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Validation of a wearable cuff‑less 
wristwatch‑type blood pressure 
monitoring device
Joon Ho Moon1,2,5, Myung‑Kyun Kang3,5, Chang‑Eun Choi3, Jeonghee Min4, 
Hae‑Young Lee1,2 & Soo Lim1,4*

Ambulatory blood pressure (BP) monitoring is recommended to improve the management of 
hypertension. Here, we investigated the accuracy of BP estimated using a wearable cuff-less 
device, InBodyWATCH, compared with BP measured using a manual sphygmomanometer. Thirty-
five adults were enrolled (age 57.1 ± 17.9 years). The BP was estimated using InBodyWATCH with 
an individualized estimation based on a neural network model. Three paired sets of BPs from the 
two devices were compared using correlation analysis and Bland–Altman plots (n = 105 paired BP 
readings). The correlations for both systolic and diastolic BP (SBP and DBP) between the two devices 
were high (r = 0.964 and 0.939, both P < 0.001). The mean difference was 2.2 ± 6.1 mmHg for SBP and 
−0.2 ± 4.2 mmHg for DBP; these were not significant (P = 0.472 for SBP and P = 0.880 for DBP). The 
proportions of estimated SBP/DBP obtained from the InBodyWATCH within ± 5 mmHg of manual SBP/
DBP were 71.4%/83.8%; within ± 10 mmHg they were 86.7%/98.1%; and within ± 15 mmHg they were 
97.1%/99.0%. The estimated BP from this wearable cuff-less device correlated highly with the manual 
BP and showed good accuracy, suggesting its potential to be used in ambulatory BP monitoring.

Blood pressure (BP) is a vital sign that can be used to indicate the risk for atherosclerotic cardiovascular disease 
when elevated1,2. High blood pressure or hypertension is one of the most prevalent chronic diseases that threaten 
human health worldwide, regardless of age, gender, body mass index, ethnicity, or economic condition3–6. Recent 
guidelines for hypertension from the American College of Cardiology (ACC), the American Heart Association 
(AHA) and the European Society of Hypertension (ESH) recommend measuring out-of-office BP including 
ambulatory blood pressure monitoring (ABPM) and home BP in addition to office BP7,8. However, ABPM is 
not frequently used in real-world practice, mainly because of the many disturbances that can occur during 
measurement, such as the large size of devices, inconvenience in application and pain or a sense of oppression 
from frequent measurements9,10.

Currently, along with the evolution of the Internet of Things and artificial intelligence, research and develop-
ments on wearable devices that can measure BP ubiquitously are actively being conducted in industries. These 
wearable cuff-less devices estimate BP from signals generated by the human body. Therefore, the validation of 
BP values from these devices is mandatory if they are to be employed in clinical practice.

BPs are commonly estimated mathematically from pulse wave velocity (PWV) and pulse transit time 
(PTT)11–14. PTT, which has an inverse correlation with BP and PWV, can be calculated as the time interval 
between the peak of the R wave of an electrocardiograph (ECG) and the peak of the derivative of photoplethys-
mography (PPG). PWVs can be measured from different peripheral sites, such as brachial–ankle PWV (baPWV), 
carotid–radial artery PWV (crPWV) and femoral–ankle PWV (faPWV). The crPWV is associated with systolic 
BP (SBP), diastolic BP (DBP) and total peripheral resistance, suggesting a potential use of peripheral PWV to 
estimate BP and assess arterial stiffness and cardiovascular risk15,16.

Wristwatch-type devices are considered the most comfortable to be applied throughout the day so are under 
active development. A wristwatch-type BP monitoring device was developed based on an oscillometric method 
using a cuff with a limited wrist circumference range (medium 16.0–19.0 cm; large 18.0–21.5 cm; Heartguide; 
Omron Healthcare, Kyoto, Japan)17. By contrast, cuff-less devices acquire PPG information from the wrist, 
which only requires an interface between the PPG sensor and the wrist surface, thereby providing potential for 
convenient measurement. It measures volumetric changes to capillaries on the wrist surface instead of measuring 
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blood flow into the radial artery directly. To compensate for the limitations in accuracy for signals measured at 
the wrist, attempts to incorporate machine learning including deep neural networks have been made18. In the 
same vein, the Institute of Electrical and Electronics Engineers standard (IEEE Std) 1708 for wearable cuff-less 
BP measuring devices mandates a calibration process in a validation process to estimate unknown parameters19. 
Recently, a BP-monitoring application was launched based on PPG signals, which estimates BP based on a cali-
bration against manual BP measurements (Galaxy Watch Active 2; Samsung Electronics, Suwon, South Korea).

Here, we investigated the accuracy and correlation between PPG-based BPs measured with a wearable cuff-
less device (InBodyWATCH; InBody Co., Ltd., Seoul, South Korea) and BPs measured with a manual sphyg-
momanometer. We validated an individualized calibration algorithm for the device using a neural network 
approach.

Methods
Study design.  In this study, 40 adults who visited Seoul National University Bundang Hospital (SNUBH) 
outpatient clinic were screened and 35 (17 men, 18 women) were enrolled based on the selection criteria as 
below. All subjects participated voluntarily, and informed consent was obtained from each of them. This study 
was approved by the Institutional Review Board of SNUBH (IRB# B-1811-505-001) and was conducted accord-
ing to the Declaration of Helsinki (2013).

Enrolment criteria.  Inclusion criteria were as follows: men and women aged over 20 years and who had 
normal sinus rhythm. Exclusion criteria were as follows: those who had serious orthopaedic problems such as 
fractures, malformations or severe osteoarthritis in the upper arms; who had received an intravascular injection 
in the arm within 2 days; subjects who could not sit and rise unassisted; who had Parkinson’s disease or tic disor-
der; who had a history of fainting myocardial infarction, heart failure, severe liver failure or kidney failure; those 
who had received major surgery within 3 months; subjects who had psychological problems (e.g., schizophrenia, 
epilepsy, alcoholism, drug addiction or anorexia nervosa); those who were cardiac pacemaker-dependent or had 
severe carotid stenosis; those who exercised severely or consumed coffee within 1 h on the day of measurement; 
or those who refused to participate in this clinical study. Pregnant women were also excluded.

BP measurement.  Participants were seated and guided to wear the wearable BP monitoring device on the 
left wrist (InBodyWATCH; InBody Co., Ltd.) (Supplementary Fig. S1). Manual BPs were measured in the left 
upper arm using a manual sphygmomanometer (BPBIO220, InBody Co., Ltd.) by two independent researchers. 
If there was a difference in the measured BP over 4 mmHg between the two investigators, the BP was measured 
again.

The new device automatically collects PPG and ECG signals. These were processed to generate BP esti-
mates through a pretrained BP model based on a neural network model described below. The PPG signal was 
obtained at the left wrist with a PPG module using a green light-emitting diode (LED) and photodiode. For 
this study, an adhesive electrode was attached to the right wrist and connected to the upper electrodes of the 
monitoring device (Fig. 1a). Signals can also be obtained by putting the right finger on the device at the left wrist 
(Fig. 1b). In a preliminary study, the proportions of estimated BP from the finger-on-watch/adhesive electrode 
with differences less than 5/10/15 mmHg compared with manual BP measurements were: for SBP, 60.0%/62.2% 
(± 5 mmHg); 95.6%/91.1% (± 10 mmHg); 97.8%/100% (± 15 mmHg); for DBP, 73.3%/71.1% (± 5 mmHg); 
100%/91.1% (± 10 mmHg); 100%/100% (± 15 mmHg). The mean error and standard deviation compared with 
manual BP measurement was 2.4 ± 5.6 mmHg (SBP) and –0.7 ± 4.4 mmHg (DBP) for the finger-on-watch method 
and 0.6 ± 6.3 mmHg (SBP) and –3.0 ± 5.0 mmHg (DBP) for the adhesive electrode. Given that the proportions 
of BP-in-range and standard deviation were similar between the two methods, we expect that the accuracy is 
also similar.

The PPG and ECG signals were collected for 24 s and sent to an Android smartphone via Bluetooth low energy 
communication. An application provided by the manufacturer was installed in the phone that was used to transfer 
signals from the BP monitoring device to the server and to receive estimated BP from the server (Fig. 1c). Signals 
with personal information including age, gender, body weight and height were transferred from the database of 
the smartphone of the participant to the server. The server processed the signals and personal characteristics to 
generate features and estimate BP with its in-built model.

To configure unknown variables that might be missing from PPG and ECG signals, the BP devices were 
calibrated individually for each participant. This was done by matching three estimated BP values from the new 
BP monitoring device (Watch C1, C2, and C3) with three reference manual BP measurements (Manual C1, C2, 
and C3) (Supplementary Fig. S2).

To obtain the primary data for analyses, SBP and DBP were measured 5–10 min after calibration with the 
manual sphygmomanometer and the InBodyWATCH four times and three times, respectively, starting with the 
manual sphygmomanometer (Supplementary Fig. S2). Estimated BP from the InBodyWATCH was compared 
with the closest values of the previous and next manual BP measurements to calculate correlation and accuracy. 
These seven sequential measurements followed the ESH International Protocol revision of the 2010 Protocol, 
which corresponds to BP1 to BP720. The schematic of BP estimation is summarized in Supplementary Fig. S3.

BP estimation modelling.  The BP estimation model has two parts: (1) a general BP estimation model and 
(2) calibration. Prior to this study, a general BP estimation model based on a neural-network model was trained 
on a dataset by the manufacturer (n = 294). The general BP estimation model generated by the manufacturer was 
constant for this study. Calibration parameters were calculated for each participant during calibration measure-
ments.
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(1)	 General BP estimation model

The general BP estimation model was built in two steps: i) feature extraction, and ii) model training based on a 
neural network. Features were extracted from the ECG/PPG data obtained from InBodyWATCH with the follow-
ing processes: removing noise (denoising), beat separating, signal processing, and signal quality checking. First, 
PPG and ECG signals were denoised with bandpass filters (0-phase delay Butterworth type, PPG: 0.8–11 Hz, 
ECG: 5–30 Hz). Then, ECG-PPG signals were separated on each beat to obtain training data and to exclude beats 
with poor signal quality. One 24-s measurement extracted 10 beat data, which were chosen by signal quality 
checking. Features including PTT, a spectrum of PPG, and additional features from the signals were extracted 
for each beat21. At the final stage of feature extraction, spatial correlations of PPG signals from each beat were 

Figure 1.   Wearable device (InBodyWATCH) and its application. (a) An adhesive electrode was attached to 
the right wrist to acquire ECG signals. (b) ECG signals was collected by putting a right-hand finger on the 
wristwatch. (c) An example of data display generated from the wearable device in the iOS system.
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calculated. If these correlations were below a reference range, the whole measurement was excluded from the 
training dataset. This signal quality check process was conducted to avoid poor and inconsistently shaped PPG 
signals caused by unstable contact between the PPG sensor and the wrist. This signal quality checking process 
was also adopted for the primary data analysis to prevent BP estimations based on low quality signals (Sup-
plementary Fig. S3).

Before training the general BP estimation model, outliers in the dataset were excluded. Outliers were detected 
in two steps. First, means and standard deviations of the features listed above were calculated. Data were excluded 
from the dataset if any of the selected features of the data exceeded a 3-sigma (standard deviation [SD]) range. 
Second, the suboptimal auto-encoder and decoder were trained against the features22. The mean squared error of 
the auto-encoder for each data point was defined by averaging the squared sums of differences between features 
before encoding, and reconstructed features from the auto-encoder. If the mean squared error of data exceeded 
the 3-sigma range, that point was excluded from the dataset based on the assumption that the error arose from 
an abnormal feature in the data. Then, the dataset was divided into training and test sets where the model was 
trained and the parameters such as number of layers, activation function, and number of nodes were optimized 
to minimize any loss of validation for any given dataset.

This general BP estimation model was trained and chosen using the following processes. We chose a fully 
connected neural network in which every node of one layer was connected to every node of the next layer. The 
output layer had two nodes: SBP and DBP. Therefore, the SBP and DBP model can be considered as a result of 
two linear regression models sharing the same features as the final hidden layer generated from previous neural 
network layers. Based on this, the numbers of layers and the numbers of nodes per layer were changed and trained 
repeatedly to find an optimal model based on cross-validation. During the training process, batch normalization 
was applied to each layer to enhance the stability of learning and to prevent overfitting23.

(2)	 Calibration

For calibration, it was not realistic to train additional machine learning models using limited sets of manual and 
estimated BPs for individual BP estimations. Instead, we added correction terms between final hidden and output 
layers of a general BP estimation model. Correction terms were determined from ≥ 3 pairs of manual and InBody-
WATCH BP measurements. The schematic for the calibration process is illustrated in Supplementary Fig. S4.

Wearable cuff‑less BP monitoring device.  The InBodyWATCH is a wearable activity tracker with a 
diameter of 38.0 mm, 11.6 mm thickness and weighing 31.2 g. It provides activity tracking functions such as step 
counts, sleep tracking, and heart rate measurement altogether with Bluetooth v. 4.0 functions, a 128 × 128-pixel 
monochrome organic light-emitting diode (OLED) display, and a 3.7 V direct current (DC) 140 mAh battery 
(Supplementary Fig. S1). Two bottom electrodes and one top electrode are used to obtain ECG signals by meas-
uring the voltage difference between the left wrist (bottom electrodes) and the right arm (top electrode). A PPG 
sensor (with green LED) placed on the base is used to measure volumetric changes in blood vessels by alternat-
ing current (AC) modulation in reflected LED light, as blood behaves as an absorber of LED light.

Baseline examination.  At baseline, body composition was analysed using the bioelectrical impedance anal-
ysis method with a body composition analyser (InBody 770, InBody Co., Ltd.), which has been used commonly 
in other studies24. Information about age, gender, medical history including any hypertension, and medication 
lists was collected. Vital signs, body weight, height, arm circumference, wrist circumference and arm length were 
measured. The second BP measurement during calibration was used as the baseline (Supplementary Table S1). A 
complete blood cell count analysis including white blood cell, haemoglobin, haematocrit and platelet counts was 
performed using an XE-2100 device (Sysmex, Kobe, Japan). Plasma glucose concentration was measured using 
the glucose oxidase method (747 Clinical Chemistry Analyzer; Hitachi, Tokyo, Japan). Glycated haemoglobin 
(HbA1c) was measured using a Bio-Rad Variant II Turbo High Performance Liquid Chromatography Analyzer 
(Bio-Rad, Hercules, CA, USA). Alanine and aspartate aminotransferase (ALT and AST, respectively) levels were 
measured using the Nicotinamide Adenine Dinucleotide Coenzyme-Ultraviolet method, and serum creatinine 
was measured by Jaffe’s kinetic method using a Hitachi 747 Clinical Chemistry Analyzer (Hitachi, Tokyo, Japan). 
Serum total cholesterol, triglycerides, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein 
(LDL)-cholesterol levels were measured using a 747 Clinical Chemistry Analyzer (Hitachi).

Statistical analysis.  Differences between mean BP values measured by the manual sphygmomanometer 
and those calculated by the InBodyWATCH were compared using Student’s t test. Pearson’s correlation coef-
ficient (r) was calculated and r > 0.90 was considered to indicate a high correlation. Bland–Altman plots were 
used to compare differences between techniques, and the ratio of measurements with BP differences of 5 mmHg, 
10 mmHg, and 15 mmHg, and the root mean squared error (RMSE) are presented. Data are presented as the 
mean ± SD. Statistical significance was accepted when P < 0.05. Statistical analyses were conducted using the 
statistical functions in Python SciPy packages (version 1.1.0; available from: https​://www.scipy​.org/)25. Scatter 
plots and Bland–Altman plots were drawn using Python Matplotlib package (version 3.1.3; available from: https​
://matpl​otlib​.org/)26.

https://www.scipy.org/
https://matplotlib.org/
https://matplotlib.org/
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Results
Participant characteristics.  Forty subjects were screened for this study. Among them, 35 (57.1 ± 17.9 years 
old, 17 men and 18 women) were included in the analysis, excluding four who did not have the device calibrated 
and one who did not undertake a baseline body composition analysis. Baseline characteristics of the participants 
are shown in Table 1. Nine of the participants (26%) had been diagnosed with hypertension; four (11%) had 
dyslipidaemia, and two (6%) had a history of stroke. Age and BP distributions of the participants are listed in 
Supplementary Table S1.

Accuracy and correlation of SBP measured by the new BP monitoring device compared with 
manual BP measurement.  BPs were measured three times using the InBodyWATCH, preceded and fol-
lowed by manual BP measurement (four times) using a manual sphygmomanometer. The estimated BP from the 
InBodyWATCH was compared with the nearer values of the previous and next manual BP measurement20. In 
all, 105 paired BP readings from the 35 subjects were included for analysis.

The mean SBP values measured by the manual sphygmomanometer and InBodyWATCH were 
127.2 ± 20.9 mmHg and 129.4 ± 22.8 mmHg, respectively. The mean difference between the two measures 
was 2.2 ± 7.3 mmHg; this was not significant (P = 0.472) and the correlation between the two values was 
high (r = 0.964, P < 0.001) (Fig. 2a). The proportions of paired readings for which the SBP difference was 
within ± 5 mmHg, ± 10 mmHg, and ± 15 mmHg were 71.4%, 86.7% and 97.1%, respectively (Fig. 2b). The RMSE 
was 6.5 mmHg.

Accuracy and correlation of DBP measured by the new BP monitoring device compared with 
manual BP measurement.  The mean DBP values measured by the manual sphygmomanometer and 
InBodyWATCH were 69.7 ± 12.3 mmHg and 69.5 ± 11.5 mmHg, respectively. The mean difference between the 
two measures was −0.2 ± 4.2 mmHg; this was also not significant (P = 0.880), and there was a high correlation 
between the two values (r = 0.939, P < 0.001) (Fig. 3a). The proportions of paired readings for which the DBP dif-
ference was within ± 5 mmHg, ± 10 mmHg, and ± 15 mmHg were 83.8%, 98.1% and 99.0%, respectively (Fig. 3b). 
The RMSE was 4.2 mmHg.

Diagnostic accuracy of hypertension using the new BP monitoring device.  The accuracy of diag-
nosing hypertension was determined using the BPs from the manual sphygmomanometer and InBodyWATCH 
(Table 2). Nine of 105 SBP measurements were discordant for high SBP criteria (> 135 mmHg) and one was 
discordant for high DBP criteria (> 85 mmHg), suggesting higher accuracy of DBP using the InBodyWATCH. 

Table 1.   Baseline characteristics of study participants. In all, 35 subjects were included in the study. Data are 
presented as the mean ± standard deviation (SD). HbA1c, glycated haemoglobin; AST and ALT, aspartate and 
alanine aminotransferases, respectively; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, 
systolic blood pressure; DBP, diastolic blood pressure.

Variables Mean ± SD or n

Age (years) 57.1 ± 17.9

Gender (Male/Female) 17/18

Height (cm) 162.2 ± 8.6

Body weight (kg) 67.5 ± 12.3

Body mass index (kg/m2) 25.6 ± 3.9

Fasting glucose (mg/dL) 129.0 ± 58.0

HbA1c (%) 6.9 ± 1.5

AST (IU/L) 32.5 ± 17.7

ALT (IU/L) 41.2 ± 36.4

Serum creatinine (mg/dL) 0.9 ± 0.4

Total cholesterol (mg/dL) 171.2 ± 39.0

Triglycerides (mg/dL) 153.3 ± 153.7

HDL-cholesterol (mg/dL) 47.6 ± 11.1

LDL-cholesterol (mg/dL) 103.5 ± 27.9

White blood cell (× 103/μL) 7.1 ± 1.5

Haemoglobin (g/dL) 13.9 ± 1.7

Platelets (× 103/μL) 240.6 ± 51.3

Body composition analysis

Percent body fat (%) 32.2 ± 6.7

Abdominal visceral fat area (cm2) 105.7 ± 36.5

BP measured using a manual sphygmomanometer

SBP (mmHg) 129.6 ± 23.6

DBP (mmHg) 69.5 ± 12.9
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Only one subject was misdiagnosed as having hypertension when this was defined as high SBP/DBP values 
(> 135/85 mmHg) in three measurements twice or more (accuracy, 97.1%).

Discussion
In this study, the estimated BPs from the InBodyWATCH had significant correlations with the manual BP values 
with correlation coefficients r > 0.9 and little difference from manually measured BPs using a sphygmomanom-
eter with > 85% of the paired readings within 10 mmHg. The results suggest the accuracy of our individualized 
calibration algorithm using a neural network model in the estimation of BPs. Given the high accuracy and cor-
relations, the wearable device has shown the potential to become an option for ABPM in a real-world setting.

Hypertension is the most prevalent chronic disease and increases the risk of cardiovascular disease. The 
advantages of ABPM, including stronger prognostic evidence and avoiding the spurious diagnostic potential 

Figure 2.   Correlation of the accuracy of systolic blood pressure (SBP) measurements between the 
InBodyWATCH (SBP_Watch) and a manual sphygmomanometer (SBP_Auscultatory).

Figure 3.   Correlation of the accuracy of diastolic blood pressure (DBP) measurements between the 
InBodyWATCH (DBP_Watch) and a manual sphygmomanometer (DBP_Auscultatory).
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of ‘white-coat and masked’ measurements, were reasons for strong recommendation in recent ACC/AHA and 
ESH guidelines7,8.

A higher ABPM independently predicted adverse cardiovascular events even after adjustment for office-based 
BP measurement in a 5-year follow-up study including ~ 2000 hypertensive subjects27. In the Pressioni Arteriose 
Monitorate e Loro Associazioni study, the predictability of 11-year cardiovascular mortality gradually increased 
from office to home to ambulatory BP in the general population28. Of note, high night-time BP was a strong 
predictor for adverse cardiovascular events29. Thus, continuous ABPM has clinical benefits and now has become 
essential in the management of hypertension.

The drawbacks of ABPM are its high cost and inconvenience in wearing and carrying a measuring device. 
Frequent pressure on the upper arm also disturbs the subjects’ activity. In this study, we developed a wear-
able, wristwatch-type, cuff-less BP measuring device, which can overcome these disadvantages. This totally 
mobile, radial artery-based device was highly accurate in BP estimation compared with a conventional manual 
sphygmomanometer.

Wearable devices that were developed previously had either a pressure cuff or an additional sensor other 
than a wristwatch. Devices that collect signals from the upper arm30, ventral side of the wrist31, or tethered to 
a wire31 add inconvenience, which can lead to poor compliance. Therefore, a wristwatch system based on ECG 
and PPG without a cuff was developed to measure BP without inconveniencing the subject13,17. Except for 
Samsung Electronics, major information technology companies have yet to provide BP measurement systems 
on their health-care wearables, as it is still difficult to achieve accuracy in the estimated BP. Thomas et al. sug-
gested different formulae to calculate BP, but the RMSE between the estimated BP and the reference BP values 
were 7.83 mmHg for SBP and 5.77 mmHg for DBP with the best fitting formula (RMSE, 6.5 mmHg for SBP and 
4.20 mmHg for DBP in our study)13. The Omron Heartguide was reported to have differences of 0.8 ± 12.8 mmHg 
for SBP and 3.2 ± 17.0 mmHg between watch-based BP and ambulatory BP measurements17. To our knowledge, 
no technical validation report of Samsung Galaxy Watch Active 2 (Samsung Electronics) has been published 
except for a brief report from the Korea Food and Drug Administration; the difference between the manual 
and the estimated BP was within ± 5 mmHg with a standard deviation of 8 mmHg (2.2 ± 6.1 mmHg for SBP and 
–0.2 ± 4.2 mmHg for DBP in our previous study)32. Here, we employed a neural network model to fit ECG and 
PPG-based BP optimally to the reference manually measured BP, which enhanced the accuracy and correlation 
of the device-estimated BP compared with existing wearable BP devices.

Strengths and limitations.  This study had several strengths. First, we included subjects with a diverse 
range of ages and BPs to comply with ESH criteria, whereas previous studies were limited to healthy young 
subjects (Supplementary Table  S1)20,33. We found that the device–server system worked systematically with 
methodologies using a neural network approach for calibration. Notably, the technology we used in this device 
is expected to enable ABPM estimation models to be enhanced gradually with the accumulation of data trans-
ferred into the server from a variety of users. In addition, the BP monitoring device detects signals from the 
wrist without pressure and is completely wireless, different from those devices that use pressure cuffs or collect 
signals from the upper arm or brachial artery, requiring additional devices or steps to measure BP 17,30. Further, 
the device is compact and light: the InBodyWATCH is 38.0 mm in diameter and 11.6 mm thick, weighing 31.2 g; 
the same parameters for the Omron Heartguide are 48 mm, 14 mm, and 115 g (including the band weight); and 
for the Samsung Galaxy Watch Active 2, there are 40.0–44.0 mm, 10.9 mm, and 26–42 g. Finally, BP is estimated 
in less than 30 s without any preparation other than wearing the wristwatch.

There were also several limitations in this study. First, estimation of BP from the wrist region has some intrin-
sic limitations. Forward blood flow is reflected from the resistant artery and merged with the backward flow. As 
a result, the BPs measured in the radial artery have a higher SBP value than those measured in the forearm, but 
we tried to compensate for this error with individual calibration. Second, we used an electrode attached to the 
right wrist, instead of the right finger being placed on the watch. Third, the device needs to be validated in other 
conditions including different body positions (e.g., prone) to evaluate whether the calibration fits well in other 

Table 2.   Diagnostic accuracy of hypertension using the new ambulatory blood pressure monitoring (ABPM) 
device. A total of 10 of 210 BP measurements that were discordant for high systolic blood pressure (SBP) or 
diastolic blood pressure (DBP) (> 135/85 mmHg) between the manual BP and the estimated BP from the 
ABPM device are marked with an asterisk (*). Hypertension was defined as ≥ 2 high SBP or DBP in three 
measurements.

SBP 1 SBP 2 SBP 3 DBP 1 DBP 2 DBP 3 Hypertension

Device Manual Device Manual Device Manual Device Manual Device Manual Device Manual Device Manual

130* 138 127* 138 133* 139 74 72 70 70 78 79  ×  O

146* 123 133 122 132 120 79 68 73 68 72 70  ×   × 

136* 135 137* 131 134 129 102 106 103 104 100 103 O O

153 147 146 138 147* 134 57 52 51 50 58 50 O O

141 144 139 135 136* 133 82 82 79 82 80 79 O O

141 136 138* 133 130 128 93 93 92 92 92 91 O O

155 153 160 160 146 153 81 88 87 89 72* 90 O O
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conditions. Nevertheless, given that management of hypertension is based on the BP measured during resting 
and seating, our device exhibited high correlations and accuracy in the seated position, well enough to be applied 
to BP management. Fourth, this research validated the accuracy of InBodyWATCH BP measurements shortly 
after calibration. Longitudinal validation is needed to estimate the calibration frequency needed for this device: 
e.g., Galaxy Watch Active 2 instructions recommend users to update calibration within 4 weeks32.

Conclusions.  We have developed a totally mobile, radial artery-based BP estimation using a wearable cuff-
less wristwatch and validated its accuracy in comparison with a manual sphygmomanometer. Application of 
such ABPM devices will improve BP control rates in subjects with hypertension. With advances in technology, 
more precise ABPM is likely to become available and this will yield clinical benefits such as reductions in cardio-
vascular morbidity and mortality. Recent studies suggest the potential contribution of crPWV to assess arterial 
stiffness and cardiovascular outcomes15,16. Equipped with information on physical activity and body fat, more 
sophisticated devices that can measure other vital signals, such as pulse rate, ECG, oxygen saturation, and body 
composition, will help in preventing and treating many chronic diseases such as hypertension and diabetes mel-
litus more effectively, and will help alter the management of chronic cardiometabolic disorders.

Data availability
All data associated with this study are present in the paper or available from the corresponding author on rea-
sonable request.
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