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ABSTRACT

Viruses, including the novel coronavirus SARS-CoV-2, redirect infected cell metabolism to their own
purposes. After binding to its receptor angiotensin-converting enzyme 2 (ACE2) on the cell surface, the
SARS-CoV-2 is taken up by receptor-mediated endocytosis ending in the acidic endolysosomal
compartment. The virus hijacks the endosomal machinery leading to fusion of viral and endosomal
membranes and release of the viral RNA into the cytosol. This mini-review specifically highlights the
membrane lipid organization of the endosomal system focusing on the unconventional and late
endosome/lysosome-specific phospholipid, bis(monoacylglycero)phosphate (BMP). BMP is enriched in
alveolar macrophages of lung, one of the target tissue of SARS-CoV-2. This review details the BMP
structure, its unsaturated fatty acid composition and fusogenic properties that are essential for the highly
dynamic formation of the intraluminal vesicles inside the endosomes. Interestingly, BMP is necessary for
infection and replication of enveloped RNA virus such as SARS-CoV-1 and Dengue virus. We also
emphasize the role of BMP in lipid sorting and degradation, especially cholesterol transport in cooper-
ation with Niemann Pick type C proteins (NPC 1 and 2) and with some oxysterol-binding protein (OSBP)-
related proteins (ORPs) as well as in sphingolipid degradation. Interestingly, numerous virus infection
required NPC1 as well as ORPs along the endocytic pathway. Furthermore, BMP content is increased
during pathological endosomal lipid accumulation in various lysosomal storage disorders. This is
particularly important knowing the high percentage of patients with metabolic disorders among the
SARS-CoV-2 infected patients presenting severe forms of COVID-19.

© 2020 Elsevier B.V. and Société Francaise de Biochimie et Biologie Moléculaire (SFBBM). All rights

reserved.
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1. Introduction

Coronaviruses are a group of enveloped, single-stranded posi-
tive genomic RNA viruses known to cause severe respiratory dis-
eases in human, such as Severe Acute Respiratory Syndrome
(SARS), Middle East Respiratory Syndrome (MERS) and the ongoing
coronavirus disease-19 (COVID-19) due to the SARS-CoV-2 [1]. In
order to treat and/or prevent the actual SARS-CoV-2 infection, a
better understanding of the molecular mechanism used by this
new virus is required. After binding to its receptor angiotensin-
converting enzyme 2 (ACE2) found on the surface of cells lining
the respiratory tract and lung [2], the virus is taken up by clathrin-
mediated endocytosis (CME) and transported to the acidic endo-
lysosomal compartment. The virus hijacks the endosomal ma-
chinery leading to fusion of viral and endosomal membranes and
release of viral factors into the cytosol to infect the targeted cells.
Noteworthy, viral proteins mediating this fusion usually require a
specific lipid composition of the host cell membrane [3,4]. In fact,
the virus is exploiting the different lipid composition of the various
host cell organelles it travels through to control the intracellular
location of its fusion process and thus, where its RNA will be
released. These interactions between the virus and the host cell
lipids can become useful therapeutic targets.

Using various viruses like the vesicular stomatitis virus (VSV) as
tool has been fruitful and informative to better understand the
successive steps of the endocytic pathway and the dynamic
membrane traffic occurring from the early endosome to the late
endosome/lysosome (LE/Lys) [5—9]. In addition, the host cell lipids
are not distributed equally among the organelles. Sphingolipids and
cholesterol display a gradual distribution with the highest con-
centration in the plasma membrane and the lowest concentration
in the endoplasmic reticulum (ER) [10]. Furthermore, lipids form
specific membrane domains in the plasma membrane (PM) as well
as in organelle membranes. Sphingolipid- and cholesterol-enriched
domains known as lipid rafts, are found on the outer leaflet of the
PM and on the luminal side of the endosome [11—14]. At the PM,
these lipid domains in association with proteins play an essential
role to form signaling platforms and to drive their subsequent
internalization through the endosomal system [15]. In parallel to
the sphingolipid- and cholesterol-enriched domains, different
polyphosphoinositides enriched in the inner leaflet of the PM and
in endosomes play important roles in various stages of endocytosis
[9,16]. Another key anionic glycerophospholipid bis(monoacylgly-
cero)phosphate (BMP), also named as lysobisphosphatidic acid
(LBPA) is found specifically enriched in the internal membranes of
the acidic LE/Lys compartment [ 16,17]. Interestingly, BMP and other
anionic phospholipids are necessary for infection and replication of
enveloped RNA virus such as SARS-CoV-1 and Dengue virus
[4,18,19].

While the involvement of BMP as a key player of the anti-viral
effect of chloroquine and derivatives is discussed by Carriére et al.
in this special issue [20], this review will focus on the role of BMP in
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lipid sorting and degradation along the endocytic pathway poten-
tially affecting virus infection. A specific focus is put on the effect of
BMP on cholesterol transport regulated by Niemann Pick type C
proteins (NPC 1 and 2) and some oxysterol-binding protein (OSBP)-
related proteins (ORPs). This unusual endosomal phospholipid is
crucial to maintain endosomal lipid storage capacity and trafficking
as well as the fine-tuning of cholesterol domains at the PM known
to control receptor signaling and cholesterol efflux [21—23]. Inter-
estingly, the importance of the host cholesterol pools in viral fusion
and replication was recently pointed out [24,25]. Since genetic
NPC1 defect or drug (U18666A)-induced endosomal cholesterol
accumulation were shown to inhibit Ebola virus and VSV infection
[5,26], this review will provide some useful clues for the develop-
ment of drugs against COVID-19, especially in the context of the fast
drug repurposing occurring recently [25,27,28].

2. Bis(monoacylglycero)phosphate, an unusual
endolysosomal phospholipid to control the fate of
endocytosed compounds

BMP is specifically enriched in the LE/Lys compartment where it
controls in particular the fate of sphingolipids and cholesterol. In
fact, the late endosome is a strategic sorting station for various
materials (including viruses) arriving from the endocytic, biosyn-
thetic and autophagic pathways as well as outgoing to the lysosome
for degradation, the Golgi complex, the ER or the PM. By controlling
the reutilization or the degradation of endocytosed components,
the LE/Lys compartment is important to inform the cell of its
metabolic status.

2.1. Structure, biosynthesis and metabolism of BMP

BMP is a structural isomer of phosphatidylglycerol (PG) where
in contrast to PG, the two acyl chains (often identical) are not linked
to the same glycerol (Fig. 1). It is considered as an unusual poly-
glycerophospholipid due to the sn-1 position of the phosphate
moiety on the glycerol backbone found exclusively in the Archaea
domain whereas it is linked to the sn-3 position in all the glycer-
ophospholipids of Eukarya and Bacteria domains [22,29]. The exact
position of the acyl chains on the glycerol moieties has been a
matter of debate. However it seems that the native BMP in vivo is
sn-2, sn-2' acylated compared to the thermodynamically more
stable sn-3, sn-3’ acylated BMP that could be formed in vitro during
the purification procedure [30—32]. Furthermore, sn-2, sn-2" acyl-
ated BMP and not the sn-3, sn-3’ acylated BMP is able to form
multivesicular liposomes in vitro in a pH-dependent manner [33].
The other polyglycerophospholipids, PG and cardiolipin (CL), were
shown as exogenous sources in vivo [22]. In addition, PG and not CL,
was identified as the primary precursor of the de novo biosynthesis
of BMP in CHO cells mutated for the PG phosphate synthase [34]. It
was proposed that the stereoconversion of PG to BMP requires
complex successive reactions involving transacylases and
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Fig. 1. Structure of bis(monoacylglycero)phosphate BMP and its structural isomer
phosphatidylglycerol PG. BMP exhibits an unusual sn-1, sn-1' stereoconfiguration
based on the position of the phosphate on each glycerol moiety, different from the sn-
3, sn-1" configuration of its precursor PG. In native BMP, the acyl chains R and R are
esterified on the sn-2, sn-2’ positions whereas in PG, they are in sn-1 and sn-2 of the
same glycerol molecule.

phospholipases [35,36]. BMP appears progressively during the
maturation of the endosome visualized by a multivesicular
appearance due to inward budding of the organelle limiting
membrane towards its lumen leading to the formation of intra-
luminal vesicles (ILVs) (Fig. 2). The location of its biosynthesis was
postulated to occur in the LE/Lys compartment [37,38]. However, it
was also suggested that crosstalk through membrane contact sites
(MCS) might be required for its de novo synthesis between LE/Lys
and mitochondria - ER where PG and lysoPG are synthetized [39].
Due to its stereoconfiguration, BMP is resistant to the phospholi-
pase activity present in the lysosome explaining its extended life-
time [40]. However, acyl chain turnover was demonstrated
comparable to other phospholipids [41]. Phospholipase activities
able to metabolize BMP have been described depending on the
acidic environment and substrate presentation [42,43], including a
pancreatic-lipase related protein 2 (PLRP2) also found in lysosome
[44,45] and recently the monoacylglycerol hydrolase a/f hydrolase
domain-containing 6 ABHD6 [46,47].

2.2. Localization and tissue distribution of BMP

BMP is found in most mammalian cells and tissues. It was also
found in some strains of alkalophilic bacteria and in the amoeba

249

Biochimie 179 (2020) 247—256

Dictyostelium discoideum [55,56]. It is not detected in lower Eu-
karyotes such as yeast, but the improvement of recent analytical
methods could be very useful to detect subminimal levels. Most
human and animal cells or tissues contain relatively low amounts
of BMP, not exceeding 1—2% of their total phospholipids. In the LE/
Lys compartment, BMP amounts to 15% of the phospholipids and
constitutes up to 70% of their internal membrane phospholipids,
including ILVs [17]. In both humans and animal models, BMP was
shown to dramatically increase in cationic amphiphilic drugs
(CAD)-induced phospholipidosis and in inherited lysosomal stor-
age disorders (LSD) characterized by accumulated materials in LE/
Lys due to alteration of degradative pathways [57,58]. During
these disorders, increasing BMP levels were detected also in
extracellular biofluids (plasma, urines..) particularly docosahexa-
enoic acid (C22:6n-3) containing species such as diC22:6-BMP.
Thus, BMP is considered as a possible biomarker to follow disease
progression [59,60]. We recently showed that BMP was increased
in the urines of amiodarone-treated patients, a CAD antiar-
rhythmic drug, and was associated with extracellular vesicles
(EVs) characterized as exosomes [49]. EVs form a heterogeneous
group of membrane vesicles of variable sizes: “exosomes” of about
50—120 nm in diameter, originated from the ILVs after fusion of
the multivesicular endosomes (MVEs) with the PM or “micro-
vesicles” of about 50 nm to 1 pm in diameter, obtained from
shedding of the PM [50]. Presence of BMP in EVs seems to vary
according to the cell type or the endolysosomal dysfunction. Due
to its ubiquitous distribution in most mammalian cells and its
selective localization in the endolysosome, we speculated that
BMP could be a specific lipid signature of endosome-derived EVs
in human urines [49]. However, this will require more analysis of
EVs isolated from other extracellular biofluids. Furthermore, the
precise role of BMP to control exosome biogenesis and secretion is
still unclear but could be linked to its biophysical properties as
detailed below.

2.3. Dynamics of ILVs and BMP membrane domains

In most cell types, BMP is characterized by a high proportion of
unsaturated fatty acids, such as oleic acid. Also polyunsaturated fatty
acids, such as docosahexaenoic acid, are enriched in BMP of rat
uterine stromal cells, macrophages, liver and brain [31,41,47,61—-64].
The BMP polyunsaturation coupled to its cone-shape structure and
its negative charge are crucial for the dynamic of endolysosomal
membranes, favoring membrane invagination and the formation of
ILVs. This fusion process depends also on the interaction of BMP with
the endosomal sorting complexes required for transport (ESCRT)-
associated protein ALIX via the exposed loop at its N-terminus
exhibiting a BRO1 domain. Moreover, ALIX via its C-terminal
proline-rich region binds the ESCRT-1 subunit protein, TSG101 [65].
Both proteins ALIX and TSG101 are also found in exosomes and play a
role in EV biogenesis [50]. The role of BMP in EV biogenesis and
secretion is thus suggested not only due to its biophysical properties
[33] but also to its interaction with ALIX and its specific localization
in ILVs. In addition to its role in cholesterol transport (developed
below), negatively-charged BMP is considered as a stimulator of
sphingolipid degradative enzymes directly for the acid sphingo-
myelinase or acid ceramidase, or indirectly by increasing the effi-
ciency of their cofactors saposins [40,66]. Change in the fatty acid
composition or content of BMP will alter the metabolic activity in the
endolysosome compartment. Recent studies have highlighted the
role of BMP for the maintenance of metabolic homeostasis and the
importance of its physiological regulation. Fasting stimulates lyso-
somal biogenesis and BMP content [62] whereas high fat diet in-
creases hepatic and circulating BMP concentrations [47]. All these
active membrane exchanges and trafficking can be hijacked by
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Fig. 2. Schema of the endocytic pathway involving the endolysosomal lipid BMP and putative relation to SARS-CoV-2 infection steps. (1) binding step: SARS-CoV-2 binds
through its spike S protein to its receptor angiotensin-converting enzyme 2 (ACE2) located in lipid rafts on the host cell plasma membrane. (2) internalization step: then SARS-CoV-
2 is internalized by clathrin-mediated endocytosis (CME) and undergoes intracellular trafficking through the endocytic pathway: (3) from early endosome and multivesicular
endosome to (4) late endosome/lysosome. The same endocytic route is used by low density lipoproteins (LDL) for cholesterol entry into mammalian cells after binding to the LDL
receptor. The virus uncoating and fusion step are strongly dependent of the acidic pH of the endolysosomal compartment enriched in BMP (green conical cylinder): enzymatic
cleavage by cathepsin L is crucial for subsequent release of the viral RNA genome (5) into the host cytosol. (6) Newly made viral S protein and other membrane proteins enter the
secretory pathway via the endoplasmic reticulum (ER) whereas viral RNA genome and nucleocapsid protein are assembled to form the previral particles into the lumen of the
ERGIC (ER-Golgi intermediate compartment). (7) Then, matured viruses are released via transport from the trans-Golgi (TGN) network to the cell surface. (8) Virus factors can also
hijack the extracellular vesicle EV secretory pathway to exit infected cells [48]. Recently, BMP (green conical cylinder) was considered as a new lipid signature of endosome-
derived EVs characterized by the EV protein markers ESCRT protein TSG101, associated protein Alix, and the tetraspanins CD63 and CD81 [49,50]. The cholesterol transfer be-
tween NPC2 and membrane vesicles including between inner membranes of the LE/Lys compartment is favored by BMP [51]. This occurs through the direct interaction of BMP with
a domain of NPC2 [52]. This region is also involved in the interaction between the soluble intraendolysosomal NPC2 and the transmembrane protein NPC1 in the limiting membrane
of the LE/Lys. This highlights the importance of BMP in NPC2-dependent cholesterol binding at inner membranes of LE/Lys and in NPC2-dependent cholesterol transfer to the N-
terminal domain of NPC1. NPC1 has been proposed to be involved in infectivity of SARS-CoV-2 [25]. ORP1L as well as OSBP are required at the replication organelle for viral infection
by regulating cholesterol homeostasis [53,54]. We can speculate that ORP11, by interacting with both BMP and cholesterol into late endosome, would be implicated in virus

infection.

viruses.
2.4. Hijacking of ILVs and EVs by viruses and role of BMP

During VSV infection, the release of viral RNA in the cytosol
depends of BMP [6], Alix [8], and other ESCRT proteins through a
mechanism of back-fusion, i.e upon fusion of the ILV membrane
with the limiting membrane of the LE [9]. First, the viral envelope
undergoes fusion with the ILV membrane or directly with the LE
membrane [5]. It is not known yet if SARS-CoV-2 is using a similar
pathway for cell infection and the role of BMP in this context
(Fig. 2). In addition, some viruses and viral particles can be released
in exosomes. Interestingly in parallel to the classical exosome for-
mation, ceramide produced after hydrolysis of sphingomyelin by
neutral sphingomelinase was shown to favor formation of exo-
somes containing cholesterol [67]. By hijacking the EV secretory
pathway, the viruses can, not only exit infected cells, but EVs can
also play a role in immune response by spreading viral and host cell
components [48] (Fig. 2). The importance of this pathway for SARS-
CoV-2 infection is not known yet as well as the role of BMP. Tar-
geting the endolysosomal function that can be hijacked by the
SARS-CoV-2 and particularly using drugs modifying transiently this
compartment enriched in BMP has started to be evaluated [25]. But
we have to keep in mind that targeting such important intracellular

trafficking could have deleterious effects on lipid metabolism. This
is particularly important knowing the high percentage of patients
with metabolic disorders among the SARS-CoV-2 infected patients
presenting severe forms of COVID-19 [68].

3. Bis(monoacylglycero)phosphate and cholesterol
homeostasis

Cholesterol is a dynamic lipid that moves quickly between
membranes of cell organelles. Cells have developed complex
pathways to maintain cholesterol homeostasis, including vesicular
and non-vesicular processes. Cholesterol traffic and distribution
inside cells are mainly maintained by non-vesicular mechanisms
[69]. Several families of proteins function as sterol transporters to
maintain cholesterol homeostasis [70].

3.1. Cholesterol transporter proteins: focus on NPC and ORP

Among all cholesterol transport proteins, Niemann-Pick C1
and C2 proteins (NPC1, NPC2) cooperate to regulate the egress of
low-density lipoprotein (LDL)-derived cholesterol out of late
endosomes [52]. Other proteins like STARD3 (StAR related lipid
transfer domain containing 3) [71], ORPs (OSPB (Oxysterol
Binding proteins)-Related Proteins) [72] and Aster protein [73]



C. Luquain-Costaz, M. Rabia, E. Hullin-Matsuda et al.
transport cholesterol between LE, PM,
mitochondria.

Exit of LDL-derived cholesterol from LE/Lys requires a cooperation
between NPC1 and NPC2. NPC1 is a multi-spanning transmembrane
(TM) protein located in the limiting membrane of LE/Lys and NPC2 is a
globular protein present in the lumen of LE/Lys. NPC1 presents 13 TM
segments among which TMs 3—7 constitute the sterol-sensing
domain (SSD), and 3 luminal domains: A also called the N-terminal
domain (NTD), C and 1. Both NTD and SSD domains bind cholesterol
[51,74]. Based on mutagenesis, model membranes and atomistic
simulations, a prevailing model of cholesterol transfer is currently
proposed: cholesterol-carrying NPC2 would be recruited to the
domain Cof NPC1 and would deliver the bound cholesterol to the NTD
through a “hydrophobic hand-off’ mechanism [74,75] (Fig. 2).
Another functional domain of NPC1 required for cholesterol export
has been identified in the SSD as a high affinity binding site for
U18666A [76], a cationic amphiphile compound that strongly inhibits
LDL-derived cholesterol exit from lysosomes thereby inducing NPC
phenotype [77] (Fig. 3A). Mutations in either NPC1 or NPC2 result in
abnormal lipid storage, essentially cholesterol in LE/Lys, a cellular
hallmark of Niemann-Pick C disease.

Oxysterol-Binding Protein (OSBP) and their associated proteins
(ORP) constitute a family of lipid binding/transfer proteins in eu-
karyotes [85—87]. In mammals, 12 Osbpl genes encode proteins of
this family and variants of different sizes increase the final number
of proteins to 16.

ORP proteins are mainly cytosolic proteins. However, most of
them are associated with the membrane of an organelle. They are
located at MCS implicating ER with other organelle limiting
membrane, thanks to FFAT domain that binds the ER-resident
vesicle-associated membrane protein (VAMP)-associated protein
(VAP) [88,89]. ORPs are characterized by a unique binding domain
to sterols (cholesterol as well as oxysterols), but also glycer-
ophospholipids, particularly phosphatidylserine [90,91] and phos-
phatidylinositol-4-phosphate (PI4P) [78,92,93].

OSBP, the first oxysterol binding protein described, exchanges
cholesterol with PI4P between ER and Golgi apparatus, by forming
MCS and tethering ER to trans Golgi (TGN) membranes [78,79]. This
phenomenon described as the OSBP cycle contributes to the
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maintenance of a cholesterol gradient among secretory organelle
membranes.

In the context of this review, endosomes have abundant con-
tacts with ER, and some members of the ORP families are involved
in these membrane contact sites, favoring cholesterol transport
between those organelles [94,95]. Among them, ORP1L, ORP5 and
ORP6, that are localized to LE membrane, mediate cholesterol
transfer from LE to ER at MCS [82—84] (Fig. 3B).

3.2. BMP modulation of NPC and ORP activities

Several lines of evidence have established that BMP is required
for an efficient cholesterol transport function of NPC proteins. The
potential relationships between BMP and NPC proteins initially
emerged from studies showing that BMP accumulates in liver and
spleen of NPC patients and in NPC mice models [16,22]. A functional
role of BMP in NPC-associated cholesterol defect has been first
proposed by Kobayashi et al. [96], showing that internalization of
anti-BMP antibody induced NPC phenotype in cultured BHK cells.
Studies from Gruenberg team have further shown that increase of
intracellular BMP, either by addition of exogenous BMP or drug-
induced, reduced cholesterol storage disorder in fibroblasts of
NPC patients and in liver of npcl’/’ mice [97,98]. In addition,
treatment with U18666A that induced NPC phenotype was asso-
ciated with an intracellular increase of BMP [97]. The authors
therefore raised the hypothesis that BMP becomes limiting in the
NPC disease upon excessive cholesterol overload. Whereas
Gruenberg’s studies have highlighted a functional crosstalk be-
tween BMP and NPC 1/2 proteins, it has been demonstrated that
BMP regulates cholesterol transport through direct interaction with
NPC2, independent of NPC1 [52]. Biochemical, structural and
atomic scale studies demonstrated that BMP stimulated the extent
and rate of cholesterol transfer by NPC2 through direct interaction
at the hydrophobic knob domain on the surface of NPC2 [52,99].
Interestingly, this region is also involved in the direct interaction
between the soluble protein NPC2 in the lumen and the trans-
membrane protein NPC1 in the limiting membrane of the LE/Lys
and thus, suggests its role in the subsequent cholesterol “hand-off”
mechanism [74]. This also highlights the importance of BMP not

e R ER

,

H X X B/F

<

N Golgi

OSBP ORP5/ORP1L/ORP6

Fig. 3. Schematic intracellular lipid flows regulated by sterol transfer proteins and their inhibitors (indicated in red): A) cholesterol efflux from LE/Lys: the cationic
amphiphilic drug U18666A binds to NPC1 and inhibits the LDL-derived cholesterol exit from lysosomes thereby inducing NPC phenotype [76,77]. BMP (green conical cylinder)
favors the acid hydrolysis of LDL-derived cholesterol ester [22] and stimulates the rate of cholesterol transfer by NPC2 [52,51]. B) Cholesterol transfer at MCS between ER and Golgi/
LE. OSBP exchanges cholesterol with PI4P between ER and trans Golgi (TGN) membranes [78,79]. Itraconazole (ITZ) and OSW-1 interact with OSBP and ORP4 disrupting OSBP lipid-
shuttling function [80]. TTP-8307 inhibits directly the OSBP-dependent activities [81]. ORP1L, ORP5 and ORP 6, localized to LE membrane, mediate cholesterol transfer from LE to ER

[82—84] and could be implicated in virus replication [54].
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only in cholesterol binding by NPC2 at the inner membranes of LE/
Lys, but also in NPC2-dependent cholesterol transfer to the N-ter-
minal domain (NTD) of NPC1 (Figs. 2 and 3A). The ability of NPC2 to
bind to BMP may also represent a way to bring the cholesterol-rich
and BMP-rich inner membranes of LE/Lys in proximity to the LE/Lys
limiting membrane, but how the cholesterol will exit the
compartment is still unknown.

Considering the putative involvement of NPC proteins in SARS-
CoV infection and the interaction of BMP with these proteins, we
raise the hypothesis that BMP could turn out to be a valuable target
for therapeutic strategy against SARS-CoV including SARS-CoV-2.

Recently, we demonstrated that ORP11 localizes to LE and Golgi
and modulates cholesterol egress from LE in macrophages [100].
Moreover, BMP favors the egress of cholesterol from LE via an
ORP11-dependent mechanism, resulting in a reduced production of
cytotoxic 7-oxysterols [100].

A member of the START protein family, STARD3, localized at the
endosomal compartment, participates in the formation of MCS
between ER to LE membranes. Cholesterol transfer from ER to LE
occurred via STARD3 interaction with VAPs [71].

3.3. Role of NPC and ORP in virus infection

NPC1 has recently been identified as a key player for infection by
Ebola virus (EBOV), an enveloped RNA virus from the filovirus family.
First evidence came from mutagenesis studies revealing that cells
mutated for NPC1, as well as fibroblasts isolated from NPC1 patients,
were resistant to EBOV infection in vitro [101]. Using NPC1~/~ mouse
models, it was further shown that NPC1 was required for replication
and pathogenesis of EBOV in vivo [102]. By contrast, NPC2 mutants
that exhibit NPC phenotype with cholesterol accumulation were not
protected, suggesting that NPC1 requirement in EBOV infection was
independent of cholesterol transport activity [ 101,102]. NPC1 binds to
the cleaved form of EBOV glycoprotein GP1, thereby regulating
membrane fusion and subsequent viral release into the cytoplasm of
infected cells [75,103—105]. Of interest, U18666A and other cationic
drugs inducing NPC phenotype were able to inhibit EBOV entry in a
NPC1 dependent manner but independent of GP1 binding to NPC1
[26]. NPC1 and NPC2 proteins are also involved in HIV infection. HIV
replication and release were significantly decreased in both NPC1
deficient cells and fibroblasts from NPC1 patients in association with
cholesterol and HIV Gag protein accumulation in LE/Lys [106]. How-
ever, Coleman and colleagues reported that HIV virions released by
cells lacking both NPC1 and NPC2 exhibit enhanced infectivity,
probably due to their higher cholesterol content [107]. These obser-
vations suggest a rather complex mechanism in which NPC1 would
favor HIV multiplication, although by controlling cholesterol trans-
port, NPC1/NPC2 would render the viral particles less virulent. In
contrast to Ebola virus, NPC requirement in HIV infection was shown
to be related to the regulation of cholesterol transport out of LE/Lys
[106,107].

To date, it is not known whether NPC1 is required for the entry
of SARS-CoV. However, NPC1 positive compartments were shown
to be an obligatory step for SARS-CoV intracellular development,
probably to access to the high cathepsin activity necessary for the
release of the viral nucleocapsid [108]. In a recent hypothesis paper,
Ballout et al. proposed that NPC1 positive LE/Lys would also be
mandatory for the successful infectivity of SARS-CoV-2 since it has
an infectious life cycle similar to SARS-CoV. In addition, the authors
highlight the potential role of NPC proteins for impairing SARS-
CoV-2 entry and subsequent internalization and trafficking, since
lipid rafts in which the ACE2 protein resides, are disrupted in NPC
disorder [25]. The use of NPC1 inhibitors or NPC-disease mimetic
drugs has been proposed as a potential relevant therapeutic strat-
egy against SARS-CoV-2 [26]. Of interest, U18666A was previously
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reported to inhibit type I feline coronavirus in relation with NPC1
dysfunction [109].

Virus replication occurs in the cytosol of host cells, using the ER,
the Golgi apparatus and endosomal membranes as replication
platforms at MCS. As sterol and phospholipids of infected cells are
highly implicated in the formation of the replication organelle,
recently, ORPs have been described to be implicated in viral repli-
cation process.

In 2009, the role of OSBP in proliferation of RNA viruses, Hep-
atitis C Virus (HCV), was pointed out [110]. OSBP interacts at the
Golgi membrane with NS5A, a non-structural protein of HCV,
involved in virus assembly, which is anchored to ER membrane via
VAP-A. OSBP is required for both replication and egress of HCV
particles [110]. OSBP lipid transfer property is essential for
cholesterol delivery to the HCV replication organelle in exchange
for PI4P [53], strongly implicated in viral replication [111]. Other
RNA viruses including poliovirus, dengue, picornavirus, as well as
Aichi virus require cholesterol supply by OSBP for replication
organelle efficiency [112—114]. ORP4, the closest OSBP homolog,
was implicated in HCV replication as a negative regulator via in-
hibition of NS5B activity, due to alteration of lipid homeostasis and
formation of lipid droplet [115]. This mechanism requires a close
collaboration between ORP4 and OSBP.

The formation of replication organelles requires the hijacking of
cellular lipid homeostasis and is presently explored as a target for
the development of antiviral compounds. Strating and coworkers
identified Itraconazole (ITZ), an antifungal drug, as inhibitor for
enterovirus replication, due to its interaction with OSBP and ORP4.
ITZ targets OSBP and ORP4 at the replication organelle, disrupting
OSBP lipid-shuttling function. Likewise, OSW-1, an antiproliferative
natural compound, interacts specifically with OSBP and ORP4 [80].
The antiviral activity is due to inhibition of 25-hydroxycholesterol
binding to OSBP and ORP4 [116]. TTP-8307, an enterovirus repli-
cation inhibitor, inhibits directly OSBP activity, through the PI4P-
OSBP pathway. Other viruses, as picornavirus encephalomyocar-
ditis virus and HCV, which activities are OSBP-dependent, are
sensitive to TTP-8307. Very recently, OSBP was hypothesized as a
potential target to SARS-CoV-2 infection [81] (Fig. 3B).

A study of flavivirus West Nile virus (WNV) showed that the
silencing of ORP1L decreased the replication of WNV as well as
other types of RNA viruses. ORP1L knockdown disturbed the
movement of LE and contacts between LE and ER, inhibiting the
transfer of cholesterol between these organelles [117]. This activity
is implicated in adenovirus infection [54], ORP1L controlling the
fusion and infection by the Ebola virus [118].

ORPs, due to their intracellular localization and lipid traffic
properties, are implicated in the replication of many viruses, so we
can postulate that they could be involved in SARS-CoV-2 infection.
Especially, ORP11, via its interaction with BMP and cholesterol,
could be hypothesized as a potential target of numerous viruses
including SARS-CoV-2.

3.4. BMP regulation of viral infection via other cholesterol pools

Besides regulating LDL-derived cholesterol exit out of LE/Lys,
BMP is involved in the distribution of LDL-derived cholesterol from
LE/Lys to other cellular compartments. Using anti-BMP antibody
that accumulated in LE in cultured macrophages, or a model of BMP
accumulation, we showed that BMP was involved in cholesterol
transport to PM and ER [23,119]. Of specific interest, we found that
cholesterol distribution in PM was altered in anti-BMP treated
macrophages, especially impairing HDL accessible pools [119].
Unpublished observations suggest that BMP regulates cholesterol
distribution in lipid rafts. We also reported that BMP accumulation
led to reduced expression of ABCG1 transporters and related
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cholesterol efflux to HDL [23]. Noteworthy, it was reported that
cholesterol content in lipid rafts would be determinant for SARS-
CoV-2 interaction with the cellular receptor ACE2 [120]. One may
therefore speculates that by regulating cholesterol-rich membrane
domains, BMP could impact on SARS-CoV-2 entry in host cells.
Also of interest is our finding that BMP regulates oxysterol
production, especially 7- and 25-hydroxycholesterol [100,121]. As a
matter of fact, these oxysterols have been shown to exert antiviral
activity against coronavirus and related virus like Ebola, Zika by
decreasing virus entry or replication [122—124]. This raises the
hypothesis of a role of BMP to favor this antiviral activity.

4. Conclusion

The unusual endosomal phospholipid BMP is crucial to maintain
the endosomal lipid storage capacity and trafficking as well as the
fine-tuning of cholesterol domains at the plasma membrane known
to control receptor signaling and cholesterol efflux [21—23]. Thus,
we speculated that BMP could influence SARS-CoV-2 infection in
different ways: 1) by regulating cholesterol-rich membrane do-
mains at the PM and thus, interfering with virus entry and subse-
quent internalization; 2) by controlling the lipid flows through the
endocytic pathway and thus, interfering with viral trafficking and
fusion events that are necessary for virus replication and matura-
tion. By controlling lipid homeostasis in host cell, BMP appears as a
“double face” partner of SARS-CoV-2 depending on its endosomal
content: 1) in physiological conditions and within a normal con-
centration range of BMP in the LE/Lys, BMP will favor virus entry
and infection and can be considered as a therapeutic target against
COVID-19; 2) in pathological conditions and accumulation of BMP
in the LE/Lys, the lipid will create deleterious conditions in the host
endocytic pathway and thus, could impaired virus infection.
However, the enzymes involved in the de novo biosynthetic
pathway of BMP are still unknown and little is known about its
physiological regulation. Therefore, it is not possible yet to favor its
putative antiviral activity against SARS-CoV-2 by genetic tools.

Since genetic NPC1 defect or drug-induced endosomal choles-
terol accumulation were shown to inhibit Ebola virus and VSV
infection [5,26], this can provide some useful clues for drug
development against COVID-19 as recently checked: 1) reduced
cholesterol content in plasma membrane to modify the lipid raft-
dependent ACE2 and TMPRSS2 activities [2,125] and thus, perturb
host cell docking and internalization of the virus [25,126]; 2)
modification of the acidic pH in endolysosome to modify trafficking
and viral particle fusion [20]; 3) increase of cholesterol and oxy-
sterol content in endolysosome to impede viral fusion and subse-
quent replication [27]. However targeting the endolysosomal
function that can be hijacked by the SARS-CoV-2 should be only
transient and reversible to avoid side effects on lipid metabolism.
This is particularly important knowing the high percentage of pa-
tients with metabolic disorders among the SARS-CoV-2 infected
patients presenting severe forms of COVID-19 [68].
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