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Intestinal miRNAs regulated 
in response to dietary lipids
Judit Gil‑Zamorano1, João Tomé‑Carneiro2, María‑Carmen Lopez de las Hazas1, 
Lorena del Pozo‑Acebo1, M. Carmen Crespo2, Diego Gómez‑Coronado3,4, Luis A. Chapado1, 
Emilio Herrera5, María‑Jesús Latasa1, María Belén Ruiz‑Roso1, Mónica Castro‑Camarero6, 
Olivier Briand7 & Alberto Dávalos1*

The role of miRNAs in intestinal lipid metabolism is poorly described. The small intestine is constantly 
exposed to high amounts of dietary lipids, and it is under conditions of stress that the functions 
of miRNAs become especially pronounced. Approaches consisting in either a chronic exposure to 
cholesterol and triglyceride rich diets (for several days or weeks) or an acute lipid challenge were 
employed in the search for intestinal miRNAs with a potential role in lipid metabolism regulation. 
According to our results, changes in miRNA expression in response to fat ingestion are dependent 
on factors such as time upon exposure, gender and small intestine section. Classic and recent 
intestinal in vitro models (i.e. differentiated Caco-2 cells and murine organoids) partially mirror 
miRNA modulation in response to lipid challenges in vivo. Moreover, intestinal miRNAs might play a 
role in triglyceride absorption and produce changes in lipid accumulation in intestinal tissues as seen 
in a generated intestinal Dicer1-deletion murine model. Overall, despite some variability between 
the different experimental cohorts and in vitro models, results show that some miRNAs analysed 
here are modulated in response to dietary lipids, hence likely to participate in the regulation of lipid 
metabolism, and call for further research.

The intestine plays an important regulatory role in whole-body lipid homeostasis1. In the intestine, cholesterol 
and triglycerides are synthesized endogenously, and dietary lipids are absorbed and packed into chylomicrons for 
release into circulation in a multifactorial-dependent regulation2. Dysregulation of this process can contribute 
to dyslipidemias which are characteristic of metabolic disorders and cardiovascular disease3. Despite the great 
advances made on the prevention and treatment of dyslipidemias, the development of therapies with enhanced 
efficacy is still needed4.

MicroRNAs (miRNAs) are 18–24 nucleotide-long key elements in gene expression modulation at the post-
transcriptional level, exerting important biological effects both intra- and extra-cellularly. miRNAs usually bind 
to several target mRNAs and one mRNA transcript can be targeted by multiple miRNAs5. Moreover, miRNAs 
are important for the maintenance of homeostatic conditions and their dysregulation may reflect pathophysi-
ological changes6. Due to the relevant role miRNAs have in these processes their use as potential therapeutic 
tools in several diseases is being investigated7. Increasing evidence suggests that miRNAs can be therapeutically 
modulated by the diet8.

The processing of precursor miRNAs to form most mature miRNAs is indispensably dependent on the RNase 
III endonuclease Dicer9. Dicer deletion in cell/tissue-type specific studies has shown important roles for miRNAs 
in vascular development and atherosclerosis10–12, neurological development and functionality13, and obesity14, 
among others. The role of miRNAs in the regulation of cholesterol and lipid metabolism in different tissues has 
been established previously; however, their role in the intestine is much less described. Thus, further clarifica-
tion is needed regarding the miRNAs acting in the intestinal compartment, along with their target genes and 
the regulatory networks that are affected.
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Tissue specific Dicer KO models have been used in some studies to assess the importance of miRNAs in 
intestinal homeostasis15–18, as well as their involvement in lipid metabolism19–21. While the primary role of 
miRNAs seems to be the ‘fine-tuning’ of gene expression, it is under conditions of stress that the functions of 
miRNAs become especially pronounced, underscoring their roles in disease22. Modern dietary patterns, with 
highly palatable and energetic foods, rich in simple carbohydrates and lipids, contribute to dietary excess-related 
diseases. In this context, the intestine must cope with the high amount of lipid consumed, which might repre-
sent a “stress condition”. Therefore, it is likely that exposing the intestines to dietary lipids will underscore novel 
miRNAs associated with the regulation of different aspects of intestinal lipid metabolism. Given the above, the 
purpose of the present study was to search for novel miRNAs with a potentially relevant role in intestinal lipid 
metabolism. Moreover, an intestine-specific Dicer1 KO mouse model was used to address the importance of 
intestinal miRNAs in gut lipid metabolism.

Results
Screening for intestinal miRNAs responsive to acute and chronic lipid challenges.  Since stress-
ful conditions, such as dietary lipid challenges, can underscore miRNAs function, three sets of experimental 
settings (one acute and two chronic) were carried out with male C57BL/6 mice. In the case of the acute study, 
the expression of miRNAs in the small intestine was investigated 2 h after the administration of a sole dose of 
a cholesterol-enriched olive oil solution. On the other hand, chronic approaches involved the consumption of 
HFD for 4 days or 20 weeks, followed by the assessment of miRNA expression in the small intestine in each case. 
Numerous differently expressed miRNAs were found in acute (Fig. 1a, Supplementary Table S1), 4 days (Fig. 1b, 
Supplementary Table S2) and 20 weeks (Fig. 1c, Supplementary Table S3) studies.

Next, a list of promising miRNAs as important role players in intestinal lipid metabolism was selected for 
validation. One selection criterium consisted in miRNAs common to at least 2 experimental settings (Fig. 1d). 
Among the differentially expressed miRNAs found, mmu-miR-218-2-3p was common to all three experimen-
tal settings. Four miRNAs were shared between the chronic consumption studies, namely mmu‐miR‐147‐3p, 
‐138‐1‐3p, ‐1894‐3p and ‐666‐3p. In addition, the acute experiment showed mutual miRNAs with 20 weeks 
(mmu‐miR‐449c‐5p, ‐1894‐5p and ‐217‐5p) and 4 days (mmu‐miR‐879‐3p, ‐711, ‐146b‐3p, ‐216b‐5p, ‐212‐3p, 

Figure 1.   Differentially expressed miRNAs found (a) 2 h after an oral administration of a cholesterol-enriched 
(40 mg) olive oil (250 µL) solution (acute), (b) 4 days after the consumption of a high-fat diet (HFD), and (c) 
20 weeks after HFD, in the small intestine (whole) of male C57BL/6 mice (n ≥ 4 per group). Up- and down-
regulated miRNAs are shown as red and blue dots, respectively. (d) Venn diagram represents the number of 
common differently expressed miRNAs in acute, 4 days and 20 weeks studies. mmu-miR-218-2-3p was common 
among the three studies; mmu-miR-147-3p, -138-1-3p, -1894-3p and -666-3p were common between the two 
chronic consumption studies; mmu-miR-449c-5p, -1894‐5p and ‐217‐5p were shared by the 20 weeks and acute 
experiments; mmu‐miR‐879‐3p, ‐711, ‐146b‐3p, ‐216b‐5p, ‐212‐3p, ‐216a‐5p and ‐291a-5p were common to 
the 4 days and acute studies. (e) List of 35 miRNAs selected for further validation.
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‐216a‐5p and ‐291a-5p) experiments. Additionally, miRNAs showing the highest fold changes in each study were 
also selected for validation. Furthermore, any miRNAs without previously reported human counterparts were 
excluded. Finally, 35 miRNAs were selected for further validation (Fig. 1e).

Intestinal miRNAs expression in response to dietary lipids is influenced by different fac‑
tors.  Time‑course response upon exposure to dietary lipids.  Some of the previously selected miRNAs (see 
above) may play a role in the acute intestinal response to dietary lipids. Thus, a kinetic study of up to 4 h upon 
the exposure to a lipid challenge [cholesterol-enriched (40 mg) olive oil (250 µL)] was performed to assess if and 
how miRNA levels of expression change with time in the small intestine. Upon the lipid challenge, 9 miRNAs 
showed statistically significant expression changes in, at least, one time point compared to basal levels (t = 0) 
(Fig. 2a), whereas the other 26 did not show significant changes (Supplementary Fig. S1).

Sex influences intestinal miRNAs expression in response to dietary lipids.  Selected miRNAs were evaluated in 
a cohort of WT mice (n > 20 per group) to assess sex influence in intestinal miRNAs expression in the small 
intestine in response to dietary lipids. A large variability was found when intestinal miRNAs expression data 
was analysed without gender separation (data not shown). However, when the analysis was divided by gender, 
a third of miRNAs (miR-218-2-3p, -544-3p, -129-2-3p and -138-1-3p) showed statistically significant differ-
ences of expression between male and female controls (Fig. 2b). In addition, significant differences were seen 
for miR-218-2-3p, -208b-3p, -129-2-3p and -138-1-3p in female mice fed with a HFD compared to controls, 
whereas miRNAs levels were not significantly affected in males. Overall, results suggest that, in response to a 
HFD, intestinal miRNAs levels are influenced by animal gender and that the changes in the expression of certain 
miRNAs are enhanced in females.

miRNAs levels found in the small intestine of HFD‑fed mice vary depending on the intestinal segment ana‑
lysed.  The small intestine has certain polarity along the whole tissue; thus, it is conceivable that miRNA expres-
sion is not identical between the different sections of the small intestine. As seen above, changes in miRNAs 
levels as a response to a lipid challenge may occur at specific time points and be transient (see first sub-section). 
Moreover, gender differences seem to influence miRNA expression in response to dietary lipids (see previous 
sub-section). Given the above, the expression levels of selected miRNAs were assessed, at different time points, 
in the duodenum, jejunum and ileum of mice (n ≥ 8 per group) receiving an oral lipid challenge, and a gender-
divided analysis was conducted. With the purpose of widening the scope of examination, colon and liver miRNA 
expression was also assessed.

As expected, miRNAs expression changes depended, at least partially, on small intestine section, gender and 
time after exposure to the lipid challenge (Fig. 2c, Supplementary Fig. S2). For example, in males, miR-218-2-3p 
expression in the duodenum and jejunum is significantly increased at 2 h upon exposure, returning to basal 
values after 4 h, whereas expression levels remain constant in females. Interestingly, the expression patterns of 
this miRNA in ileum seem to be reversed in what comes to gender, i.e. there is a significantly increase at 2 h upon 
exposure in females, which returns to basal levels after 4 h, whereas expression levels remain constant in males. 
Other examples worth referring include miR-129–2-3p, -138-1-3p and -147-3p. In males, 2 h upon the lipid chal-
lenge miR-138-1-3p levels were found to be significantly raised compared to control in jejunum. At 4 h post-lipid 
challenge, however, dropped compared to control, reaching statistical significance in the duodenum of males 
and in the ileum of females. miR-129-2-3p levels were found to be raised compared to control in duodenum of 
females, 2 h upon the lipid challenge. Yet, at 4 h post-lipid challenge, miR-129-2-3p levels dropped significantly 
in the jejunum and ileum of females. Finally, miR-147-3p levels were found to be raised in duodenum (reaching 
statistical significance) and jejunum in males, 2 h after the lipid challenge. However, 4 h post-lipid challenge 
levels dropped to control levels.

In response to the lipid challenge, the expression of some miRNAs was also significantly altered in a gender- 
and time-dependent way both in liver (miR-30d-5p, -129-2-3p, -147-3p and -202-5p) and colon (miR-30d-5p, 
-129-2-3p, -202-5p, -216b-5p-3p, -217-5p and -218-2-3p) (Fig. 2c, Supplementary Fig. S3).

In vitro intestinal models partially mirror miRNA expression changes in response to lipid chal‑
lenges in vivo.  Caco‑2 as a classic model of the intestinal epithelium.  First, small RNA-Seq was used to 
compare miRNA expression between undifferentiated and differentiated Caco-2 cells (Fig.  3a,b). Although, 
some miRNAs characteristically expressed in the intestine, such as the let-7 family, were not present in either 
case, the reads of other typical intestinal miRNAs (miR-192, -215, -194, -30d, -148a-3p and -21-5p) in differen-
tiated Caco-2 cells were similar to the ones found in the small intestine. Next, differentiated Caco-2 cells were 
exposed to DMEM (controls), empty micelles (EM) or postprandial lipid micelles (PPM), for 24 h. As was the 
case for enteroids (see below) expression levels of selected miRNAs were assessed to confirm their response upon 
the exposure to lipid micelles (Fig. 3d). Statistical significance between control and PPM groups was seen for 
miR-129-2-3p and miR-138-1-3p. In the latter case, significantly statistical differences were also present between 
PPM and EM groups.

Enteroids as a recent model of the intestinal epithelium.  Here, enteroids were exposed to postprandial lipid 
micelles for 24 h and small RNAs were analysed by RNA-seq. Highly expressed miRNAs included miR-192, miR-
215, miR-148 and the let-7 family (Fig. 3c), which have all been reported to be characteristic of the small intes-
tine. Previous work in our lab, showed that 3 miRNAs responded significantly (p < 0.05) to the lipid challenge 
(PPM) compared to controls, namely mmu-miR-30d-5p, -15a-5p and -218-5p (unpublished data). Thus, here, 
these miRNAs were assessed in conjunction with the other miRNAs showing significant differential expression 
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Figure 2.   (a) Time-course (30, 60, 120 and 240 min) expression of miRNAs showing significant differences 
in response to an oral lipid challenge in male C57BL/6 mice. Data are shown as mean ± SD; n ≥ 7. *p < 0.05, 
**p < 0.001, ***p < 0.0001, compared with t = 0 (control). (b) Relative expression of miRNAs determined 2 h after 
an oral lipid challenge given orally to male and female wild-type mice (grey), compared to controls (white); 
n ≥ 10 per group. Two-way ANOVA was followed by Bonferroni’s post-hoc tests for multiple comparisons. 
*p < 0.05, **p < 0.01, ***p < 0.001. (c) Heatmap of differentially expressed intestinal and hepatic miRNAs 2 and 
4 h after an oral lipid challenge compared to controls (male mice); n ≥ 8 per group. Up- and down-regulated 
miRNAs compared to controls are represented in red and green, respectively.
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Figure 3.   The twenty most abundant miRNAs, represented as reads per million, found in undifferentiated (a) 
and differentiated (b) Caco-2 cells, and in enteroids (isolated from male and female C57BL/6 mice) exposed 
to postprandial micelles (PPM) for 24 h (c). (d) Relative expression levels of selected miRNAs in differentiated 
Caco-2 cells exposed to DMEM (controls), empty micelles (EM) or PPM, for 24 h; n = 6 per group. One-way 
ANOVA was followed by Bonferroni’s post-hoc tests for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. 
(e) Relative expression of selected miRNAs in intestinal organoids exposed to DMEM (controls; white), EM 
(grey) or PPM (dark grey), for 24 h; n = 4 per group. Two-way ANOVA was followed by Bonferroni’s post-hoc 
tests for multiple comparisons. *p < 0.05, **p < 0.01. (f,g) Light microscope representative images of mature 
enteroids treated with empty (f) or post-prandial (g) micelles (for each case, image on the left (10 ×) is zoomed 
on the right (20 ×)).
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in response to an acute lipid challenge (see previous section). Interestingly, significant gender-specific expression 
patterns were found for miR-15a-5p, -30d-5p and -147-3p in response to the lipid challenge (Fig. 3e).

Bioinformatic analysis of miRNAs targets.  To assess possible targets and pathways involving the 12 
selected miRNAs, a bioinformatics analysis was performed. One hundred and eighty different gene targets were 
obtained, focusing only on experimentally verified miRNA-target interactions (using miRTarBase entries that 
have been validated experimentally). A set of pathways in which miRNAs may be involved was identified by 
gene set enrichment analysis (GSEA) (Fig. 4, Supplementary Table S4). For example, according to the Kyoto 
Encyclopedia of Genes and Genomes (KEEG), significant pathways identified included cell cycle (hsa04110), 
JAK-STAT signalling pathway (hsa04630), microRNAs in cancer (hsa05206) and transcriptional misregulation 
in cancer (hsa05202). As for the Gene Ontology (GO) enrichment analysis the following identified pathways 

Figure 4.   CIRCOS graphical representation of relationships among each selected miRNA with their validated 
target genes and the pathways involved. Different color lines relate each miRNA to genes for which there is an 
experimentally validated interaction. Lines between each pathway (green for KEGG and grey for GO pathways) 
and a miRNA imply a relationship based on the latter target genes. The different colour gradation in the pathway 
lines (green and grey for KEGG and GO, respectively) indicate the adjusted p-value: dark (p-value < 0.05), 
medium (p-value 0.05–0.01) and light (p-value > 0.01).
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were significantly affected: positive regulation of cyclin-dependent protein serine-threonine kinase activity (GO: 
0045737), protein folding (GO: 0006457); cell cycle (GO: 0007049), Wnt signalling pathway (GO: 0016055), G1S 
transition of mitotic cell cycle (GO: 0000082), ER to Golgi vesicle-mediated transport (GO: 0006888), protein 
phosphorylation (GO: 0006468) and cellular response to DNA damage stimulus (GO: 0006974).

Loss of intestinal Dicer1 influences lipid absorption.  Since loss of Dicer studies can provide valu-
able information regarding the potential relevance of miRNAs in intestinal lipid metabolism, here, an intestinal 
Dicer1 KO mice model was first generated. A significant difference in mean weight was seen between WT and 
KO males in favor of the former (Fig. 5a), whereas females showed non-significant weight differences between 
groups. In addition, 2 h after the oral administration of a lipid challenge, triglyceride levels were significantly 
lower in KO mice compared to WT, both in males and females (Fig. 5b), whereas cholesterol levels remained 
constant in both genotypes and genders. In control conditions, Dicer1 KO mice hardly present VLDL, whereas 
after the lipid challenge, they show VLDL with lower triglyceride (TG) content and HDL with lower cholesterol 
content compared to WT mice (Fig. 5c).

Changes in lipid accumulation in animals that lack intestinal Dicer1.  Lipid accumulation was ana-
lysed in different sections of the small intestine of Dicer1 deficient mice, using colon and liver as controls (Fig. 6). 

Figure 5.   (a) Males (squares) and females (circles) weight (g) for WT (Dicer1loxP/loxP, Vil-cre(−)) and KO 
(Dicer1loxP/loxP, Vil-cre(+)) mice; n ≥ 15 per group. Corresponding means and SD bars are shown for each group. 
Two-way ANOVA was followed by Bonferroni’s post-hoc tests for multiple comparisons. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. (b) Plasma triglycerides and cholesterol levels 2 h after an oral administration of 
a cholesterol-enriched olive oil solution (grey), compared to controls (water; white); n ≥ 10 per group. Data 
are represented as mean ± SD. Two-way ANOVA was followed by Bonferroni’s post-hoc tests for multiple 
comparisons. p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (c) Plasma cholesterol (red) and triglycerides 
(blue) FPLC profile in WT and Dicer1 KO mice submitted to an oral lipid challenge or water (controls), n = 4 per 
group.
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In all three sections of the small intestine, triglyceride levels were lower 2 h after the lipid challenge (Fig. 6a) in 
Dicer1 KO mice compared to their control littermates. By contrast, 4 h post lipid challenge, increased levels of 
triglycerides were found in the duodenum. Moreover, 2 h post challenge, lower levels of cholesterol were found 
in the duodenum and jejunum of Dicer1 KO mice (Fig. 6b). Statistically significant changes between genotypes 
were not found in phospholipid levels (Supplementary Fig. S4). Overall, data suggest that the loss of Dicer1 in 

Figure 6.   Intestinal and hepatic triglyceride (a) and cholesterol (b) levels (mg/g) found in WT (Dicer1loxP/loxP, 
Vil-cre(−)) and KO (Dicer1loxP/loxP, Vil-cre(+)) mice, 2 and 4 h after the administration of cholesterol-enriched 
olive oil (black) or water (grey); n ≥ 9. Data are represented as mean ± SD. Two-way ANOVA was followed by 
Bonferroni’s post-hoc tests for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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the intestine may induce a delay in lipid absorption, as observed at 2 h post challenge, and an increase in lipid 
accumulation, as detected 4 h post challenge, in specific parts of the intestine.

Discussion
miRNAs are involved in a multitude of cellular processes and intestinal responses may also be reflected in changes 
in the profile of miRNAs. Many studies have already demonstrated the importance of microRNAs in the main-
tenance of intestinal homeostasis, affecting the architecture and functionality of the epithelium itself and also 
the interaction/communication between the immune system and the microbiota23. The intestinal microbiome 
can influence host metabolic phenotypes and miRNAs are involved in the host gene regulation produced by the 
microbiota24,25. Intestinal epithelial cells, Paneth cells and globet cells are the main sources of fecal miRNAs, 
which can affect bacterial growth and the composition of the intestinal microbiota16. Furthermore, miRNAs have 
been described to regulate lipid metabolism in different tissues, including adipose, liver, brain or the vasculature. 
However, their role in intestinal lipid metabolism is poorly described. Here, the focus was set on the regulation 
of microRNAs in the intestine as a fundamental organ in lipid absorption and metabolism.

The functions of miRNAs become especially pronounced under stress conditions. The small intestine is 
constantly exposed to high amounts of dietary lipids, which could be considered as a stress condition. In this 
sense, alterations in the intestinal epithelium were already observed after 3 days of HFD, as saturated fats result 
in increased intestinal villi height in the jejunum and ileum of animals who underwent intestinal resection26. Fat 
can influence nutrient absorption and the protective function of the mucosal barrier. Adaptive changes occur in 
mice enterocytes in short periods of time, modulating gene expression related to glucose and lipid metabolism 
in the duodenum and jejunum27. Also, the intestines of animals fed with HFD, for 2, 4 and 8 weeks, show a 
differential expression of genes that intervene in lipid metabolism, cell cycle and inflammation. Furthermore, 
a differential expression in genes associated with PPARα regulated lipid metabolism genes was observed with 
20–30% fat diets, whereas in diets with 45% fat differentially expressed genes were related to alterations in cell 
cycle and immunity28,29.

Here, the profile of intestinal miRNAs was investigated in murine models submitted to a stress condition 
caused by dietary lipid challenges in the form of HFD (chronic) or acute high fat solution administrations by 
oral gavage. In a previous study, we explored how the reduction in miRNA-mediated regulation, observed in 
the same Dicer1 KO model used here, could affect intestinal lipid metabolism after an acute lipid challenge, by 
investigating cholesterol and lipid metabolism-related genes potentially modulated by intestinal miRNAs21. In 
that study, KO mice showed a decreased expression of markers related to the integrity of the intestinal epithelium, 
which could be related to an alteration in lipid metabolism and the process of ketogenesis. Hmgcs2, Acat1 and 
Orl1 gene expression was significantly affected in Dicer1 KO mice compared to WT and this was accompanied by 
the repression of five miRNAs capable of targeting all three genes. Here, the list of differently expressed miRNAs, 
common to both acute and chronic experimental settings, included none of these miRNAs. In addition, the kinet-
ics accompanying the expression changes observed and their potential gender- and intestinal section- depend-
ence were also explored here. Importantly, genetic analyses were complemented with lipid analysis, including 
the determination of plasma lipid and lipoprotein profiles and intestinal and hepatic lipid levels.

Several differentially expressed miRNAs were found, yet miR-218-2-3p was the single miRNA common to 
both chronic and acute experimental settings. miR-218-2-3p expression was significantly increased at 2 h upon 
exposure to a lipid challenge in the duodenum and jejunum of male mice, and in the ileum of females. Recently, 
via loss and gain of function experiments, Bresciani et al. showed that miRNA-218 targets the lipin-1 gene altering 
its functionality30. Members of the Lipin family have a critical role in the regulation of intestinal lipid homeostasis 
and chylomicron production31. Nevertheless, the lipin gene family was not found amongst the list of genes with 
validated interactions (3′ UTR and binding probability > 0.95) for the selected miRNAs.

The reduction seen in the levels of miR-138-1-3p in the 20 weeks study and in the duodenum of males and 
ileum of females 4 h post-lipid challenge compared to controls is in line with the results seen in Caco-2 cells 
after 24 h of exposure to postprandial micelles. On the other hand, miR-138-1-3p levels were increased in the 
4 days study, as well as in females and in the jejunum of males, 2 h upon the lipid challenge. miR‐138 has been 
reported to modulate osteogenic mesenchymal stem cell differentiation32 and its ectopic expression increases 
the generation of pluripotent stem cells through a decrease in p5333. To the best of our knowledge, it has not 
been associated to lipid metabolism.

As for miR-129-2-3p, a reduction in its levels was seen in the 4 days experiment and kinetics studies, as well as 
in the jejunum and ileum of female mice and in the colon of both genders, which also agrees with what was seen 
in Caco-2 cells. However, 2 h upon the lipid challenge, a statistically significant rise in the levels of miR-129-2-3p 
compared to controls was found in the duodenum of females. As for miR-138, most literature on miR‐129‐2‐3p 
refers to oncology studies. In addition, miR‐129‐2‐3p was associated with the risk of ischemic stroke34 and it has 
also been suggested that it is related with inflammatory processes35.

Compared to controls, the levels of miR-147-3p were found to be raised after the lipid challenge both in 
enteroids isolated from male mice and in the duodenum of males. However, this miR showed a decrease in 
expression levels in the kinetics experiment and in the 20 weeks and 4 days studies (compared to controls). 
MiR‐147 has mainly been described as an anti-inflammatory miR36,37 and has also been reported in oncology 
research38,39. To the best of our knowledge it has never been associated with a potential role in the intestinal 
regulation of lipid metabolism.

The integrative analysis of the studied miRNAs shows that the possible target genes of these miRNAs are 
related in a series of pathways. These pathways are involved in the maintenance of intestinal homeostasis, adaptive 
changes and/or inflammatory processes. This, as previously noted, would occur in response to a high-fat diet. For 
example, it is known that Wnt signalling components regulate a complex set of cellular responses by activating 
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genes, ion channels and cytoskeletal rearrangements that regulate polarity, proliferation and maturation of cells 
in the gut. Therefore, the Wnt signalling pathway is critical to establish and maintain the proliferative capacity. 
This allows the self-renewal of intestinal cells but is also involved in carcinogenesis40. In the same way, intestinal 
cell kinase (serine/threonine protein kinase) plays an important role in the proliferation and differentiation of 
intestinal epithelial cells41. Another pathway pointed out is JAK-STAT signalling pathway, which regulates the 
transcription of numerous genes and has been implicated in the pathogenesis of several diseases, including 
inflammatory bowel disease42. In addition, it has also been linked to the response of intestinal enterocytes to a 
high-fat diet, which triggers a transient activation of intestinal stem cells43.

Historically, in vivo experiments have largely been performed on males to avoid complications related to 
feminine hormonal cycles, estrous cycle stages, etc., which has led to a sex-biased imbalance in research44. 
Genetic and transcriptional mechanisms, and regulatory pathways underlying sexual differentiation result in 
developmental and progression differences in various pathologies, as well as in response to treatment. There 
are also major sex differences in lipid and lipoprotein metabolism45–47. Interestingly, it has been shown that the 
estrogen receptor modulates the processing of certain miRNAs48. Other studies show that the expression profile 
of miRNAs in adipose tissue is influenced by gonadal hormones and that they also change in response to HFD. 
Thus, these different expression profiles may contribute to variations in gene expression in adipose tissue due 
to sex, as well as in the development of adipose tissue and diet-induced obesity49. Here, variability was lessened 
when gender was taken into consideration in the analysis of postprandial intestinal miRNA expression levels in 
the kinetic study, reinforcing the hypothesis that there are sex-based differences in the modulation of miRNA 
levels in response to the ingestion dietary lipids in these mice.

Dicer1 disrupted mice have induced lipid accumulation in the small intestine50 and a severely impaired ability 
to process dietary triglycerides15. Here, Dicer1 KO mice showed a decreased expression of markers related to the 
maintenance of the identity and maturation state of the intestine, such as Lgr5, Ki67, lysozyme C1 and mucin 
221. This could help explain the disorganization and alteration of the intestinal barrier described by McKenna 
et al., which would contribute to the decreased weight in KO mice compared to their litter controls. Nevertheless, 
in the study by McKenna et al. the smaller size KO animals compared to their litter controls became indistin-
guishable at 7 weeks of age, whereas the difference in weight seen here was still significant in adult animals. This 
discrepancy could be due to the gender-separated analysis performed in this study. Indeed, statistical significance 
was lost when the analysis was performed without gender separation (p value = 0.0921). Regarding total plasma 
lipids, there were no significant differences between WT and KO mice at baseline, which is in agreement the 
study by McKenna et al.15. However, plasma triglyceride levels were lower in KO mice after the oral challenge, 
independently of gender, which seems to be in line with the lack of proper dietary TG processing in Dicer1 defi-
cient mice reported by McKenna et al. However, FPLC results indicate a slight difference in lipidic distribution 
in lipoproteins, with decreased cholesterol and TG levels in HDL and in VLDL, respectively, both at baseline 
and postprandially. This contradiction between the total levels and the profile of individual lipoproteins, would 
indicate an underlying mechanism, probably related to the lack of miRNAs, which affects the distribution of lipids 
between the different lipoproteins and postprandially. Whether or not this disparity is influenced by the action of 
intestinal miRNAs is unknown and deserves further attention. Gut lipid data also appear to support that proper 
TG processing is lacking in mutants and the smaller increase in TG levels (compared to WT) seen 2 h after the 
lipid challenge may be due to an absorption problem. Since TG levels normalize with respect to WT animals 
after 4 h, this could indicate there is a delay in dietary lipid absorption. This possible delay was also observed for 
cholesterol, although statistical significance was found only in jejunum and ileum. The possible delay in lipid 
absorption is likely to be in agreement with lipid accumulation observed in the feces of mice lacking intestinal 
Dicer1, on high-fat chow, compared to controls15. Confirmation that these changes in intestinal lipid absorption 
are mediated by miRNAs and characterization of the mechanisms of action involved could be important in the 
search for new therapeutic targets against lipid-related disorders.

Finally, two different in vitro models representing the intestinal epithelium were used here to study miRNAs 
expression in response to lipid challenges. In vitro models are employed to facilitate the study of complex in vivo 
phenomena in a simplified context, allowing well-controlled and repeatable conditions for the evaluation of cell 
response. Caco-2 cells are extensively used models of the intestinal epithelium. When differentiated, these cells 
adopt a behaviour similar to enterocytes51. The expression profile of microRNAs in differentiated Caco-2 cells, 
which is shown here for the first time, indicates their similarity to the profile of intestinal miRNAs15, which is 
one indicator that this in vitro model could be appropriate to study miRNAs in an intestinal epithelium context. 
Nevertheless, apart from other limitations, this model is far from recapitulating the complex microenviron-
ment of the intestine52. Here, for example, other characteristic miRNAs were not expressed in Caco-2 cells, such 
as the let-7 family, and the response to postprandial lipids only partially mimicked the one observed in vivo. 
In this sense, intestinal organoids (enteroids), which are propagated from epithelial intestinal stem cells that 
exist within the adult intestinal tissue, better recapitulate the diversity, development, and differentiation of the 
intestinal epithelium53. Here, characteristic miRNAs present in the small intestine15, including the let-7 family, 
were identified in enteroids. However, this model assumes a static, closed-light model, with inaccessibility to the 
apical surface and lacking the relationship with other tissues, immune cells, vasculature, and mechanical forces 
that recreate and define normal intestinal physiology52, which could help explain why miRNA expression did 
not consistently mirror in vivo results. Ideally, future research could be carried out in improved culture systems 
such as a Transwell permeable insert allowing access to the apical and basolateral surfaces of intestinal epithelial 
cells54. Another recently developed method manages to reverse the epithelial polarity of enteroids, maintaining 
the ability to differentiate between the various lineages of intestinal cells and to absorb nutrients adequately55.

To conclude, here, we aimed at finding robust miRNA candidates, whose expression changes in response to 
lipid challenges would be highly reproducible across different models. However, the variability found in response 
to lipid challenges between the different experimental cohorts and in vitro models revealed that miRNAs do not 



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18921  | https://doi.org/10.1038/s41598-020-75751-w

www.nature.com/scientificreports/

respond exactly in the same manner in all the systems tested. One explanation for this is that the initial screening 
was performed in the whole small intestine of male mice, while most subsequent assessments were performed in 
both genders, in separate intestine sections, and/or in different models. Thus, the significant changes in expres-
sion observed initially, which determined the selection of candidate miRNAs for subsequent validations, may 
have been attenuated. Another possible reason for the moderate consistency found between models is that the 
changes in the levels of some miRNAs seen in the screening might be due to other intestinal biological processes 
not specifically related to the response to dietary lipids.

Overall, several miRNAs (miR-218-2-3p, -138-1-3p, -147-3p, -217-5p, -216b-5p, 544-3p, 202-5p, -129-2-
3p, -208b-3p, -30d-5p, -15a-5p and -218-5p) were modulated in response to dietary lipids, hence are likely to 
participate in the regulation of lipid metabolism and call for further research. miR-129-2-3p, -138–1-3p, -147-
3p and -218-2-3p expression responses were the most consistent among all the different experimental models 
studied here.

Methods
Murine models and crosses.  All procedures involving mice were carried out in accordance with guide-
lines of the European Communities Directive 86/609/EEC, and experimental protocols performed on animals 
were approved by the Animal Ethics Committee (Proex 281/15 and Proex 282/15) of the Ramón y Cajal Hospital 
(Madrid, Spain). Mice were housed in a standard animal facility and maintained under controlled conditions, in 
temperature- (25 ± 2 °C) and lighting-controlled rooms (12 h light–dark cycles), with food and water available 
ad libitum.

Male C57BL/6 mice were purchased from Charles River (Écully, France). To generate intestinal-specific 
Dicer1 knockout (KO) mice and wild-type (WT) littermates, Dicer1floxed (B6.Cg-Dicer1 < tm1Bdh > /J) and Vil-
cre (B6.Cg-Tg(Vil1-cre)997 Gum/J) mice were purchased from Jackson Laboratories. Females homozygous for 
the Dicer1flox were cross-bred with Vil-cre transgenic males to generate Dicerflox/+; Vil-cre mice. Mice were mated 
with each other to generate homozygous mutants, Dicerflox/flox; Vil-cre, which were used for the experiments 
aiming to compare WT (refering to Dicer1loxP/loxP; Vil-cre(−) mice) and KO (refering to Dicer1loxP/loxP; Vil-cre(+), 
intestinal-specific Dicer1 knockout mice) littermates.

In vivo experiments.  C57BL/6 male mice were used in the screening for intestinal miRNAs responsive to 
acute and chronic lipid challenges. The acute experimental setting consisted in the administration, by oral gav-
age, of either a cholesterol-enriched olive oil solution (250 µL of olive oil with 40 mg of cholesterol) or 300 µL of 
water (control); mice were sacrificed 2 h after the oral challenge (n = 5 per group). As for the chronic experimen-
tal settings mice were fed either a commercial atherogenic diet (TD 02028, Harlan Laboratories) or a standard 
diet (A04, SAFE, controls); mice were sacrificed after 4 days (n = 5 per group) in one setting and after 20 weeks 
(n = 4 per group) in the other.

C57BL/6 male mice used in the kinetic were divided into five experimental groups and sacrificed after 0 
(basal time point), 30, 60, 120 and 240 min of receiving an oral administration of a cholesterol-enriched olive 
oil solution.

The first cohort of intestinal Dicer1 knockout mice and their WT littermates were used to assess sex influence 
in intestinal miRNAs expression in response to dietary lipids. Mice were divided in four experimental groups: (1) 
WT, control (n = 12 males; n = 10 females); (2) WT, treated (n = 11 males; n = 10 females); (3) KO, control (n = 12 
males; n = 11 females) and (4) KO, treated (n = 14 males; n = 11 females). The second cohort of intestinal Dicer1 
knockout mice and their WT littermates was used to assess miRNA expression in the different small intestine 
sections in response to an oral lipid challenge. Mice were divided in eight experimental groups: (1) Females, 
control, 2 h (n = 6 KO; n = 5 WT); (2) Females, control, 4 h (n = 4 KO; n = 5 WT); (3) Females, treated, 2 h (n = 5 
KO; n = 9 WT); 4) Females, treated, 4 h (n = 4 KO; n = 9 WT); (5) Males, control, 2 h (n = 7 KO; n = 4 WT); (6) 
Males, control, 4 h (n = 5 KO; n = 4 WT); (7) Males, treated, 2 h (n = 9 KO; n = 8 WT) and (8) Males, treated, 4 h 
(n = 5 KO; n = 8 WT).

Sample collection.  Mice were anesthetized with a mixture of ketamine/xylazine, sacrificed by exsanguination 
and perfused with PBS. To obtain plasma, blood samples were collected in Na2-EDTA tubes and centrifuged at 
1500×g for 15 min, at 4 °C, and stored at − 80 °C. All gastrointestinal tissues collected (small and large intestine, 
and liver) were immediately frozen with liquid nitrogen and stored at − 80 °C until processing.

In vitro models.  Caco‑2 cells.  Caco-2 cells, obtained from the American Type Culture Collection (ATCC, 
Ref HTB37), were seeded and maintained in DMEM (Dulbecco’s Modified Eagle’s Medium) containing 10% 
FBS, 1% l-Glutamine and antibiotics (Pen/Strep, Amphotericin) (Lonza) at 37 °C and 5% CO2. For differenti-
ated cells, Caco-2 cells between passes 28–55, were split and seeded at a density of 1.2 × 105 cells/well on 12 mm 
diameter polycarbonate Transwell filter inserts (Corning) with 0.4 µm pore size. The inserts were placed onto 
12-well plates and monolayers were cultured until differentiation for 3 weeks.

Mouse intestinal organoids.  For the obtention of mouse intestinal organoids (enteroids) derived from adult 
intestinal stem cells (ISC), intestinal crypts were isolated from the small intestine of male and female WT mice, 
following the protocol provided by STEMCELL Technologies. Crypts were cultured at 37 °C until organoids 
were fully developed (5–7 days).
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Lipid micelles used to mirror a dietary lipid challenge.  Postprandial micelles (PPM) were prepared following 
a previously described method56. The final composition of the micelles obtained was 0.6 mmol/L of oleic acid 
(OA, Sigma O1383), 0.2 mmol/L of l‐α‐phosphatidylcholine (LPC, Sigma L4129), 0.05 mmol/L of cholesterol 
(CHOL, Sigma C3045), 0.2 mmol/L of 2-monooleylglycerol (2-MO, Sigma M7765) and 2 mM of taurocholate 
(TC, Sigma T9034). Empty micelles (EM), without oleic acid and cholesterol, were generated to serve as a vehi-
cle control. In the case of Caco-2 cells, micelles were prepared in DMEM with 10% LPDS, while for enteroids 
DMEM/F12 was used. Control groups were incubated with DMEM with 10% LPDS in the case of Caco-2 cells or 
DMEM/F12 for enteroids. For both intestinal epithelium models incubation periods consisted of 24 h.

Analysis of microRNAs.  RNA isolation.  Frozen tissues were homogenized in QIAzol Lysis Reagent (Qia-
gen), using TIO basic ULTRA-TURRAX (IKA). Total RNA was isolated using miRNeasy mini kits (Qiagen) 
following the manufacturer´s instructions. Total RNA was quantified in a Nanodrop-2000 spectrophotometer 
(ThermoScientific) and RNA integrity was evaluated with the Agilent 2100 Bioanalyzer system.

Small RNA‑Seq.  Total RNA with a RIN score > 8.0 was used for cDNA library preparation. Library preparations 
were performed using a NEBNext Small RNA Library Prep Set for Illumina (NEB), following the manufacturer’s 
protocol. cDNA library was sequenced with NextSeq. 500 from Illumina. FASTQC tool was used to evaluate 
quality control. Bowtie2 was used for sequence alignment with reference genome. RNA counting was carried out 
using HTSeq-count to allow differential expression analysis. Small RNA sequencing was performed by Sistemas 
Genómicos (Valencia, Spain).

RT‑qPCR.  Total RNA was reverse-transcribed (RT) to cDNA using miScript II RT Kit (Qiagen), according to 
the manufacturer’s instructions. miRNAs expression levels were determined, in duplicates, by quantitative real 
time PCR (qPCR) on a 7900HT Real-Time PCR system (Applied Biosystems), using miScript SYBR Green PCR 
Kits (Qiagen).

The screening for intestinal miRNAs regulated by dietary lipid challenges was performed using miRNome 
panels (641 mature miRNAs) Version 3 (Exiqon). Relative expression was calculated using GenEx software (https​
://multi​d.se/genex​/, MultiD Analyses) for data pre-processing and analysis. The common miRNAs among the 
different experimental studies were represented in a Venn diagram57.

Relative quantification of selected miRNAs was performed using specific primer for each miRNA (Isogen). 
Mature miRNA primer sequences were obtained from the miRBase (www.mirba​se.org). Relative expression levels 
were calculated with the 2−ΔΔCt method58 using RNU1A1, RNU6 and RNU43 to normalization.

Lipid analysis.  Plasma lipid and lipoprotein profiles.  Total plasma triglycerides and cholesterol concentra-
tions were analyzed with a microtiter assay using Triglycerides-LQ GPO-POD and Cholesterol-LQ CHOD-POD 
(Spinreact) commercial kits. For plasma lipoprotein profiles, 400 µL of pooled plasmas from each group were 
analysed using fast phase liquid chromatography (FPLC) method. Separation was performed by gel filtration 
using a Superose 6 h 10/30 column (Pharmacia) as previously described59.

Intestinal and hepatic lipid levels.  Lipid extraction for the analysis of triglycerides, cholesterol and phospholip-
ids in tissues was carried out according to Folch’s method60, followed by solubilization in water by the addition 
of Triton X-10061. Lipid analysis was performed using a standard enzymatic-colorimetric determination (Cho-
lesterol CHOD-POD, Triglycerides GPO-POD and Phospholipids CHO-POD, Spinreact).

Statistical analysis.  Results were expressed as mean ± standard error of the mean and statistically signifi-
cant differences between groups were assessed using student’s T-test, one-way ANOVA or two-way ANOVA 
depending on the experimental setting. p < 0.05 was considered as statistically significant. All statistical analyses 
were performed using GraphPad Prism software (V.7, GraphPad Software Inc, San Diego, https​://www.graph​
pad.com/scien​tific​-softw​are/prism​/), except for the screening assay (GenEx software).

Bioinformatic approach.  To predict miRNA targets, the list of 12 selected miRNAs was imported into the 
miRWalk database62,63. Then, the validated interactions with an entry in miRTarBase (results from 3UTR and 
binding probability > 0.95) were selected for a total of 180 different genes. Next, a geneset enrichment analy-
sis (GSEA) was performed using the Kyoto Encyclopedia of Genes and Genomes (KEEG) pathways and Gene 
Ontology (GO) enrichment analysis (Biological process). The relation between miRNAs with their target genes 
(Genes ID) and pathways (KEGG and GO annotations) were summarized and represented using the Circos 
visualization tool64.
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