quadruple-view dataset on a triple-objective light-sheet microscope11 (Fig. 2e, 

Supplementary Fig. 9, Supplementary Video 6). Stably transfected EGFP-Actin E6–1 Jurkat 

T cells were plated onto coverslips coated with anti-CD3 antibodies (mimicking antigen 

presenting cells). After the T cells spread on the coverslip, we imaged them for 30 time 

points (one time point every 15 s) spanning 7.5 minutes, acquiring 4 volumetric views at 

each time point. After adapting our deconvolution method for this acquisition scheme 

(Methods), dynamic changes in membrane ruffles and cell protrusions were obvious in the 

reconstructions (Fig. 2f), but obscured in the raw data (Supplementary Fig. 10). Using the 

WB back projector reduced the number of iterations from 90 to 5 (Fig. 2g). Importantly, our 

method also out-performed the state-of-the-art Efficient Bayesian Multiview 

Deconvolution10 (EBMD) method (which required 30 iterations to produce images of 

similar quality), which can be explained by the flatter frequency response of |FT(f) × FT(b)| 

using the WB filter compared to the EBMD result (Supplementary Fig. 11).

In processing these dual- and quad-view datasets, we noticed that the time for image 

registration considerably exceeded the time for deconvolution, usually by 75–120-fold. One 

approach to faster image registration encases the sample in a labeled matrix, using the 

multiple feature points from many fiducials to obtain the registration among different 

views23. We opted instead for the less invasive option of greatly accelerating the speed of 

our image-based registration software. First, we rewrote our CPU-based registration code9 in 

CUDA so that the procedure could be run entirely on our graphics processing unit (GPU). 

Second, we improved the underlying registration algorithm by incorporating an initial 2D 

registration and progressively more complex 3D registrations which resulted in faster and 

more robust performance (Fig. 2h, Supplementary Fig. 12, Methods, Supplementary 

Software). Collectively, these advances resulted in 175- and 30-fold speedups in registration 

(Fig. 2i), respectively, for the modestly sized C. elegans and T cell datasets presented in Fig. 

2a, 2e, which enabled total processing times on par with the acquisition time 

(Supplementary Table 3). We also benchmarked our improved registration method against 

established registration tools including elastix24 and NiftyReg25. Compared to these state-of-

the-art tools, our method enabled a more than 10-fold speed improvement on large 

volumetric light-sheet datasets without sacrificing registration quality (Supplementary Table 

4).

Our improved registration method enabled an even more dramatic speedup (451x, Fig. 2i) 

for an extended diSPIM acquisition spanning 900 volumes (7.5 hours, 1.05 Tvoxels, 2.1 

TB), where we followed the migration of the lateral line primordium in a 32-hour zebrafish 

embryo expressing Lyn-eGFP under the control of the ClaudinB promoter26 (Fig. 2j, 

Supplementary Video 7). Following registration, joint WB deconvolution improved 

visualization of vesicular structures and cell boundaries compared to the raw data (Fig. 2k, 

l), and facilitated inspection of dynamic immune cells that appeared to migrate in between 

the skin and underlying somites (Fig. 2m, n, Supplementary Video 8). WB deconvolution 

also substantially improved automated segmentation of cells within the lateral line, as only 
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71/120 cells were accurately segmented in the raw data vs. 116/120 in the deconvolved data 

(Fig. 2o, p, Supplementary Video 9).

We also tested our methods on single-view and multiview datasets acquired with a 

commercial Zeiss Lightsheet Z.1 microscope (Supplementary Figs. 13, 14, Supplementary 

Video 10, Methods), obtaining improved resolution and contrast after deconvolution and 

improved speed compared to the widely used commercial Huygens deconvolution software 

(Supplementary Fig. 13, Supplementary Table 3, Methods).

Submicron isotropic imaging of large, cleared tissue

Other samples that benefit from improved multiview fusion and deconvolution are large 

volumes of cleared tissue, which can be rapidly imaged using light-sheet microscopes. To 

explore this possibility, we constructed a cleared tissue diSPIM (Supplementary Fig. 15), 

replacing our original water-immersion objectives with a pair of mixed-immersion 17.9x, 0.4 

NA objectives (Methods). To estimate spatial resolution, we imaged 100 nm fluorescent 

beads in dibenzyl ether (Sigma, Cat. # 108014), obtaining single-view lateral full width at 

half maximum value (FWHM) 0.84 +/− 0.04 μm, and axial FWHM 4.6 +/− 0.4 μm (10 

beads, mean+/− standard deviation, Supplementary Fig. 16). Registration and 1 iteration of 

WB deconvolution further improved spatial resolution, resulting in an isotropic 0.79 +/− 

0.04 μm, offering a several-fold improvement in axial resolution over previous single-view 

experiments using the same lenses27,28. Next, we fixed, cleared, and immunolabeled mm-

scale samples of mouse tissue (Fig. 3a–d, Supplementary Videos 11–15) with iDISCO+29 or 

iDISCO30, subsequently imaging them with the cleared-tissue diSPIM in stage-scanning 

mode31.

The resulting data span hundreds of gigavoxels – teravoxels, up to ~2 TB in size. This size 

presents a major challenge, as such whole raw views do not fit within the memory of single 

GPU cards and must be subdivided prior to processing. To address this challenge, we created 

a processing pipeline for TB-scale data: cropping the single-view data into subvolumes, 

registering and deconvolving the subvolumes, and finally stitching the resulting 

reconstructions back into a higher-resolution composite (Supplementary Figs. 17, 18).

In a first example, we imaged a 4 × 2 × 0.5 mm3 slab of brain tissue derived from a V1b 

transgenic mouse32, with sparse immunolabeling of neurons and neurites across the entire 

volume (Fig. 3a). The isotropic resolution of the deconvolved reconstruction enabled us to 

resolve individual neurites at the micron scale (Fig. 3a), and to observe fine detail laterally 

and axially that was not resolved in the raw data (Fig. 3b). Manual tracing of neurites was 

also significantly improved in the deconvolved data relative to the raw data (Fig. 3c). In a 

second example, we performed 4-color imaging on the gut of an E18.5 mouse, spanning a 

2.1 × 2.5 × 1.5 mm3 volume (Fig. 3d). Our reconstruction highlights the organized and 

hierarchical structure of the intestine, including the interconnected vascular plexus feeding 

the submucosal and mucosal intestinal areas (PECAM-1, DAPI staining), mitochondrially-

enriched regions within the mucosa (Tomm20, DAPI), and tubulin-dense regions within the 

outer intestinal wall (alpha-tubulin, PECAM-1). As with the brain sample, the isotropic 

submicron-scale resolution allowed us to visualize fine details that were otherwise obscured 

by diffraction, including hollow blood vessels and cytoplasmic mitochondria surrounding 
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individual nuclei (Supplementary Fig. 19). Importantly, obtaining these as well as other large 

reconstructions of mouse intestine, stomach and ovary datasets (Supplementary Videos 13–

15, Supplementary Tables 5, 6) is facilitated by our much faster post-processing methods. 

Collectively, the new registration (Fig. 2h) and deconvolution (Fig. 1) methods account for a 

100-fold speed improvement over previous efforts, enabling post-processing in tens of hours 

rather than tens of days (Fig. 3e). We note that our method delivers less light dose than a 

recent technique with similar reported resolution33, as our technique confines the 

illumination to the vicinity of the focal plane.

Accelerating deconvolution with a spatially varying PSF

Finally, we developed methods for accelerating the deconvolution of fluorescence 

microscopy data blurred with a spatially varying PSF, acquired by imaging samples 

deposited on reflective coverslips (Fig. 4, Supplementary Table 7). As we previously 

demonstrated13, reflective diSPIM enables the collection of additional specimen views (Fig. 

4a), increasing information content and boosting spatiotemporal resolution. However, the 

raw reflective data are contaminated by substantial epifluorescence that varies over the 

imaging field (Fig. 4c). To remove the epifluorescence and fuse the views for optimal 

resolution enhancement, registration and subsequent deconvolution with a spatially varying 

PSF are needed (Methods). Unfortunately, spatially varying deconvolution carries a 

considerable computational burden -- as applied to reflective imaging it requires calculation 

of the forward and backwards projectors at each axial slice instead of only once per 

volume13. For example, deconvolving an imaging volume spanning 340 × 310 × 340 voxels 

with 20 iterations of traditional RLD with a spatially varying PSF requires 340 slices × 2 

views × 2 convolutions per RL update × 20 iterations = 27200 3D convolutions (14 minutes 

per volume with a single GPU card), instead of 2 × 2 × 20 iterations = 80 3D convolutions 

required with a spatially invariant PSF (only 2.5 s per volume). Unlike in our previous 

examples (Fig. 2, 3), deconvolution rather than registration becomes the bottleneck in post-

processing the raw data.

By modifying the spatially varying RLD update to incorporate the WB filter (Methods), we 

found that only 2 iterations were required to deconvolve a previously published13 dataset 

highlighting calcium waves (marked with GCaMP3) within muscles in 3-fold stage C. 
elegans embryos. As with traditional RLD, the WB modification improved contrast and 

resolution in the raw data (Fig. 4c, Supplementary Video 16), but with a ten-fold reduction 

in processing time (Fig. 4h). These gains also extended to a new form of reflective 

microscopy, using a higher NA lattice light-sheet (LLS) microscope instead of diSPIM (Fig. 

4a, d-f, i, Methods).

LLS microscopy34 has garnered attention due to its combination of high detection NA and 

illumination structure; together these attributes result in a better compromise between field-

of-view and light-sheet thickness than previous microscopes using pseudo non-diffracting 

beams. Nevertheless, the contrast and spatial resolution in raw LLS images still suffer from 

extraneous out-of-focus light due to illumination sidelobes, an effect that can be ameliorated 

with deconvolution. We found that the performance of the base LLS microscope could be 

further improved by imaging samples deposited on reflective coverslips (Fig. 4d–f), 
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registering the two resulting high NA views oriented ~113 degrees apart, and deconvolving 

them with a spatially varying PSF. As assayed with images of immunolabeled microtubules 

in U2OS cells captured on glass (Fig. 4d) and reflective (Fig. 4e) coverslips, axial resolution 

was improved 2-fold, from 750 +/− 39 nm to 379 +/− 23 nm (Supplementary Fig. 20). 

Deconvolving registered images of mEmerald α-actinin in live U2OS cells acquired in the 

reflective LLS microscope with the WB filter instead of traditional RLD resulted in a 15-

fold reduction in processing time (Fig. 4i, Supplementary Video 17).

While a 10–15x reduction in processing time is substantial, the time associated with 

deconvolution still far exceeds data acquisition (3.5 hours to deconvolve the 150-volume C. 
elegans dataset imaged with reflective diSPIM; 13.3 hours to deconvolve the 100-volume α-

actinin dataset imaged with reflective LLS microscopy). To obtain further speed 

enhancements, we turned to deep learning (DL35), which has resurged as a promising 

framework for image classification36, image recognition37, image segmentation38, 

denoising39, super-resolution40, and deconvolution41.

We constructed a convolutional neural network, terming it ‘DenseDeconNet’, as it is based 

on linking together dense network blocks42 in a memory efficient manner (Fig. 4b, 

Supplementary Note 4, Supplementary Software). These blocks use multiple dense 

connections to extract features from the raw image stacks, then learn to deblur the images. 

Unlike previous attempts that deblur 2D image slices by comparing the data to synthetically 

blurred slices, and average the network output from two orthogonal views to improve 

resolution isotropy43, we designed our method to operate on the full volumetric data, thereby 

learning the requisite 3D restoration directly. This capability is especially important in 

reflective applications, in which a simple 2D spatially invariant blur cannot properly model 

the physics of the microscope.

We began by testing DenseDeconNet on nuclear and membrane-bound labels expressed in 

live C. elegans embryos, acquired on the diSPIM using conventional glass coverslips. We 

used the deconvolved dual-view data as ground truth. When using only a single view as the 

input to the network, DenseDeconNet provided resolution enhancement intermediate 

between the raw data and the deconvolved result (Supplementary Video 18). To some extent 

this is unsurprising; presumably only with both views is there enough information to recover 

the isotropic resolution provided by diSPIM. However, for highly dynamic structures, the 

network output with a single-view input sometimes provided more accurate reconstructions 

than the deconvolved ground truth (Supplementary Note 4). We suspect this result is due to 

the lessened effect of motion blur, which otherwise causes errors in both registration and 

deconvolution. Additionally, in bypassing the registration, the DenseDeconNet with single-

view input provided a 5-fold reduction in total processing time compared to WB 

deconvolution, i.e. ~ 1 s for application of DenseDeconNet vs. 5 s for the new registration 

method (Fig. 2h) and 1 iteration WB deconvolution (Supplementary Note 4).

Using both registered views for network input enabled resolution enhancement very similar 

to the ground truth joint deconvolution on data acquired with glass coverslips 

(Supplementary Note 4). This result also extended to the reflective datasets. When training 

the network using the raw specimen views as inputs and the WB result as the ground truth, 

Guo et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DenseDeconNet produced outputs that were nearly identical to the ground truth (based on 

visual inspection, Fig. 4c, f; mean square errors (MSE) of 4.8e-4 (Fig.4c) and 5.0e-5 

(Fig.4f); and structural similarity (SSIM) indices of 0.923 (Fig.4c) and 0.965 (Fig.4f)), 

resulting in clear images of calcium dynamics in embryonic muscle (Supplementary Video 

16) and α-actinin dynamics at the cell boundary (Fig. 4g, Supplementary Video 17). 

Importantly, the network output offered a 50x speed improvement over WB deconvolution 

(1.68 s/volume, or 500x over traditional RLD) when processing the C. elegans data (Fig. 4h) 

and 160x (2 s/volume, or 2400x over traditional RLD) when processing the α-actinin data 

(Fig. 4i, Supplementary Table 7).

Discussion

Our deconvolution method is inspired by RLD, but achieves high-quality reconstructions 

more rapidly. Although the WB filter indeed enables deconvolution with fewer iterations 

than a traditional back projector, the potential to introduce artifacts still exists, particularly if 

too many iterations are applied (Fig. 1d, Supplementary Fig. 6). We recommend a single 

iteration as a good rule of thumb, since this choice resulted in resolution-limited 

performance on the majority of datasets we examined (Table S2.1 in Supplementary Note 2). 

With this caveat in mind, the algorithmic improvements we describe here should accelerate 

image-based biological discovery, especially for the increasingly rich and large datasets that 

can be obtained with modern light microscopes. For raw data that fit within the memory of a 

single GPU card (Fig. 1, 2, 4), our methods now enable multiview registration and 

deconvolution on a timescale on par with, and frequently less than, image acquisition. For 

much larger multiview light-sheet datasets (Fig. 3), our approach drastically shortens the 

post-processing time necessary for image reconstruction, instead placing the bottleneck on 

file reading, writing, and image stitching (Supplementary Table 5). Further speed 

improvements are possible if these operations are optimized. Alternatively, compressing the 

image data or using multiple graphics cards for additional parallelization12 could further 

shorten post-processing time. We freely provide our software (Supplementary Software) in 

the hope that others may improve it, and expect that other multiview light-sheet12 

(Supplementary Fig. 14) or light-field configurations44 could benefit from our work.

When performing deconvolution with a spatially varying PSF, the WB method provides a 

substantial speedup over traditional RLD, yet we obtained an even greater acceleration with 

deep learning. We note several caveats, however, when using deep learning methods. First, 

enough high-quality training data (for our network, ~50–100 training pairs) must be 

accumulated prior to application of the network, underscoring the point that deep learning 

augments, but does not replace, more classic deconvolution. Second, although application of 

the trained network takes only seconds per volume, training the network still takes days on a 

single graphics card. Finally, the networks are ‘brittle’; we obtained optimal results by 

retraining the network on each new sample (Supplementary Note 4). Designing more 

general neural networks remains an important area for further research.
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Methods

Widefield fluorescence imaging

Widefield imaging was performed on a previously described home-built system. In these 

experiments, we used a 60X NA=1.42 Oil Objective (Olympus) on an Olympus IX81 

inverted microscope equipped with XT 640-W (Lumen Dynamics Group Inc.) as 

illumination source, and an automated XY stage with an additional Z piezoelectric stage 

(100 μm range, Applied Scientific Instrumentation, PZ-2000). The illumination was filtered 

with an excitation filter (ET470/40x, Chroma) and then reflected towards the sample via a 

dichroic mirror (T495lpxr, Chroma). The emission was collected by the same objective, and 

filtered with a bandpass emission filter (ET525/50m, Chroma) prior to imaging with an 

electron-multiplying charge-coupled device (EMCCD) (Evolve Delta, Photometrics). An 

exposure time of 20 ms and EM gain of 20 were used. The imaging axial step for both beads 

and fixed actin samples was 150 nm.

Fixed, phalloidin labeled actin samples—U2OS cells were cultured on glass 

bottomed dishes (MatTek, Cat. # P35G-1.5–14C) at 37 C and 5% CO2. Prior to labeling, 

cells were rinsed 3 times with 1X PBS, fixed with 1 mL paraformaldehyde/glutaraldehyde 

(4%/2%) in 1X PBS for 20 minutes at 37C, rinsed twice in 2 mL 750 mM Tris-HCL pH 7.5 

and permeabilized in 0.2% Triton-X/1X PBS for 10 minutes. Next, samples were washed 3 

times in staining buffer and blocked in staining buffer containing 1% BSA for 30 minutes. 

Blocking buffer was removed, and the samples stained with 200 μL of 1:50 Alexa Fluor 

Phalloidin-488 (Thermo Fisher Scientific, Cat. # A12379):0.2% Tween-20/1X PBS for 1 

hour. Cells were washed in 0.2% Tween-20/1X PBS 3 times and imaged in 1X PBS.

Bead samples—Glass bottomed dishes (MatTek, Cat. # P35G-1.5–14C) were cleaned 

with 100% ethanol and coated with 0.1% poly-l-lysine (PLL; Sigma-Aldrich, Cat. # P8920) 

for 10 minutes. 100-nm yellow-green beads (Thermo Fisher Scientific, Cat. # F8803) were 

diluted ~105-fold and 20 μL were added to the coverslip. After 10 minutes, the dish was 

washed four times with clean water prior to imaging. Bead images were used for estimating 

the widefield PSFs used in Supplementary Fig. 7.

Confocal imaging

Confocal imaging was performed on a Leica SP8 confocal microscope with 1.40 NA oil lens 

(HCX PL APO CS 63.0X1.40 OIL UV). The 488 nm argon laser power was set at 20% and 

the AOTF (488) was set at 5%. The sample was scanned bidirectionally with a voxel size of 

48.1 nm in xy and 125.9 nm in z at 200Hz with 6x line average. The pinhole size was set to 

20.1 μm (0.21 Airy units). The fluorescence signal was collected from 510 nm to 580 nm 

with a Leica HyD hybrid detector operating in photon counting mode (10% gain). Data were 

saved in 8-bit format.

Immunolabeled microtubule samples—U2OS cells were cultured on No. 1.5 

coverslips (Fisherbrand, Cat. # 12-545-81) at 37 C and 5% CO2. Prior to labeling, cells were 

rinsed 3 times with 1X PBS, fixed with 1 mL methanol for 3 minutes at −20C, and rinsed 

twice in 2 mL 1X PBS. Next, samples were washed 3 times in staining buffer and blocked in 
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staining buffer containing 1% BSA for 30 minutes. The blocking buffer was removed, and 

the samples stained with 200 μL of 1:100 anti-alpha Tubulin primary antibody (Thermo 

Fisher Scientific, 322500) for 1 hour. Cells were washed in 0.2% Tween-20/1X PBS and 

stained with 200 μL of 1:200 Alexa-488 conjugated Goat anti-mouse secondary antibody 

(Invitrogen, A11001): 0.2% Tween-20/1X PBS for 1 hour. Finally, cells were washed 3 

times in 0.2% Tween-20/1X PBS and twice in distilled water before mounting in Prolong 

Diamond (Thermo Fisher Scientific, P36961).

Instant SIM imaging

The instant structured illumination microscopy (iSIM) system has been previously 

described13. For all experiments, a 60X NA=1.42 oil immersion objective (Olympus 

PlanApo N 60x Oil) was used, resulting in an image pixel size of 55.5 nm and a lateral 

resolution of ~150 nm. Fluorescence data were acquired with a pco.edge 4.2 sCMOS 

camera, and the exposure time was set to 40 ms per image frame. The imaging axial step for 

beads, immunolabeled mitochondrial samples, and transfected endoplasmic reticulum 

samples was set to 100 nm, 100 nm, and 500 nm, respectively.

Immunolabeled mitochondrial samples—U2OS cells were cultured on glass 

bottomed dishes (MatTek, Cat. # P35G-1.5–14C) at 37 C and 5% CO2. Prior to labeling, 

cells were rinsed 3 times with 1X PBS, fixed with 1 mL paraformaldehyde/glutaraldehyde 

(4%/2%) (Electron Microscopy Sciences, Cat. # 15710 and 16120) in 1X PBS for 20 

minutes at 37C, rinsed twice in 2 mL 750 mM Tris-HCL pH 7.5 (Corning, Cat. # 46–030-

CM), and permeabilized in 0.2% Triton-X (Sigma, Cat. # T9284)/1X PBS for 10 minutes. 

Next, samples were washed 3 times in staining buffer (0.2% Tween-20 (Sigma, Cat. # 

P9416)/1X PBS) and blocked in staining buffer containing 1% bovine serum albumin (BSA, 

Thermo Fisher Scientific, 37525) for 30 minutes. The blocking buffer was removed, and the 

samples stained with 200 μL of 1:200 anti-Tomm20 primary antibody (Abcam, Cat. # 

78547): 0.2% Tween-20/1X PBS for 1 hour. Cells were washed in 0.2% Tween-20/1X PBS 

and stained with 200 μL of 1:200 Alexa-488 conjugated donkey anti-rabbit secondary 

antibody (Invitrogen, Cat. # A21206) for 1 hour. Finally, cells were washed 3 times in 0.2% 

Tween-20/1X PBS and imaged in the instant SIM in 1X PBS.

Transfected ER samples—U2OS cells were cultured in 1mL media using MatTek glass 

bottomed dish at 37 C and 5% CO2. At 80% confluency, cells were transfected with 100 μL 

of transfection buffer containing 2 μL of X-treme GENE, 2 μL plasmid DNA 

(ERmoxGFP45, Addgene Cat. # 68072, 420 ng/μL), and 96 μL of PBS. Cells were imaged 1 

day after transfection.

Beads samples—Yellow-green fluorescent beads (Thermo Fisher Scientific, Cat. # 

F8803, 100 nm diameter) were used for experimental FWHM measurements for iSIM. 

Beads were diluted from the stock concentration 1:1,300 (1:100 in distilled water and 1:13 

in ethanol) and spread over cleaned glass cover slips. After air-drying for 5 minutes, 

coverslips were washed twice in distilled water to remove unattached beads. After air-drying 

again, beads were mounted in oil (Cargille, Cat. # 16241) onto glass slides and sealed with 

nail polish.
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Zeiss Lightsheet Z.1 imaging

Images were captured with a Zeiss Lightsheet Z.1 Selective Plane Illumination microscope 

(Carl Zeiss Microscopy, Thornwood, NY), tandem PCO.edge sCMOS cameras 

(PCO.Imaging, Kelheim, Germany), and Zeiss Zen imaging software. A pair of Zeiss 

10x/0.2 NA dry illumination objectives were used alongside a Zeiss 20x/1.0 NA long 

working distance detection objective. The illumination sheet was narrowed to 2 μm and 

images were acquired with 10 ms exposure for both green (488 nm) and red (561 nm) 

channels. In single-view experiments, samples were imaged dorsally with volumes acquired 

every 2 minutes. In multiview experiments, two views were collected at −15 and +15 

degrees from dorsal, with volumes acquired every 5 minutes.

Zebrafish embryos—Imaging of the embryonic zebrafish hindbrain used three transgenic 

fish lines: Tg(h2az2a:h2az2a-GFP)46, Tg(isl1-hsp70l:mRFP)ch10047, and 

Tg(sox10:mRFP)vu23448. Adult females carrying the nuclear label hist2h2l:GFP were 

crossed to males carrying either the cranial efferent marker isl1-hsp70l:mRFP (for single 

view experiments) or the neural crest marker sox10:mRFP (for multiview experiments). The 

resulting progeny were staged to 18 hpf following standard morphological criteria.49 For 

single-view experiments, embryos were prepared via multilayer mounting50 in Fluorostore 

Fractional FEP Tubing (F018153–5). For multiview experiments, embryos were mounted in 

1.2% agarose (Invitrogen, UltraPure Agarose #16500) in glass capillary tubes. Specimens 

were immersed in embryo media with 0.2 mg/mL tricaine and incubated at 28.5°C during 

data collection.

Fiber-coupled diSPIM imaging

We used our original fiber-coupled diSPIM system51 in addition to another, recently 

described fiber-coupled diSPIM system52 to acquire volumetric time lapse datasets of 

zebrafish embryo lateral line and nematode embryo neurodevelopment, respectively. Data 

were acquired in light-sheet scan mode (scanning the light sheet through the stationary 

sample) with the ASI diSPIM Micromanager53,54 (http://dispim.org/software/micro-

manager) plugin instead of the LabVIEW control software used previously51. For zebrafish 

data, the XY stage was manually moved periodically in order to ensure that the growing tip 

of the lateral line did not exit the field of view.

Nematode embryos—The 718 bp promoter in plasmid DACR3078 [fmi-1p(718bp)
(EcoRV-EcoRV)::Syn21-GFP-CAAX::p10 3’UTR] is a bashed fragment from the 3186 bp 

promoter upstream of the fmi-1 start codon. To make plasmid DACR3078, EcoRV was used 

to digest plasmid DACR2984 [fmi-1p(3186bp)::Syn21-GFP-CAAX::p10 3’UTR] followed 

with subsequent religation. Transgenic strain DCR6371 was made by injecting plasmid 

DACR3078 at 50 ng/μL into the lineaging strain, BV514, which ubiquitously expresses the 

mCherry::Histone reporter constructs, pie-1p::mCherry::H2B::pie-1 3’UTR and 

nhr-2p::his-24::mCherry::let-858 3’UTR16. From a spontaneous integration of DACR3078 

into BV514, olaIs98 was isolated. The integrated strain was designated as DCR6371. The 

Syn21 and p10 3’UTR is a translational enhancer system used in Drosophila to boost 

translational expression55. We have found that this also seems to help boost expression in the 

worm.
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Worms were cultivated at 20°C on nematode growth medium seeded with a lawn of 

Escherichia coli strain OP50 using standard methods. Embryos were laid by gravid adults 

and picked from the plate into M9 buffer with 0.25% Methylcellulose, and then pipetted 

onto a poly-l-lysine-coated coverslip and imaged in M9 buffer, as previously described9. 

Samples were imaged every 100 s for 50 timepoints with both 561 nm and 488 nm lasers. 

Further details are available in ref.52.

Zebrafish embryos—For Zebrafish posterior lateral line imaging, ClaudinB:lynGFP26 

embryos at 30–32 hpf were placed in embryo media (60 mg RedSea Coral Pro Salt (Drs 

Foster and Smith Pet Supplies) per liter ddH2O) supplemented with 600 μM MS-222 

(Sigma, E10521). For diSPIM imaging, embryos were mounted in 1% low melt agarose 

(Cambrex, 50080), covered with embryo media, and the agarose above the posterior lateral 

line primordium was manually removed using forceps prior to imaging.

Quad-view light-sheet microscopy

We modified our previously described triple-view SPIM system11 to acquire 4 volumetric 

views. Two 40x, 0.8 NA water-immersion objectives [(OBJ A and OBJ B in Supplementary 

Fig. 9, Nikon Cat. # MRD07420] were used in an free-space coupled diSPIM 

configuration9. A 60x, 1.2 NA water-immersion objective (OBJ C in Supplementary Fig. 9, 

Olympus UPLSAPO60XWPSF) was mounted beneath the coverslip. Each objective was 

housed within a piezoelectric objective positioner (PZT, Physik Instrumente, PIFOC-P726), 

enabling independent axial control of each detection objective.

Four volumetric views were obtained with the three objectives in stage-scanning mode, i.e., 

samples were translated though the light sheet via an XY piezo stage (Physik Instrumente, 

P-545.2C7, 200 μm × 200 μm). When excitation was introduced from OBJ B, one top view 

(collected from OBJ A) and one bottom view (from OBJ C) were simultaneously acquired. 

Similarly, when illumination was introduced from OBJ A, another top view (collected from 

OBJ B) and bottom view (from OBJ C) were again simultaneously acquired. Views 

collected from OBJ A/B were acquired as usual in light-sheet microscopy (i.e. they are 

perpendicular to the illumination); views collected from OBJ C were acquired by scanning 

OBJ C vertically during each exposure. Thus, the top two sCMOS cameras corresponding to 

OBJ A/B were operated in hybrid rolling/global shutter mode, but the lower camera was 

operated in a virtual confocal slit mode to obtain partially confocal images during light-sheet 

illumination introduced from OBJ A/B.

T cells—Stably transfected EGFP-Actin E6–1 Jurkat T cells were grown in RPMI 1640 

medium with L-glutamine and supplemented with 10% FBS, at 37℃ in a 5% CO2 

environment. Glass coverslips (24 mm × 50 mm × 0.17 mm, VWR, Cat. # 48393241) were 

coated with 0.01% Poly-L-Lysine (weight/volume) (Sigma-Aldrich, St. Louis, MO) and 

incubated with Anti-CD3 antibody (Hit-3a, eBiosciences, San Diego, CA) at 10 μg/ml for 2 

h at 37°C the same day that cells were imaged. Before imaging, 1 ml of cells was 

centrifuged at 250 RCF for 5 min, resuspended in the L-15 imaging buffer supplemented 

with 2% FBS, and plated onto the coverslips.

Guo et al. Page 14

Nat Biotechnol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cleared tissue imaging

We modified our original fiber-coupled diSPIM51 for cleared tissue imaging by 

incorporating elements of the commercially available Applied Scientific Instrumentation 

(ASI) DISPIM and the DISPIM for Cleared Tissue (CT-DISPIM). All components were 

designed and manufactured by ASI unless otherwise specified. The microscope body was 

built inside an incubator box (RAMM-Incu) on a 450 mm × 600 mm breadboard (Incu-

breadboard). Samples were placed on a FTP-2000 Focusing Translation Platform to provide 

precise and repeatable x,y,z positioning of the sample as well as rapid stage scanning31 

during cleared tissue imaging. CAD drawings of the setup are shown in Supplementary Fig. 

15.

Dovetail mounts (DV-6010) were attached to the SPIM head (SPIM-DUAL-K2) lower Cube 

III modules and connected to angled dovetails on support arms from posts mounted to the 

breadboard (Camera Support Kit CAM_SUP-K4-13-5). This configuration fixes the SPIM 

head while the sample can be moved relative to the head using the FTP-2000, minimizing 

vignetting of the fluorescence emission that compromised earlier diSPIM performance on 

large samples.

Each camera (Hamamatsu Orca Flash 4.0) was attached to a tube lens assembly (MIM-

Tube-K) which was clamped to Ø1.5” support posts (Thorlabs) from the breadboard leaving 

an air gap of 1–2mm between the tube lens assembly and the SPIM head. The resulting 

vibrational decoupling of the cameras from the SPIM head minimized image jitter caused by 

the camera fans. The cameras themselves were additionally supported on 45° angle brackets 

(Thorlabs AP45) mounted on Ø1.5” vibrationally damped posts (Thorlabs DP14A).

For cleared tissue imaging we used a pair of Special Optics 0.4 NA cleared tissue immersion 

objectives (ASI 54-10-12). At the refractive index of the solvent we used (dibenzyl ether), 

the magnification of these lenses is ~17.9. Since the back focal planes of these objectives are 

at different location than the Nikon 40× 0.8 NA water immersion objectives used for live 

work, the excitation scanners and their associated tube lenses were mounted to adjustable 

spacers (C60-SPACER-ADJ ASSEMBLY) to ensure 4f spacing of the light-sheet excitation 

path. All cleared tissue experiments used quad notch filters (Semrock StopLine Notch Filter 

NF03–405/488/561/635E-25) and associated dichroic mirrors (Semrock BrightLine Laser 

Dichroic DiO3-R405/488/561/635-t1-25×36), which together isolated the fluorescence from 

the excitation light (405, 488, 561, 637 nm from Coherent OBIS sources).

Data were acquired by moving the stage in a raster pattern with aid of the ASI diSPIM 

Micromanager53 plugin (http://dispim.org/software/micro-manager, ref.54). The number of 

imaging tiles/rows as well as other acquisition parameters of interest are reported in 

Supplementary Table 5.

Due to the volume size and speed of data acquisition during cleared tissue imaging, it was 

necessary to use a NVMe solid state drive (Samsung 960 PRO M.2 2TB) to write data 

during an acquisition. Data were transferred to a local 300 TB server after acquisition for 

longer term storage.
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Cleared brain slab—The mouse brain sample was prepared using the iDISCO+ 

procedure29. Briefly, the brain from an adult vasopressin receptor 1B Cre X Ai9 (B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze56); Cre recombinase dependent tdTomato) 

mouse32 (gift of W. Scott Young) was fixed by trans-cardiac perfusion with 4% 

paraformaldehyde. It was then cut into 2mm slabs and dehydrated through a methanol series, 

rehydrated, immunolabeled with an antibody that recognizes tdTomato (1:200 dilution 

Rabbit anti-RFP, Rockland Antibodies and Assays, Cat. # 600-401-379) and an Alexa 555 

secondary antibody (Invitrogen, Cat. # A27039 used 1:100), then dehydrated with a 

methanol series, and dichloromethane before equilibration in dibenzyl ether (Sigma, Cat. # 

108014) and imaging.

Cleared gut, stomach, and ovary—Mouse tissue stored in 4% paraformaldehyde was 

dissected and washed in 20 mL 1X PBS for 1 hour at room temperature. Desired organs 

were dehydrated and rehydrated in a serial dilution of methanol/water and bleached in 5% 

hydrogen peroxide/methanol mixture according to the iDISCO protocol30. After 

rehydration, pretreated samples were stained with 400 μL of primary antibody dilution 

(1:100) in a PBS buffer containing 0.5% Triton-X and 0.05% sodium azide and shaken at 37 

C for 4 days. Samples were washed in 5 mL washing buffer consisting of 0.5% Triton-

X/PBS and 0.05% sodium azide on a rotator for 1 day at room temperature. The next day, 

samples were stained with 400 μL of secondary antibody dilution (1:100) made of 0.5% 

Triton-X/PBS and 0.05% sodium azide in a 37 C shaker for 4 days. Samples were washed 

for one day before optical clearing. For some samples, 1:1000 DAPI (1mg/mL stock) stain 

was incorporated in the first washing step. All labels are indicated in Supplementary Table 6.

Immunolabeled samples were dehydrated in 5 mL of 20%/40%/60%/80%/90%/100% 

tetrahydrofuran/water mixture (30 minutes at room temperature for every step). Samples 

were washed in 5 mL of 100% tetrahydrofuran for another 30 minutes at room temperature 

and incubated in 5 mL of 100% dichloromethane until samples sank to the bottom of the 

tube. Samples were then incubated overnight at room temperature in another 5 mL of fresh 

100% dichloromethane. The next day, samples were cleared in 5 mL of dibenzyl ether 

(Sigma, Cat. # 108014) twice at room temperature for 30 minutes each time. Cleared 

samples were mounted on glass slide with a minimal amount of Krazy Glue surrounding the 

bottom of the samples for imaging with the cleared tissue diSPIM.

Beads sample—No. 1.5 coverslips (VWR, 48393241) were cleaned with 100% ethanol 

and coated with 0.1% poly-l-lysine (PLL; Sigma-Aldrich) for 10 min. Then 100-nm yellow-

green beads (Thermo Fisher Scientific; F8803) were diluted ~105-fold and 20 μL were 

added to the central region of the coverslip. After 10 min, the coverslip was washed four 

times with clean water before imaging. During imaging, the beads were immersed in 

dibenzyl ether (Sigma, Cat. # 108014).

Free-space coupled diSPIM, conventional and reflective imaging

The geometry of the diSPIM (0.8/0.8 NA) used for conventional and reflective imaging has 

been previously described13. Glass coverslips (24 mm × 50 mm × 0.17 mm, VWR, Cat. # 

48393241) for conventional experiments were modified for reflective experiments by 
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sputtering a 150-nm-thick aluminum film over their entire surface and then protecting them 

with a 700-nm-thick layer of SiO2 (Thin Film coating, LLC). During conventional imaging, 

dual views were sequentially acquired in light-sheet scanning mode via two objectives 

(Nikon, Cat. # MRD07420, 40x, 0.8 NA) and imaged with 200-mm tube lenses (Applied 

Scientific Instrumentation, C60-TUBE_B) onto two scientific-grade, complementary, metal-

oxide-semiconductor (sCMOS) cameras (PCO, Edge 5.5), resulting an image pixel size of 

162.5 nm. During reflective imaging, four views (direct fluorescence and mirror images) 

were simultaneously collected in stage scanning mode with the same detection optics. In all 

acquisitions, the exposure time for each plane was 5 ms.

Nematode embryos—C. elegans were maintained on nematode growth medium seeded 

with Escherichia coli (OP50). Embryos were dissected from gravid adults, placed on poly-l-

lysine-coated coverslips and imaged in M9 buffer, as previously described9. Strain BV24 

[ltIs44 [pie-1p-mCherry::PH(PLC1delta1) + unc-119(+)]; zuIs178 [(his-72 1 

kb::HIS-72::GFP); unc-119(+)] V] was used for imaging nuclei in conventional mode and 

strain AQ2953 ljIs131[myo-3p::GCaMP3-SL2-tagRFP-T] for imaging calcium flux within 

three-fold embryos in reflective mode.

Lattice light-sheet microscopy, conventional and reflective imaging

The lattice light-sheet microscope (1.1/0.71 NA) for reflecting imaging was constructed as 

previously described34. The annular mask was set at 0.325 – 0.4 NA and a square lattice in 

the dithered mode was produced at the sample. The excitation power (488 nm) was 

measured at the back focal plane of the excitation objective at ~25μW. The 25X Nikon CFI 

APO LWD detection objective was paired with a 500mm achromat lens for an effective 

magnification of 63.7x, resulting an image pixel size of 102 nm. The exposure time for each 

plane was 8 ms, and the stage-scanning step size for the volumetric imaging was 0.4 μm, 

corresponding to 209 nm along the optical axis after deskewing. When deconvolving the 

data with a spatially variant PSF for resolution recovery and removal of epifluorescence 

contamination13, the excitation pattern was based on the measured lattice light-sheet 

dimensions (propagation distance of ~26.6 μm FHWM along the optical axis and a waist of 

0.99 μm FWHM), and the detection PSF was simulated as a widefield PSF with 1.1 NA 

using the PSF generator ImageJ plugin (http://bigwww.epfl.ch/algorithms/psfgenerator/). 

The light-sheet dimensions were measured by sweeping the sheet axially through a 0.1 μm 

diameter fluosphere (ThermoFisher) while stepping the bead along the propagation length of 

the sheet. Conventional imaging experiments were conducted on 5 mm diameter × 0.15 mm 

glass coverslips (Warner Instruments, CS-5R). For reflective experiments, 5 mm diameter × 

0.17 mm glass coverslips were sputtered as for the free-space diSPIM experiments with a 

150-nm-thick film of aluminum followed by a 700-nm-thick layer of SiO2 (Thin Film 

Coating, LLC).

Microtubule and actin samples—For imaging microtubules, human osteosarcoma 

U2OS cells (ATCC HTB-96) were grown on uncoated coverslips, fixed with glutaraldehyde, 

washed with PBS in room temperature, and then immunolabeled with DM1A antibody 

conjugated with Alexa-488 (Sigma, T9026). For imaging alpha-actinin, U2OS cells stably 

transfected with alpha-actinin mEmerald (a gift from Michael Davidson, FSU) were plated 
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onto coverslips 24 hours before imaging. Cells were imaged within 1 h after plating on the 

reflective coverslips.

Data processing

Pre-processing—Raw single-view and multiview images were pre-processed by 

subtracting a uniform background with intensity equivalent to average of 100 dark (no 

excitation light) background images prior to registration and/or deconvolution. For 

deconvolution, the measured image or the average of the measured images after the 

elimination of zero values (zeros replaced by a small value, 0.001) was used as the initial 

estimate. However, we note that the more rapid deconvolution reported in this work is robust 

to changes in the initial guess as we obtained similar acceleration when using a constant 

valued image as the initial estimate.

Dispim deconvolution—The joint RL deconvolution scheme used in diSPIM improves 

the overall estimate e of sample density by alternately considering each view57:

e0 = iA + iB /2

for k = 0, 1, …N i . e . , iteration number

ek = ek{(
iA

ek * fA
) * bA}

ek + 1 = ek{(
iB

ek * fB
) * bB}

end

where iA, fA, bA and iB, fB, bB are the raw images, forward projector (PSF) and backwards 

projector corresponding to views A and B, respectively. Traditionally, b is taken to be the 

transpose of f. However, as in single-view deconvolution, we found that using unmatched 

back projectors (e.g. Gaussian, Butterworth, or WB filters) considerably accelerated this 

procedure (reducing N).

Quad-view deconvolution—In quadruple-view deconvolution, we start with the additive 

RLD update, finding as previously reported11 that this method yields better reconstructions 

than the alternating joint deconvolution update57 used for diSPIM:

e0 = iA + iB + iC + iD /4

for k = 0, 1, …N i . e . , iteration number
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eA = ek{[
iA

ek * fA
] * bA}

eB = ek{[
iB

ek * fB
] * bB}

eC = ek{[
iC

ek * fC
] * bC}

eD = ek{[
iD

ek * fD
] * bD}

ek + 1 = eA + eB + eC + eD /4

end

With f, b, e, i defined as above and the subscripts A, B, C, D indicating each view. Choosing 

each back- projector b to be the transpose of the forwards operator f yields the traditional RL 

update. Choosing the back projectors as follows yields the previously-described ‘virtual-

view’ update in EBMD10 (* denotes convolution and ^ the transpose), speeding up this 

procedure:

bA = fA fA * fB * fB fA * fC * fC fA * fD * fD

bB = fB fB * fC * fC fB * fD * fD fB * fA * fA

bC = fC fC * fD * fD fC * fA * fA fC * fB * fB

bD = fD fD * fA * fA fD * fB * fB fD * fC * fC

Finally, setting b to be the unmatched WB filter appropriate for each view provides the 

fastest update, as for dual-view and single-view microscopes.

Joint deconvolution for reflective light-sheet imaging—Raw image data from the 

four views in reflective diSPIM imaging (0.8/0.8 NA) or two views in reflective lattice light 

imaging (0.7/1.1 NA) are merged to produce a single volumetric view, after processing steps 
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that include background subtraction, interpolation, transformation, fusion, registration, 

epifluorescence removal and joint deconvolution. The data processing steps for removing 

epifluorescence contamination and enhancing resolution for reflective diSPIM and reflective 

lattice light sheet imaging are similar to those previously described13 for the symmetric 

(0.8/0.8 NA) and asymmetric (0.71/1.1NA) diSPIM configurations. We represent the effect 

of the mirrored coverslip by reflecting the object across the coverslip to obtain an extended 

object consisting of real and virtual objects. During each RL update, we construct the 

forward model by (1) shifting the illumination pattern at each axial (z) slice in the extended 

object; (2) multiplying the shifted illumination pattern with the estimate of the extended 

object; (3) looping over z in the estimate and at each z performing 2D convolution with the 

detection PSF; and (4) collapsing over the z coordinate. In the backwards model, we perform 

back projection of the ratio image (i.e., the ratio of the raw data to the blurred estimate), 

convolve it with the appropriate back projector function (the flipped PSF for traditional RL 

deconvolution, or the unmatched back projector for the Wiener-Butterworth case), then 

multiply with the shifted illumination pattern. This deconvolution process is not blind, i.e. 

the PSFs are simulated wide-field detection PSFs based on experimentally measured PSFs. 

For the datasets we report here, there was no need to crop the data. When processing the 

reflective lattice light sheet data, the excitation profile was based on the measured dithered 

lattice light-sheet illumination.

In more detail, we form view U1 (that includes both conventional view and mirrored views) 

and a second, virtual view U2 by reflecting view U1 across the mirror as previously 

described13. U1 and U2 are thus blurred with complementary detection PSFs. We register the 

two views U1 and U2, and perform joint deconvolution on them by applying the joint 

Richardson-Lucy update with WB back projector for each view as follows:

F0
n + 1 = F0

n   1
V 1

ℳB1
U1

ℳF1F0
n

0

F0
n + 2 = F0

n + 1   1
V 2

ℳB2
U2

ℳF2F0
n + 1

0

Here, ℳF1 and ℳF2 are the forward operators that map the object stack F  to either measured 

conventional view stack U1 or virtually reflected view stack U2, respectively, and ℳB1 and 

ℳB2 are the backward operators that map from data space back to object space. Four steps 

are sequentially applied in obtaining each update. First, we compute ℳF1F0
n

 or ℳF2F0
n

 by 

applying the forward operator ℳF1 or ℳF2 to the current estimate of the object F0
n

according to three cascaded operations PℋD at each light sheet position (or z slices), where 

matrix D represents multiplication of the estimate F0
n

 by the crossed light sheets; matrix ℋ
represents looping over all the z slices and performing 2D convolution with a slice of the 

detection PSF at each z; and matrix P applies projection over all z slices. Second, divide the 
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measured data stack U by this quantity, and denote the resulting ratio image R. Third, apply 

the transpose operator ℳB1 or ℳB2 to R, which involves applying the cascaded operations 

DTℋTPT  and then summing over all z slices. Here PT  is a backprojection matrix, which 

smears the vector to which it is applied back across the image grid; ℋT  represents looping 

over z in the object distribution and performing 2D convolution with a slice of the 

transposed but unmatched detection PSF (i.e., WB back projector appropriate for the 

particular microscope, Supplementary Note 2) at each z; DT  is equivalent to matrix D, 

denoting multiplication with the illumination pattern. Last, update the current estimate F0
n

by multiplying by the correction image ℳB1 or ℳB2 and dividing by the normalization 

image V1 or V2 (i.e., ℳB11 or ℳB21, where 1 denotes an image of ones).

GPU deconvolution with Huygens software—For the deconvolution comparison in 

Supplementary Fig. 13, both Wiener-Butterworth and Huygens deconvolution (Scientific 

Volume Imaging, Essential 19.10 version) use the same theoretical PSF, generated as the 

product of excitation light sheet and widefield emission PSF. When testing Huygens, we 

used the light sheet deconvolution module. All parameters were set at their default values. 

Deconvolution was performed on a Windows 10 workstation (CPU: Intel Xeon, Platinum 

8168, 2 processors; RAM: 512 GB; GPU: Nvidia Quadro RTX6000 graphics card, 24 GB 

memory).

Conventional 3D affine registration—Some CPU-based registrations were performed 

in the open-source Medical Imaging Processing, Analyzing and Visualization (MIPAV) 

programming environment (http://mipav.cit.nih.gov/). As previously described9, we applied 

an affine transform with 12 degrees of freedom (DOF) to register the source image (S, image 

to be registered) to the target image (T, fixed image). The DOF matrix is a 12-element 

transformation matrix that applies the four affine image transformation operations 

(translation, rotation, scaling and shearing) from S to T. We used an intensity-based method 

to iteratively optimize the DOF matrix by minimizing a cost function via Powell’s method 

(http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html). We set the 

search angle range from −10 degrees to 10 degrees, with a coarse angle increment of 3 

degrees and a fine angle increment of 1 degree. This registration function ‘Optimized 

Automatic Image Registration 3D’ has already been incorporated in MIPAV as a Plugin - 

‘SPIM-fusion’51. With this CPU-based registration environment, we registered the data 

imaged with diSPIM (Fig. 2a, j) and quad-view light-sheet microscopy (Fig. 2e, see below 

for more detail on how we registered four views), and compared the registration outcomes 

and computation costs with the GPU-based registration described in the following section 

(Fig. 2i). To estimate the computational costs for registering large, cleared tissue volumes 

with the CPU-based approach (Fig. 3i), we randomly chose 10 subvolumes (each 640 × 640 

× 640 pixels), calculated the time for registration, averaged the times (i.e., ~31 mins per 

subvolume) and then multiplied the averaged time with the total number of subvolumes 

(e.g., 4576 subvolumes in Fig. 3d) to estimate the total registration time (i.e., ~ 100 days).

For the comparative data shown in Supplementary Table 4, registration was also performed 

using the NiftyReg software package (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) 
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and the elastix software package (http://elastix.isi.uu.nl). For NiftyReg, the reg_aladin 

command was used with default settings except that the ‘-pv’ and ‘-pi’ parameters were both 

set as 100. In this case, the NiftyReg performed a rigid + affine based registration. For 

elastix, the transform type was set as “AffineTransform” to perform affine based 

registration; the Interpolator was set as “LinearInterpolator”; the Resampler was set as 

“DefaultResampler” for CPU implementation and “OpenCLResampler” for GPU 

implementation.

New GPU-based 3D affine registration—We developed a new registration pipeline 

that accelerates the registration of multiview light-sheet data via GPU programming 

(Supplementary Fig. 12), including data acquired with the diSPIM (Fig. 2a, j), quad-view 

light-sheet microscopy (Fig. 2e), reflective diSPIM (Fig. 4c) and reflective lattice light-sheet 

microscopy (Fig. 4f). More importantly, this GPU-based registration method also enables the 

registration of large, cleared tissue datasets imaged with diSPIM (Fig. 3), which is 

impractical if implemented in the CPU-based registration method (e.g., ~100 days with 

CPU-based registration time as estimated above vs. ~24 hours with GPU-based registration 

for data in Fig. 3d).

Our GPU-based method uses the same method (i.e., intensity-based, iterative optimization of 

the transformation matrix) as in the previous CPU-based MIPAV registration, but 

dramatically improves the registration speed and accuracy for several reasons. First, we 

iteratively perform affine transformations on the source image (S) which is always kept 

within the GPU texture memory. The main computational burden in 3D transformation is 

trilinear interpolation, which can be significantly lessened via the use of texture memory. 

Second, the correlation ratio between the intensity of the transformed source (S’) and target 

image (T) that is used in the cost function, can be rapidly calculated via the parallel 

computations enabled by the GPU. Third, when minimizing the cost function by using 

Powell’s method to update the 12-element transformation matrix, we don’t simultaneously 

optimize all 12 elements (i.e., full translation, rotation, scaling and shearing that comprise 12 

DOF). Instead, the optimization is serial, successively optimizing translation; rigid body 

(translation and rotation, 6 DOF); translation, rotation and scaling (9 DOF); and finally the 

full translation, rotation, scaling and shearing operations (12 DOF). We observed that such 

serial optimization makes registration more accurate and robust. Finally, although the initial 

transformation matrix (M0) for beginning the optimization process is an identity matrix by 

default, we also provide an option to generate M0 by performing a 2D registration 

(translation and rotation) on the XY and ZY maximum intensity projections of S and T. This 

2D registration is an intensity-based rigid body transformation with the same optimization 

routine as 3D registration, but performing registration in 2D with only translation and 

rotation is very rapid, only ~1% of the time required for performing full 3D registration. 

This additional step also guarantees a reasonable starting initialization of M0 for further 3D 

optimization in 3D. Alternatively, a transformation matrix from a prior time point in a time 

lapse 4D dataset can be used as M0 to accelerate the registration. In some cases (e.g., Fig. 

2a), we observed that using a matrix from a previous time point can reduce the registration 

time for a new volume by as much as 65%, e.g. from ~8.8 seconds/volume to ~3.1 seconds/

volume.
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We implemented this GPU-based registration pipeline in CUDA/C++ (Supplementary 

Software) and called it in Matlab or FIJI to register the data imaged with conventional and 

reflective diSPIM and LLS microscopy (Fig. 2a, j, Fig. 4c, f). To increase registration 

accuracy for the quad-view data (Fig. 2e, Supplementary Fig. 10) acquired with the quad-

view light-sheet system (Supplementary Fig. 9), we (1) transformed view A and view B into 

the coordinate system of the bottom views C/D and deconvolved each view to increase 

image quality; (2) registered the deconvolved view D to the deconvolved view C, thus 

obtaining a registration matrix mapping view D to view C; applied this registration matrix to 

the raw view D, thus registering it to the raw view C; (3) registered the deconvolved view B 

to the deconvolved view A, thus obtaining a registration matrix mapping view B to view A; 

applied this registration matrix to the raw view B, thus registering it to the raw view A; (4) 

performed joint deconvolution on the two registered, raw views A and B; (5) registered the 

jointly deconvolved views A/B to the deconvolved view C, thus obtaining a registration 

matrix mapping views A/B to view C; (6) applied both registration matrices (view B to view 

A, then views A/B to view C) to register all raw views to the coordinate system of the 

bottom views (i. e., view C/D). For deconvolving time series data (Fig. 2e, Supplementary 

Video 6), we applied this process to the first time point in each view, obtaining a set of 

registration matrices that were then applied to all other time points in the 4D dataset.

Post-processing pipeline for large, cleared tissue data imaged with diSPIM—
We developed a postprocessing pipeline that can register and jointly deconvolve large 

datasets imaged with the diSPIM, including the cleared tissue data presented in this paper 

(Supplementary Fig. 17). Such datasets span hundreds of GB – terabytes, a size that 

exceeded either RAM or GPU memory on our workstation.

First, raw image data recorded by the cameras in the cleared-tissue diSPIM (multiple 16 bit 

TIFF files, each less than or equal to 4 GB) need to be re-organized and re-saved as TIFF 

stacks, each corresponding to a distinct spatial subvolume (tile), color, and view. Second, 

tiles for each color/view are combined with Imaris Stitcher (based on ref.58), the ImageJ 

Plugin implementation of BigStitcher59 or custom software written in MATLAB during the 

revision process for this manuscript (Supplementary Fig. 18, Supplementary Table 5, 

Supplementary Software).

Our custom stitching software uses two steps to compute locations for every tile with sub-

pixel accuracy (Supplementary Fig. 18): (1) using the GPU, calculate coarse 3D translational 

shifts for all pairs of adjacent tiles using Fourier-based phase correlation58,59 on down-

sampled images (final size of 512–1024 pixel in each dimension); (2) compute fine, sub-

pixel 3D translational shifts for the coarsely registered tiles using our GPU-based 

registration method.

In more detail, we calculate the Fourier-based phase correlation shifts according to

P = IFT FT TileA X conj FT TileB
FT TileA X conj FT TileB
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where TileA and TileB represent two adjacent overlapped tiles, conj denotes conjugation, 

and FT and IFT represent the Fourier transform and inverse Fourier transform. The peak of 

the phase image stack S corresponds to the tile location in real space. However, due to the 

periodic nature of the Fourier shift theorem, each peak corresponds to 2 possible shifts in 

each spatial dimension, and thus there are 23 = 8 possible peaks that arise when calculating a 

3D shift. We test each candidate shift by applying the shift, cropping the overlapped regions 

between the shifted tiles, calculating the normalized cross-correlation (NCC) between the 

cropped regions, and selecting the candidate shift corresponding to the highest NCC. To 

increase the robustness of this correlation-based approach for stitching images with 

extensive noise or low information content, we take the logarithm of the tiles before Fourier 

transforming.

After coarse shifts between adjacent tiles are obtained as above, we apply the coarse shifts, 

crop the overlapped regions between shifted tiles, and use our GPU-based registration 

method for computing sub-pixel shifts between tiles. With this two-step stitching method, 

we achieve the same NCC values as BigStitcher yet with a shorter processing time (e.g., an 

NCC of 0.95 for the two tiles shown in Supplementary Fig. 18, part of the dataset shown in 

Fig. 3d, each tile with 2048 × 2048 × 1300 pixels, and a registration time of 165 s with this 

method vs. 580 s with BigStitcher). Finally, image tiles are fused by peforming linear 

blending between the finely aligned overlapped regions. We create weight images for each 

tile (Supplementary Fig. 18), multiply the tiles with the weight images and then sum the 

resulting weighted images together. For multicolor datasets, we apply the sub-pixel shifts 

and weighted images obtained from a single color (users have the option to choose desired 

color in the software GUI) to all other colors.

Like BigStitcher, our stitching framework is able to fuse terabyte-sized volumes without 

needing to load the raw data into CPU-RAM. Stitching the entire volume from multiple tiles 

is accomplished by looping across the lateral slices of tiles, stitching them, and subsequently 

resaving as a TIFF file for each lateral slice. The overall processing time (including file I/O 

and stitching) of our method is competitive with Imaris Stitcher and BigStitcher (e.g., ~15 

mins with our method vs. ~18 mins with BigStitcher vs. ~13 mins with Imaris Stitcher for 

the data shown in Supplementary Fig. 18, more comparisons are listed in Supplementary 

Table 5). Moreover, conducting the stitching pipeline in MATLAB has the advantage that a 

single program can be used for the entire processing pipeline without needing converting 

TIFF files to IMS format in Imaris or defining an XML format as in BigStitcher. Like Imaris 

Stitcher, our software also provides a GUI for assisting users in loading files, organizing the 

order of tiles, aligning tiles, and previewing tiles before and after stitching (see the 

description provided in Supplementary Software for details on using the software).

After stitching, the resulting large TIFF stacks are deskewed (transforming from stage-

scanning mode to light-sheet scanning mode), interpolated (obtaining isotropic pixel 

resolution), rotated (transformed from the objective view to the perspective of the coverslip), 

cropped (saving memory), and resaved as TIFF files (e.g. ~ 2 TB for the 4 colors and 2 

views acquired for the dataset shown in Fig. 3d). Due to the large data size, and our limited 

memory, we could not directly register the two views via our GPU card, and performing the 

registration with CPU processing9 is impractical due to the ~100-fold slower processing that 
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would result (Fig. 3e). Our strategy for dealing with the GPU memory bottleneck is to down-

sample Views A and B by a factor β, to View A’ and View B’, such that the total size of the 

views is reduced by β3 (e.g., 125-fold if β = 5). Registering these downsampled volumes can 

now be achieved in GPU memory, obtaining a registration matrix MD that maps view B’ to 

view A’. A coarse, global 3D affine transformation matrix MG that maps view B to view A 

can then be derived from MD:

MD =

sx mx
my sy

nx tx
ny ty

mz nz
0 0

sz tz
0 1

MG =

sx mx
my sy

nx β tx
ny β ty

mz nz
0 0

sz β tz
0 1

Here the three terms tx, ty, tz represent translations in each dimension, while the other 9 

terms sx, sy, sz, mx, my, mz, nx, ny, nz combines scaling, rotation, and shearing in 3D.

Note that MG cannot be directly applied to View B to obtain a coarsely registered view B 

(again due to their large size). But MG can be used to crop Views A and B into multiple 

subvolumes that are sufficiently small that they can be registered (e.g., ~1000 subvolumes, 

each 640 × 640 × 640 pixels with an interval of 512 × 512 × 512 pixels, 20% overlap 

between adjacent subvolumes in each dimension). If the position of the k-th subvolume in 

View A is specified by the vector PA
k = xA

k yA
k zA

k   1 , then the starting position of the k-th 

subvolume in View B can be obtained by:

PB
k = [xB

k yB
k zB

k   1] = PA
k × MG

T = [xA
k yA

k zA
k 1] × MG

T

After cropping, this subvolume can be coarsely registered with the corresponding cropped 

subvolume in view A using a new matrix MS
k, which can be derived from the cropping 

position matrix MA
k , MB

k  and global transformation matrix MG:

MA
k =

1 0
0 1

0 xA
k

0 yA
k

0 0
0 0

1  zA
k

0 1

; MB
k =

1 0
0 1

0 xB
k

0 yB
k

0 0
0 0

1  zB
k

0 1
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Msk = inv MB
k MGMA

k =

sx mx
my sy

nx 0
ny 0

mz nz
0 0

sz  0
0 1

Fine registration and joint WB deconvolution are then applied to the coarsely registered, 

paired subvolumes of View A and View B. For each deconvolved subvolume (640 × 640 × 

640 pixels), boundary regions (45 pixels from each edge, in all three dimensions) are 

removed to eliminate edge artifacts, and the resulting subvolumes are resaved with size 550 

× 550 × 550 pixels. Finally, stitching all deconvolved and newly cropped subvolumes results 

in the final reconstruction (e.g., ~1 TB for the dataset displayed in Fig. 3d). Note that during 

the stitch, linear blending is performed on the remaining overlapped regions of the adjacent 

subvolumes (38 pixels from each edge, in each dimension) to lessen stitching artifacts.

Zebrafish segmentation—For segmenting cells in the lateral line primordium (Fig. 2o, 

p), the “morphological segmentation” feature in the MorpholibJ plugin60 was used, with 

identical settings for raw and deconvolved images. Before segmentation, images were 

blurred in ImageJ using a Gaussian kernel with sigma = 1.5. A watershed tolerance of 15 

and a connectivity of 26 was used during the segmentation. Cells in both the raw data and 

successfully segmented cells in the processed images were manually counted in ImageJ.

Full width at half maximum (FWHM) calculations—All FWHM calculations were 

implemented in Matlab. For statistical measures,values were averaged from 10 simulated 

beads (Supplementary Fig. 2), 10 experimental beads (Fig. 1d, Supplementary Figs. 1, 3, 7e, 

f), or 10 microtubule filaments (Supplementary Figs. 7d and 20e).

Simulation of images with different SNRs—SNR simulations were conducted in 

Matlab. For images shown in Supplementary Fig. 2, a noise-free image was obtained by 

blurring 10 point objects with the iSIM PSF (simulated as the product of excitation and 

emission PSFs). We next added Gaussian noise (simulating the background noise of the 

camera in the absence of fluoresence) and Poisson noise (proportional to the square root of 

the signal). We defined SNR as

SNR = S / S + G2

where S is the signal defined by the average of all pixels with intensity above a threshold 

(here set as 1% of the maximum intensity of the blurred objects in the noise-free image); G 

is the Gaussian noise (set as 10 counts according to the measured standard deviation of the 

background noise of the camera). Final images shown in Supplementary Fig. 2c were then 

generated by scaling the signal level S and adding noise according to the equation above to 

achieve the target SNR. For images shown in Supplementary Fig. 6, the simulated ground 

truth image consists of spheres seeded at random location and with random size and 

intensity, generated with ImgLib261 (http://imglib2.net) and then smoothed. The ground 

truth image was then blurred with the iSIM PSF and degraded with Poisson and Gaussian 
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noise as described above. The signal level S is defined by the average intensity of all 

spheres. The normalized cross-correlation (NCC) to the ground truth was also calculated as 

a metric to quantify the quality of the deconvolved images. The NCC is defined as

NCC = 1
N ∑

j = 1

N e j − μe o j − μo
σeσo

Where N is the total number of image voxels and j is the index of each voxel; o is the ground 

truth image; e is the deconvolved image; μe, μo are the average value of e and o; and σe, σo 

are the standard deviations of e and o.

Bleach correction—For several time-lapse datasets (Figs. 2a, 2e, 2j, 4c, 4f, 

Supplementary Videos 3, 6, 17, 18), we performed standard bleaching correction using an 

ImageJ Plugin (Bleach Correction62; https://imagej.net/Bleach_Correction) with the “simple 

ratio” method.

Delining Data—In the mitochondrial dataset acquired with iSIM (Fig. 1f, Supplementary 

Fig. 4 and Supplementary Video 2), we applied notch filters in Fourier space to suppress 

slight line artifacts in the raw data, as previously described63.

Video Compression and Rendering—The zebrafish lateral line volumes shown in 

Supplementary Video 9 were median filtered with a 5 × 5 × 5 kernel in Imaris 9.2.1 

(Bitplane), and manually segmented with the ‘local contrast’ function at each time point to 

isolate the immune cell from the skin. The isolated immune cell was then further manually 

segmented by an absolute intensity threshold to remove unwanted pixels, and finally false 

colored in red. The isolated lymphocyte was recreated as an independent channel, and false 

colored in red. Supplementary Videos 10–14 were also rendered in Imaris 9.2.1 and exported 

as uncompressed avi files (usually multiple GB in size). These files were JPEG-compressed 

(down to several hundred MB) in ImageJ and then compressed again in VLC media player 

using H.264 compression. In some cases, the total image size was also slightly downsampled 

to achieve the final file size.

Neural network for deep learning

We developed the DenseDeconNet neural network (Fig. 4b, Fig. S4.1 in Supplementary 

Note 4) by adapting a densely connected network42 for 3D image data. This network 

consists of three dense blocks and uses multiple dense connections between convolutional 

layers to extract relevant features from the image volumes, learning the deblurring necessary 

for image reconstruction. All operations are implemented on 3D data, and thus can directly 

incorporate 3D information contained within the image stacks to simultaneously improve 

axial and lateral resolution. The total number of learned parameters in our DenseDeconNet 

is approximately 18 thousand. The network is optimized using the backpropagation 

algorithm with the adaptive moment estimation (Adam) optimizer64 and a starting learning 

rate which decays during the training procedure. More details about this fully convolutional 

network and associated validation tests are described in Supplementary Note 4.
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In our DenseDeconNet, we designed our objective function with three terms: the mean 

square error (MSE), the structural similarity (SSIM) index and the minimum value of the 

output (MIN). The MSE term ensures that the difference between network outputs and 

ground truths is as small as possible. The SSIM term is used to preserve the global structural 

similarity between the network output and the ground truth. We monitor the MIN of the 

output to avoid negative values.

DenseDeconNet is implemented with the Tensorflow framework version 1.4.0 and python 

version 3.5.2 in the Ubuntu 16.04.4 LTS operating system. Training was performed on a 

workstation equipped with 32 GB of memory, an Intel(R) Core (TM) i7 – 8700K, 3.70 GHz 

CPU, and two Nvidia GeForce GTX 1080 Ti GPU cards with 11 GB memory each. Kernels 

in the convolution layers were randomly initialized with a Gaussian distribution (mean= 0, 

standard deviation= 0.1). For an input image stack ~80 MB in size, fully training the 

network with 7000 iterations took ~57 h, but during the revision process for this manuscript, 

we found that training time could be significantly reduced to ~2.5 h if training was 

performed with a small cropped subvolume (~15 MB) instead of the entire volume.

We tested DenseDeconNet on 3D images of membranes and nuclei in live C. elegans 
embryos acquired with diSPIM, images of GCaMP3 expression in live C. elegans embryos 

acquired with reflective diSPIM, and images of α-actinin in live cells acquired with 

reflective lattice light-sheet (LLS) microcopy. The input data are either raw single-view 

image volumes or dual-view image volumes. The ground truth data consist of traditional R-

L joint deconvolution with 10 iterations for diSPIM data (conventional coverslips and 

reflective coverslips), and R-L deconvolution with the WB back projector with 1 iteration for 

reflective lattice light-sheet data. All data are derived from volumetric time-series (‘4D’ 

data); usually 80% of volumes were randomly selected for training and the remaining 20% 

for validation and testing. The parameters for all datasets used in deep learning are 

summarized in Table S4.1 in Supplementary Note 4. More details are shown in Fig. 4 and 

Figs. S4.2–S4.16 in Supplementary Note 4.

Supplementary Software

We attach our software as a compressed zip file, which is also freely available and 

maintained through Github. The software includes four sets of programs for implementing 

(1) WB deconvolution on a variety of different microscopes; (2) rapid registration of two 

volumetric images, e.g. for subsequent WB deconvolution; (3) registration and 

deconvolution of large cleared tissue datasets, imaged with the diSPIM; and (4) our 

convolutional neural network (‘DenseDeconNet’) for resolution recovery. Programs run in 

MATLAB except for the DenseDeconNet, which is written in Python. The zip file also 

includes a README file that explains how to run our software on a PC with specifications 

similar to ours (CPU: Intel Xeon, E5–2660-v4, 28 threads; RAM: 256 GB; GPU: Nvidia 

Quadro M6000 graphics card, 24 GB memory).

The WB deconvolution program uses MATLAB scripts for the WB single-view 

deconvolution of widefield fluorescence microscopy (Supplementary Fig. 7), confocal 

microscopy (Supplementary Fig. 7), instant SIM (Fig. 1f, Supplementary Fig. 4, 

Supplementary Video 3) and light-sheet fluorescence microscopy (Supplementary Fig. 7) 
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data; WB joint deconvolution of diSPIM data acquired on glass coverslips (Supplementary 

Fig. 8); WB additive deconvolution of quad-view light-sheet imaging data acquired on glass 

coverslips (Fig. 2e, Supplementary Video 6); WB deconvolution for data contaminated with 

a spatially variant PSF taken with a reflective, symmetric diSPIM (Fig. 4c, Supplementary 

Video 16); and WB deconvolution for data contaminated with a spatially varying PSF 

acquired with reflective lattice light-sheet microscopy (Fig. 4f, Supplementary Video 18).

The registration program includes two main MATLAB scripts for performing 12 degrees of 

freedom (DOF) affine registration: one that calls the registration function from a Dynamic-

link Library (DLL) written in C++/CUDA (Supplementary Fig. 2e, Supplementary Video 6); 

the other for conducting both registration and WB deconvolution for diSPIM data by calling 

the relevant functions from the DLL (Fig. 2a, f, Supplementary Videos 5, 7). For program 

developers, we also provide the source code for the DLL in case they wish to customize their 

own library.

The program for registration and deconvolution of large cleared tissue imaged with diSPIM 

(Fig. 3, Supplementary Videos 11–15) includes three main MATLAB scripts: the first is for 

stitching raw TIFF tiles with a graphical user interface (GUI); the second is for pre-

processing the stitched TIFF data by converting the data from stage scanning mode to the 

perspective of the coverslip; and the last script implements coarse registration, subvolume 

cropping, fine registration, WB joint deconvolution, and stitching back into a large dataset. 

Associated MATLAB scripts and MEX files are also provided for reading, writing TIFF 

stacks, phasor registration and 3D convolution in the Fourier domain.

The last program includes two Python scripts for running DenseDeconNet with Tensorflow. 

These scripts are designed for single-view input training, single-view input validation (Figs. 

S4.2, S4.3, S4.5 in Supplementary Note 4, Supplementary Video 18), dual-input training, 

and dual-input validation (Fig. 4c, f, Figs. S4.4, S4.5, S4.6 in Supplementary Note 4, 

Supplementary Videos 16, 17). Additionally, we provide a more user-friendly ImageJ plugin 

dedicated for registration and joint deconvolution (both traditional RLD and WB 

deconvolution) on diSPIM data. The plugin can process either single- or multicolor data. 

Users have the options to rotate, interpolate the two perpendicular views for obtaining 

isotropic pixels before registration, and generate 2D or 3D maximum intensity projections of 

deconvolved images.

Animal use ethical statement

Mouse and zebrafish tissue used in this study were obtained under approved Institutional 

Animal Care and use Committee protocols. Animal experiments are complied with all 

relevant ethical regulations.

Data availability

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.
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Code availability

The code used in this study is available as Supplementary Software. A code description and 

several test datasets are also included. Users can also download the code and updates from 

GitHub at: https://github.com/eguomin/regDeconProject; https://github.com/eguomin/

diSPIMFusion; https://github.com/eguomin/microImageLib.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1, An unmatched back projector reduces the number of iterations required for Richardson-
Lucy deconvolution.
a) Lateral (left) and axial (right) slices through the forward projector for instant structured 

illumination microscopy (iSIM), shown in real space (top row; PSF) or Fourier space 

(bottom row, FT(f)). b) Different back projectors, including the traditional back projector 

(transpose PSF) usually employed in RLD, a Gaussian back projector, a Butterworth back 

projector, and a Wiener-Butterworth back projector. First two rows are as in a), the last row 

shows the product of forward and backward projectors in Fourier space. Note that the 

colormap for Butterworth and Wiener-Butterworth PSFs have been adjusted to show the 

negative values (black ringing) that result with these choices, and the colormap for the 

Wiener-Butterworth Fourier transforms has been adjusted to better show the increase in 

amplitude at high spatial frequencies. c) Line profiles through the Fourier transforms in a, b, 

comparing forward projector (left), back projector (middle), and product of forward and 

backwards projectors (right). The resolution limit of iSIM is indicated by a vertical dotted 

line in the middle panel. d) The apparent size of a 100 nm bead (vertical axis, average 

FWHM of 10 beads after deconvolution) as a function of iteration number (horizontal axis) 

is compared for different back projectors. The resolution limit of iSIM is indicated with a 

horizontal dotted line. See also Supplementary Fig. 1. e) Left: Simulated object consisting of 

two parallel lines in 3D space (top) and object blurred by the iSIM (bottom). For clarity only 
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a transverse XY plane through the object is shown. Right panels: Line profiles 

corresponding to red dotted line at left, comparing the effect of original (blue) and Wiener-

Butterworth (orange) back projectors in RL deconvolution. The estimate after 20 iterations 

using the original back projector and only 1 iteration using the Wiener-Butterworth filter is 

shown in the rightmost graph. f) U2OS cells were fixed and immunolabeled to highlight 

Tomm 20, imaged with iSIM, and deconvolved. Single planes from imaging stacks are 

shown, with iteration number (it) and back projector as indicated. g) Higher magnification 

views, corresponding to the red rectangular region in f). See also Supplementary Video 1. 

Scale bars: a, b) 1 μm in top row, 1/100 nm−1 in middle, bottom rows; e) 1 μm; f) 10 μm; g) 
1 μm. Experiments were repeated on similar datasets at least 3 times for e) and f), with 

similar results obtained each time; representative data from a single experiment are shown.
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Figure 2, Improvements in deconvolution and registration accelerate the processing of multiview 
light-sheet datasets.
a) Lateral (left) and axial (right) maximum intensity projections demonstrate isotropic 

reconstructions of C. elegans embryos expressing neuronal (green, GFP-membrane marker) 

and pan-nuclear (magenta, mCherry-histone) markers. Images were captured with diSPIM, 

and deconvolution was performed using the Wiener-Butterworth (WB) filter. See also 

Supplementary Video 4. b, c) Higher magnification single slices from dotted rectangular 

regions in a), emphasizing similarity between reconstructions obtained with traditional 

Richardson-Lucy deconvolution (‘trad’) and WB deconvolution. Iterations (it) for each 

method are displayed. d) Higher magnification maximum intensity projection view of 

neuronal dynamics, indicating neurite extension and terminal cell division for progenitor 

(purple arrow), OLQVR (blue arrow) and apoptotic sister cell (red arrow). See also lower 

right schematic and Supplementary Video 5. e) WB reconstruction of Jurkat T cell 

expressing EGFP-actin, raw data captured in a quadruple-view light-sheet microscope. f) 
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Selected slices 3.7 μm from the coverslip surface. Indicated time points display fine actin 

dynamics at the cell periphery. See also Supplementary Video 6. g) Axial slice through 

sample, indicating close similarity between traditional, efficient Bayesian, and WB 

deconvolution with iteration number as indicated. h) Schematic of GPU-based 3D 

registration used for multiview fusion. Example inputs are two 3D images, referred as the 

source (S, image to be registered) and target image (T, fixed image). Maximum intensity 

projections of the input 3D images are used for preliminary alignment and to generate an 

initial transformation matrix (M0). Alternatively, a transformation matrix from a prior time 

point is used as M0. A 3D registration loop iteratively performs affine transfomations on S 

(which is kept in GPU texture memory for fast interpolation), using Powell’s method for 

updating the transformation matrix by minimizing the correlation ratio between the 

transformed source (S’) and T. i) Bar graphs showing time required to process the datasets 

(file I/O not included) in this figure (left, middle and right columns corresponding to 

datasets in a, e and j, respectively, with voxel count as indicated) conventionally and via our 

new methods. The conventional registration method was performed using an existing 

MIPAV plugin (see Methods) using CPUs while the new registration method was performed 

using GPUs. Both deconvolution methods were performed with GPUs. Note log scale on 

ordinate, and that the listed times apply for the entire time series in each case (the total time 

for the conventional registration method on the zebrafish dataset was extrapolated from the 

time required to register 10 time points). j) Representative lateral (left, maximum intensity 

projection) and axial (right, single plane corresponding to white arrowheads in left panel) 

images showing 32-hour zebrafish embryo expressing Lyn-eGFP under the control of the 

ClaudinB promoter, marking cell boundaries within and outside the lateral line primordium. 

Images were captured with diSPIM, Wiener-Butterworth reconstructions are shown. Images 

are selected from the volume 30 minutes into the acquisition, see also Supplementary Video 

7. k, l) Higher magnification views of dotted rectangles in j), emphasizing improvement in 

resolving vesicles (red, orange arrows) and cell boundaries (green, blue arrows) with WB 

deconvolution compared to raw data. Note that k, l are rotated 90 degrees relative to j. m) 

Higher magnification view of leading edge of lateral line, 97 minute into the acquisition. n) 
Higher magnification view of dotted rectangular region in m), emphasizing immune cell 

(yellow arrow) migration between surrounding skin cells. White arrowheads are provided to 

give context and the white arrows point towards skin surface and coverslip. Top row: 

maximum intensity projection of lateral view, bottom row: single plane, axial view. See also 

Supplementary Video 8. o) Lateral slice through primordium, with automatically segmented 

cell boundaries marked in red. See also Supplementary Video 9. p) Higher magnification 

view of dotted rectangle in o), showing differential segmentation with raw single-view data 

(green, left) vs. deconvolved data (red, middle). Overlay at right shows common 

segmentations (yellow) vs. segmentations found only in the deconvolved data (red). Note 

that ‘z’ coordinate in j-p is defined normal to the coverslip surface. Scale bars: 10 μm in a), 
m), o) and p); 5 μm in all other panels. Experiments were repeated on similar datasets at 

least 3 times for a)-d), 2 times for e)-g) and j)-p), with similar results obtained each time; 

representative data from a single experiment are shown.
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Fig. 3, Imaging mm-scale cleared tissue volumes with isotropic micron-scale spatial resolution.
a) 4 × 2 × 0.5 mm3 volume of brain from fixed and iDISCO+-cleared V1b mouse, 

immunolabeled with Alexa Fluor 555 secondary antibody against tdTomato primary 

antibody, imaged with cleared tissue diSPIM, and reconstructed after dual-view registration 

and Wiener-Butterworth (WB) deconvolution. Progressively higher resolution subvolumes 

are indicated, with line profiles indicating 1.3 μm neurite FWHM (yellow arrowheads) and 

1.9 μm separation between neurites (blue arrowheads). See also Supplementary Video 11. b) 

Lateral/axial cross sections from region indicated with white arrow in a), emphasizing the 

higher resolution obtained with WB deconvolution compared to raw single-view data. c) 

Volume renderings of region displayed in b), again comparing raw data to deconvolution. 

Manually traced neurites are shown in bottom row; colored arrows indicate neurites traced in 

deconvolution that are obscured in raw single-view data. d) 2.1 × 2.5 × 1.5 mm3 intestinal 

volume from fixed and iDISCO-cleared E18.5 mouse; labeled with DAPI (red), Alexa-647 
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conjugated secondary antibody against Tomm20 primary antibody (green), Alexa-488 

conjugated secondary antibody against PECAM-1 primary antibody (yellow), and 

Alexa-568 conjugated secondary antibody against α-Tubulin primary antibody (purple); 

imaged with cleared tissue diSPIM; and reconstructed after dual-view registration and WB 

deconvolution. See also Supplementary Video 12. i: Single plane demarcated by dotted 

white rectangular region at left, showing 4-color cross section and higher magnification 

dual-color views highlighting hollow blood vessel (white arrow) and mitochondria 

surrounding individual nuclei (orange arrows). ii: Subvolume demarcated by dotted black 

parallelepiped above, illustrating different perspectives of vascular plexus supplying 

submucosa (blue arrow) and mucosa (white arrow) of intestine. iii: Different perspectives of 

four-color subvolume demarcated by dotted black parallelepiped above and insets 1–4, 

highlighting hierarchical organization within intestine, e.g., submucosa (blue arrow) and 

mucosa (white arrow) (inset 2); mitochondrially-enriched regions that support the high 

energy demand and constant cellular renewal within the mucosa (inset 3); outer intestinal 

wall with dense alpha-tubulin staining (inset 4). See also Supplementary Fig. 19. e) Bar 

graphs showing the registration and deconvolution time required for post-processing datasets 

(image sizes in a) and d) as indicated), comparing previous (blue) and new (orange, 100-fold 

reduction in time) post-processing methods. Note that times for previous method are 

estimated (see Methods for further detail) and the log scale on the ordinate axes. Scale bars: 

a) 500 μm, 100 μm, 30 μm and 10 μm for progressively higher magnifications; b) and c) 30 

μm; d) top left 300 μm, i: 300 μm and 30 μm for insets, ii: 200 μm, iii: 200 μm and 100 μm 

for insets. See also Supplementary Videos 13–15. Experiments were repeated on similar 

datasets at least 3 times, with similar results obtained each time; representative data from a 

single experiment are shown.
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Figure 4, Deep learning massively accelerates deconvolution with a spatially varying PSF.
a) Reflective imaging geometries for diSPIM (top) and lattice light-sheet (LLS, bottom) 

microscope. In both cases, the sample is deposited on a reflective coverslip (mirror), which 

produces additional views of the specimen. b) Schematic architecture of our convolutional 

neural network (‘DenseDeconNet’) used for deep learning. Inputs are concatenated 

(‘Concat’) image volumes (each containing width (w) × depth (d) × height (h) voxels) 

obtained from the microscope, which may contain multiple views A, ℬ  of the specimen. 

Three ‘dense blocks’ extract feature maps (circles) from the network input, eventually 

learning to reverse the spatially varying blurring imparted by the microscope by minimizing 

the difference (loss function) between the network output and the ground truth 

reconstruction via back propagation. Conv: convolution; BN: batch normalization; ReLu: 

rectified linear unit. Circles within each dense block unit show the number of feature maps 

after each convolutional layer, colored arrows within each dense block show the 
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concatenation of successive layers in the network. See Supplementary Note 4 for more 

details on the network architecture. c) Three-fold C. elegans embryos expressing GCaMP3 

from a myo-3 promoter were imaged in the reflective diSPIM (150 volumes, each acquired 

every 350 ms). Maximum intensity projections of raw data (left), Wiener-Butterworth 

deconvolution (middle), and deep learning (right) reconstruction are shown for lateral (top) 

and axial (bottom) views. See also Supplementary Video 16. d) U2OS cells were deposited 

on glass coverslips, fixed, the microtubules immunolabeled with anti-alpha tubulin 

conjugated with Alexa Fluor 488, and imaged with LLS microscopy. Lateral maximum 

intensity projection (left) and axial slice (corresponding to yellow dotted line at left) are 

shown. e) U2OS cells were deposited on reflective coverslips and fixed, immunolabeled, and 

imaged as in d). Lateral maximum intensity projection (left) and axial slice (corresponding 

to yellow dotted line at left) are shown. Reconstructions in d, e) were performed using 

traditional deconvolution with a spatially varying PSF. See also Supplementary Fig. 20. f) 
U2OS cells expressing mEmerald-α-Actinin were deposited on reflective coverslips and 

imaged (100 volumes, each acquired every 2.5 s) in the LLS microscope. Reconstructions 

were performed via Wiener-Butterworth deconvolution (top) and deep learning (bottom). 

Lateral maximum intensity projection (left) and axial slice (right, corresponding to yellow 

dotted line at left) are shown. See also Supplementary Video 17. g) Higher magnification 

view of red rectangular region, emphasizing the dynamics of α–actinin near cell boundary 

(yellow arrows). Bar graphs showing time required for processing a single volume using 

traditional deconvolution with spatially varying PSF, deconvolution via the Wiener-

Butterworth filter, and deep learning for h) dataset shown in c) and i) dataset shown in f). 
Note log scale on ordinate. Note the time cost of file I/O is not included in h) and i). Scale 

bars: 5 μm in all panels except 1 μm in zy views in d, e). For c)-i), traditional and Wiener-

Butterworth deconvolution experiments were repeated on similar datasets at least 2 times, 

with similar results obtained each time; the deep learning model was trained on one time-

lapse dataset and applied to multiple datasets (N>=2), with similar results obtained for each 

dataset.
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