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Common schizophrenia risk variants are enriched
in open chromatin regions of human glutamatergic
neurons
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The chromatin landscape of human brain cells encompasses key information to under-
standing brain function. Here we use ATAC-seq to profile the chromatin structure in four
distinct populations of cells (glutamatergic neurons, GABAergic neurons, oligodendrocytes,
and microglia/astrocytes) from three different brain regions (anterior cingulate cortex,
dorsolateral prefrontal cortex, and primary visual cortex) in human postmortem brain sam-
ples. We find that chromatin accessibility varies greatly by cell type and, more moderately, by
brain region, with glutamatergic neurons showing the largest regional variability. Transcrip-
tion factor footprinting implicates cell-specific transcriptional regulators and infers cell-
specific regulation of protein-coding genes, long intergenic noncoding RNAs and microRNAs.
In vivo transgenic mouse experiments validate the cell type specificity of several of these
human-derived regulatory sequences. We find that open chromatin regions in glutamatergic
neurons are enriched for neuropsychiatric risk variants, particularly those associated with
schizophrenia. Integration of cell-specific chromatin data with a bulk tissue study of schi-
zophrenia brains increases statistical power and confirms that glutamatergic neurons are
most affected. These findings illustrate the utility of studying the cell-type-specific epigen-
ome in complex tissues like the human brain, and the potential of such approaches to better
understand the genetic basis of human brain function.
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ARTICLE

ell-type-specific variations in the epigenetic regulation of

gene expression are critical to the development and

maintenance of a healthy human brain. As most disease-
and trait-associated variants affect the epigenetic regulation of
gene expression rather than protein-coding sequence!, studying
these processes at the cell-type-specific level is an important
means to further understand both fundamental brain biology and
the genetic basis of neuropsychiatric disease.

Despite its functional importance, the epigenome of the human
brain is still poorly understood. Even when available, the isolation
of intact cells from fresh brain specimens is technically challen-
ging and, although promising, the use of iPSC-derived brain cells
or organoids are not ideal proxies. Frozen archival tissue is more
readily available; however, the majority of cell surface markers are
lost upon thawing and, with them, an important means to isolate
particular cells of interest. Due to a shortage of antibodies specific
to nuclei of a given cell type, most previous studies have been
limited to examining bulk tissue, in vitro cultured cells, have
included only two broadly defined brain cell types (neurons and
non-neurons), or were performed on tissues derived from a single
brain region?4.

Previously, we generated an atlas of chromatin accessibility in
the human brain® using an anti-NeuN (RBFOX3) antibody to
distinguish neuronal from non-neuronal nuclei®. In the current
study, we expand the panel of antibodies used by including SOX6,
to distinguish GABAergic (GABA) (NeuN+/Sox6+) from glu-
tamatergic (GLU) (NeuN+/Sox6—) neurons’, and SOX10, to
distinguish oligodendrocytes (OLIG) (NeuN—/Sox10+) from
microglia/astrocytes (MGAS)8 (NeuN—/Sox10—). Nuclei isolated
in this manner from three different brain regions—anterior cin-
gulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and
primary visual cortex (PVC)—are subjected to ATAC-seq and the
resulting data are used to explore differences in chromatin
structure at the level of cell type and brain region. This approach
yields insights to differences in biological function and gene
regulation, and provides a map of open chromatin to
genetic variants associated with neuropsychiatric traits. We pro-
vide our raw data and gene browser tracks to the scientific
community.

Results
Extensive chromatin accessibility in glutamatergic neurons.
Fluorescence-activated nuclear sorting* (FANS) followed by
ATAC-seq was used to determine chromatin accessibility in four
cell types (GABA, GLU, OLIG, and MGAS) across three brain
regions (ACC, DLPFC, and PVC) of four individuals in early
adulthood (ages 20-28), who had not been diagnosed with neu-
ropsychiatric illness at the time of death, and all with a post-
mortem interval less than 24 h (Fig. 1a and Supplementary Fig. 1).
These data were processed bioinformatically including various
checks for sample mix-ups (Supplementary Fig. 2). During
quality control, one ACC-derived GABA sample was found to be
of poor quality as it showed a low final read count, a low fraction
of reads in peaks and was an outlier in a clustering analysis. After
removing this sample, the remaining 47 samples yielded a total of
3.10 billion reads (average 65.9 million) excluding duplicate reads
(mean 25.2%) and reads mapping to the mitochondrial genome
(mean 1.32%) (Supplementary Data 1). Genome-wide correla-
tions of read counts between samples indicated a high reprodu-
cibility (Supplementary Fig. 3a), and our samples showed a
median TSS read count enrichment of 4.2, comparable to similar
studies (Supplementary Fig. 3b).

Open chromatin regions (OCRs) were called after merging
samples from the same brain region and cell type (Methods). A
total of 177,178 non-overlapping OCRs were detected, jointly

covering 2.89% of the genome, with the highest coverage seen in
the GLU (Fig. 1b). On average, 62.4% of the OCRs were identified
in two or more sample groups, with promoter OCRs most
frequently called in multiple sample groups compared to non-
promoter OCRs (Fig. 1c). On average, 30.2% of the OCRs were
promoter OCRs (Fig. 1d, e), but this varied by cell type with the
lowest fraction in GLU, demonstrating more distal regulation in
those samples. Thus, GLU showed more extensive tracts of open
chromatin than other cell types, suggesting more complex
regulation of gene expression. To assess the function of these
OCRs we tested for enrichment in genetic variants affecting gene
expression in GTEx eQTLs%10. All cell types showed enrichment
in credible genetic variants (odds ratios: 1.6-2.9; empirical p <
0.05; Supplementary Table 1).

Cell type and regional differences in chromatin structure. To
quantitatively assess differences in chromatin structure between
cell types and brain regions, we generated a 177,152 OCRs by
47 samples count matrix for ATAC-seq reads that overlap the
consensus peak set. We examined how biological and technical
covariates affect chromatin accessibility (Methods; Fig. 1f). Cell
type and brain region jointly account for 57% of variability.
Fraction of reads in peaks was the only technical covariate
selected in a stepwise Bayesian information criterion approach,
accounted for 7.2%. In a model not accounting for brain region,
cell type alone accounted for 54% of the variance (Supplementary
Fig. 4), indicating that, compared to brain region, cell type has a
larger effect size on chromatin accessibility. Sampling error from
finite sampling depth and untested technical confounds likely
contribute to the residuals in the model. This includes covariates
relating to the individual person such as postmortem interval, but
as such covariates would show collinearity with “Person” in the
model, which explains only a modest fraction of the variance.
Such person-related covariates are unlikely to drastically affect
chromatin variability.

The count matrix was then adjusted for technical confounders
and used for t-SNE clustering (Fig. 1g), yielding a clear separation
between the cell types with the most marked difference between
neurons and non-neurons and, to a lesser extent, between cellular
subtypes (GLU from GABA and OLIG from MGAS). To further
quantify the differences in chromatin accessibility between
different groups of samples, we grouped the samples by cell type
and brain region (e.g. one group consisted of the four DLPFC-
derived OLIG samples). We then quantified the statistical
difference between all group pairwise comparisons by calculating
pil, which is an estimate of the fraction of OCRs showing a
difference in chromatin accessibility between the two sample
groups. The neuronal vs non-neuronal samples showed the
highest pil (median =72.3%, standard deviation =5.80%)
(Fig. 1h) followed, in decreasing order, by comparisons between
OLIG and MGAS, between GLU and GABA, and regional
differences between samples of a given cell type. Based on the pil
estimate, GLU showed the greatest regional variation in
chromatin accessibility.

To identify cell-specific OCRs, we conducted analyses of
differential chromatin accessibility in the four individual cell
types (GLU, GABA, OLIG, and MGAS) as well as more broadly
defined cell types (neuronal and non-neuronal). For the
individual cell types, OCRs were considered specific to a cell if
they were significantly more accessible in all pairwise compar-
isons against the remaining three cell types, thus yielding a non-
overlapping set of cell-specific OCRs. A similar approach was
used to define non-overlapping OCRs specific to neuronal and
non-neuronal samples (Methods). This yielded OCRs specific to
GLU (38,531), GABA (17,751), OLIG (11,030), MGAS (18,834),
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Fig. 1 Outline of study and chromatin accessibility across four cell types. a Study design: Dissections from three brain regions of four early adulthood
control subjects were obtained from frozen human postmortem tissue (ACC: anterior cingulate cortex; DLPFC: dorsolateral prefrontal cortex; and PVC:
primary visual cortex). Nuclei were subjected to fluorescence-activated nuclear sorting to yield four-cell subpopulations, followed by ATAC-seq profiling
and subsequent downstream analyses to identify cell type-specific open chromatin regions and differences in biology. b Genomic coverage in base pairs of
identified OCRs by cell type. € Number of OCRs called per sample groups. For the individual cell types three overlaps mean that the OCR was detected in all
three brain regions and for “All" 12 overlaps means the OCR was detected in all brain regions and cell types. d Genomic annotation of consensus OCRs.
OCRs within 3 kb of a TSS were considered promoter OCRs. e Fraction of OCRs considered as promoter OCRs by cell type. f Violin plot that illustrated the
proportion of variation in chromatin accessibility explained by biological and technical covariates. The fraction of reads in peaks can be considered a signal
to noise parameter. Numbers in parentheses indicate median. g t-SNE clustering of chromatin accessibility using adjusted read counts in 47 independent
samples. h Quantification of statistical differences between various cell types by brain region comparisons using the pil metric. The center shows the
median, the box shows the interquartile range, whiskers indicate the highest/lowest values within 1.5x the interquartile range, and potential outliers from
this are shown as dots. From left to right, the number of independent contrasts represented by each boxplot are: 54, 9, 9, 3, 3, 3, and 3. The pil estimates
the proportion of non-null tests. The boxplot shows the pil estimate between the relevant sample groups. For instance, “Between OLIG and MGAS" are all
pairwise comparisons of the three OLIG sample groups (ACC/DLPFC/PVC) and the three MGAS sample groups (ACC/DLPFC/PVC). OCR open
chromatin region, GLU glutamatergic neurons, GABA GABAergic neurons, OLIG oligodendrocytes, MGAS microglia and astrocytes, ACC anterior cingulate
cortex, DLPFC dorsolateral prefrontal cortex, and PVC primary visual cortex.
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Fig. 2 Cell-specific OCRs, overlap with DNAse-seq, and biological functions. a Examples of genes with cell-specific open chromatin. Cell types from top
to bottom are; glutamatergic neurons, GABAergic neurons, oligodendrocytes, and microglia/astrocytes. b Overlap between cell-specific open chromatin
(ATAC-seq) and 127 samples from REMC (DNase-seq). The overlap was calculated by the Jaccard index of the base pair overlap. Samples from REMC
were aggregated into four groups: brain tissue, brain-derived cells, immune cells/tissues, and other non-brain cells/tissues. The center shows the median,
the box shows the interquartile range, whiskers indicate the highest/lowest values within 1.5x the interquartile range, and outliers from this are shown as
dots. The number of independent sample overlaps represented by the boxplot groups are as follows: Brain tissue: 10, Brain cells: 6, Immune: 30, and Other:
81. To assess the significance of the differences in overlap for our cell-specific OCRs with the four REMC categories, a multiple regression analysis with the
“Other” category as the intercept was done. P-values indicate significance of enrichment/depletion against the other category uncorrected for multiple
testing. ¢ Overlap between cell-specific open chromatin (ATAC-seq) and gene sets representing biological processes and pathways. Only those that were
within the top ten most significant gene sets in one or more ATAC-seq categories are shown. Pathways were clustered by the Jaccard index using the
WardD method. “#": one-sided binomial FDR < 0.001, “-": one-sided binomial FDR < 0.05, “Bi": BIOCARTA, “"GQO": gene ontology, "KG": KEGG, “Re":
REACTOME, “Reg.": regulation, “Pos.” positive, “Neg.” negative.

neurons (105,550), and non-neurons (34,282) at a false discovery
rate (FDR) of 5% (Supplementary Fig. 5; Supplementary Data 2).

For downstream analyses, we analyzed the cell and region-
specific OCRs as well as all OCRs discovered in a given cell type

The cell specificities identified here were highly concordant with
other ATAC-seq and RNA-seq studies (Supplementary Fig. 6).
We show examples of regions harboring cell-specific open
chromatin in Fig. 2a. Analyzing regional OCR differences in
each cell type yielded statistically significant differences only for
GLU (Methods). Here, 258 OCRs showed a higher accessibility in
ACC, 2807 in DLPFC, and 770 in PVC (Supplementary Data 3).

(e.g. including non-specific OCRs), due to the complementary
nature of these approaches.

Biological interpretation of open chromatin in brain cells. To
investigate how our data compared to existing epigenomic data,
we computed the overlap of our OCRs with open chromatin from
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Table 1 Cell-specific transcripts identified from open
chromatin.

Cell type Protein coding IncRNA microRNA
Neuronal 4075 3417 87
Glutamatergic 807 123 8
GABAergic 834 698 12
non-Neuronal 6289 4485 89
Oligodendrocyte 2318 1386 25
Microglia/astrocytes 1887 1957 33

To infer the transcriptome from chromatin accessibility, genes were linked to cell-specific open
chromatin regions by direct overlap of the TSS. “Neuronal” is not simply the sum of
“Glutamatergic” and “GABAergic”, as the latter two exclude chromatin that are not specific to
either neuronal subtype (Methods). Likewise, “non-Neuronal” is not the sum of the two
constituent cell subtypes. For microRNA host genes, only genes encoding one or more
conserved microRNA were considered.

DNase-seq as well as chromatin states from the Roadmap epi-
genomics mapping consortium®!! (REMC) (Fig. 2b and Sup-
plementary Fig. 7). In terms of the Jaccard index, open chromatin
and active chromatin states identified in REMC brain-related
samples showed a higher overlap with our cell-specific OCRs than
non-brain related samples. Comparing to the genomic back-
ground, our cell-specific OCRs showed 5-27 fold enrichments in
the brain related REMC DNase samples (Supplementary Fig. 7b).
Opverall, the OLIG and MGAS specific OCRs showed the highest
overlap with REMC open chromatin, indicating that studying
bulk tissue might be less effective at capturing GLU and GABA
specific open chromatin than their non-neuronal counterparts.
Interestingly, the MGAS specific OCRs showed a comparatively
high overlap with open chromatin of immune-related samples,
likely due to the myeloid origin of microglia and the extent of
their functional similarity!2.

To examine the overlap of OCRs with previously reported cell
type and brain region-specific markers and genes involved in
biological processes, we implemented the gene set enrichment
analysis methodology from GREAT!3 (Methods). Here, the cell-
specific OCRs were found to overlap relevant cell-type-specific
genes!41> (Supplementary Fig. 8) with, for example, GABA OCRs
primarily overlapping interneuron specific genes. Similarly, our
cell-specific OCRs showed enrichment in genes previously
identified from bulk tissue to show brain region specificity!®
(Supplementary Fig. 9). It is possible that the ability to identify
brain region-specific genes in bulk tissue is affected by differences
in cell-type composition (e.g. the ratio of neuronal to non-
neuronal cells). Finally, cell-type-specific OCRs overlapped genes
of relevant biological functions (Fig. 2c and Supplementary
Fig. 10) with, for example, “Voltage Gated Potassium Channels”
in GLU; “GABA Receptor Activation” in GABA; “Axon
Ensheathment in Central Nervous System“ in OLIG; and
“Immune System Development® in MGAS. For the comparatively
few regionally specific GLU OCRs, enrichments were found for
mostly plausible pathways, though none survived multiple testing
(Supplementary Fig. 11).

Inferring protein, IncRNA, and microRNA activity. Isolating
human brain cells for transcriptomic studies is challenging and,
although nuclear isolation from frozen specimens is possible (as
in this study), in those cases, the cytoplasmic transcriptome is
lost. Despite these challenges, inferring the complete cell-specific
transcriptome from the epigenome is of great interest as it has the
potential to yield biological insights, including for rare and
unstable transcripts. In an effort to achieve such an inference, we
overlapped the OCRs with TSSs of microRNA!7, IncRNA!8, and
protein-coding genes, and evaluated cell specificity from the
relative accessibility in the four cell types. This approach revealed

thousands of cell-specific genes (Table 1 and Supplementary
Data 4). This cell-specific map of microRNAs includes mir-219a-
2 and mir-338 as the most OLIG specific genes, both of which
have previously been shown to play a central role in oligoden-
drocyte development and function!. No microRNA showed
extreme specificity to GLU or GABA but the TSSs ascribed to
mir-129-2 and mir-133a-1 showed accessibility predominantly in
the former, whereas those for mir-23c and mir-124-1 dominated
in the latter. We also note that top IncRNAs in our mapping
plausibly overlap with cell/tissue specificity in the datasets from
which they were derived18. Finally, the protein-coding gene map
showed cell-specific enrichments in biological functions similar to
those identified by the GREAT analysis (data not shown). This
alternative approach to gene set enrichment analyses, however,
seemed less powerful.

Cell-type-specific transcription factor activities. To interrogate
gene regulation in the different samples we conducted tran-
scription factor (TF) footprinting analyses®® to predict binding
within the identified OCRs. We used 431 TF motifs that were
aggregated from a meta-database?! and jointly represented 807
TFs (Methods). As an estimate of the impact of each transcription
factor on regulating a gene, we weighed each TF binding sites by
the distance to the TSS and the probability of the binding site
being bound. We next performed pairwise comparisons of tran-
script regulation using the mean rank (Methods) for protein-
coding genes (Fig. 3a), IncRNAs (Supplementary Fig. 12), and
microRNAs (Supplementary Fig. 13). For protein-coding genes,
this highlighted, amongst others, BDNF in GLU; DLX6 in GABA;
SOX8 in OLIG; and ZIC5 in MGAS. Interestingly, many of the
top-ranking GABA-associated genes were members of the DLX
family of homeodomain transcription factors which are known to
play important roles in the development and function of
interneurons?2.

To identify the transcription factors that potentially mediate
cell-specific gene regulation, we calculated the overlap of
footprinted transcription factor binding sites with cell-specific
OCRs and compared this to the overlap with OCRs specific to the
other cell types (Fig. 3b). It should be noted that there is extensive
sharing of binding motifs between transcription factors within
transcription factor families?!, so it is often not possible to
determine which TF(s) of a TF family binds to a given binding
site. Still, there is previous evidence to support some of the
identified TF/cell associations. In particular, we note that: the
bZIP TFs Jun/Fos jointly form the APIl-complex which is
important for neuronal function?3; the RFX and IRX families of
TFs are further involved in neuronal function/development242>;
the bHLH TFs are important for neurogenesis?®, and we note that
NEURODG6 shows chromatin accessibility and regulation highly
specific to GLU (Fig. 3b); the homeodomain TFs were associated
with neurons and LHX6/8, in particular with GABA. Interest-
ingly, LHX6 shows highly specific chromatin accessibility in
GABA and has been shown to regulate interneuron migration?;
finally, the Ets family of TFs, though involved in a broad range of
activities, have been shown to be important for microglia
function?8.

Evaluation of putative cell-type-specific enhancers. Next, we
wanted to validate the enhancer activity for a subset of cell-
specific OCRs. Putative enhancer sequences for each cell type
were selected if: 1) they showed cell-type specificity, 2) they were
distal to TSS for a transcript that had chromatin accessibility in
the TSS for the given cell type, 3) they were near to only one
gene, 4) the nearby transcript had literature support for expres-
sion in the corresponding cell type. This resulted in putative
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enhancer sequences for BDNF (GLU), DLX6 (GABA), CNDP1
(OLIG), and TYROBP (MGAS) transcripts.

These sequences were then evaluated using mouse transgenesis
(Methods, Supplementary Fig. 14, Table 2). Here 15-22% of live
pups born carried the transgene, at least five transgene positive
animals were evaluated for each putative enhancer and, on
average, 68% showed reporter gene activity (mCherry).

For the BDNF OCR, all mCherry(+) cells expressed the neuronal
marker NeuN, and the majority of the cells were Bclllb(+).
The majority of immunopositive cells were in layer V of the cortex

Fig. 3 Gene regulation inferred from genomic footprinting. a Identification
of protein-coding genes showing cell-specific regulation. Aggregated
ranking of pairwise comparisons of protein-coding gene regulation between
neuronal/non-neuronal cells and each of the four different cell types. In
neuronal/non-neuronal cell comparison, positive and negative values
indicated a higher burden of gene regulation in neuronal and non-neuronal
samples, respectively. For the GABA, GLU, OLIG, and MGAS analyses, each
of the four different cell types was compared to the remaining three cell
types. Positive values indicated a higher burden of gene regulation in the
given cell type and negative value a lower burden of gene regulation than in
the other cell types. b Top 10 most cell-specific TF motifs based on fold
enrichment in cell-specific OCRs. Fold enrichments for a given cell type
were determined from the number of footprinted binding sites overlapping
cell-specific OCRs compared to the number of footprinted binding sites
overlapping OCRs specific to the other cells. The statistical significance of
the enrichments was assessed using a one-sided binomial test. All
associations illustrated here were significant after Bonferroni corrections
for multiple testing. The line width indicates the log2 fold enrichment.
Motifs are grouped based on the TF family to which they belong.

and in the hippocampus (Fig. 4a and Supplementary Fig. 15), which
are known sites of endogenous BDNF expression?®. For the DLX6
OCR, 40% of the mCherry(+) cells were positive for GABA, and in
all but one founder, mCherry was seen exclusively in cells
expressing the neuronal marker, NeuN. These included variable
percentages of neurons double-positive for mCherry, and either
somatostatin (Sst), neuropeptide Y (Npy), parvalbumin (Parv), and
vasoactive intestinal peptide (Vip) (Fig. 4b and Supplementary
Fig. 16). Comparatively few founder mice were positive for the
mCherry reporter (6/11), and a considerable variability in the
expression pattern between animals was noted. For the CNDP1
OCR, All mCherry(+) cells were positive for the oligodendrocyte
marker Olig2, and approximately 40% of the oligodendrocytes were
mCherry(+) in the cortex and corpus callosum (Fig. 4c and
Supplementary Fig. 17). Finally, for the TYROBP OCR, many
mCherry(+) cells unexpectedly expressed the neuronal marker
NeuN, and were negative for microglial and astrocytal markers
(Ibal and GFAP, respectively) (Supplementary Fig. 18). In
summary, the putative GLU and OLIG enhancer candidates
showed activity with the expected regional and cell-type specificity.
For the putative GABA enhancer, activity was seen in GABAergic
neurons, but not exclusively, and the putative microglial enhancer
unexpectedly displayed some activity in neurons.

Common genetic variants show cell-type-specific enrichment.
Given that most disease- and trait-associated genetic variants
affect the gene regulation of gene expression rather than protein
structure!, we used an LD-score partitioned heritability
approach3 to explore the overlap of OCRs with genetic variants
associated with 30 neuropsychiatric and unrelated traits, while
correcting for the genomic background (Fig. 5a and Supple-
mentary Fig. 19). Among our results, we found that variants
associated with SCZ, education years and intelligence were enri-
ched in OCRs specific to GLU. As a negative control, genetic
variants associated with inflammatory bowel disease, height, and
coronary artery disease did not show any enrichment. Some
neuropsychiatric traits did not show enrichment in our open
chromatin regions, which might result from a lack of power in the
GWAS, lack of power in the LDSc approach, or the limited
genomic extent of our epigenomic annotations.

To further explore the overlap with SCZ risk, we looked at the
regression coefficient normalized by the per-SNP heritability of
the trait (Methods) for different sets of OCRs. From this study,
and our previous study of multiple brain regions, we considered
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Table 2 Validation of putative enhancer regions by mouse transgenesis.

Reporter gene

Expression pattern Cell/region specificity

BDNF glutamatergic 6/14.6% 5/6
DLX6 GABAergic 11/21.2% 6/
CNDP1 oligodendrocytes 6/22.2% 4/6
TYROBP microglia/astrocytes 10/20.8% 4/5

5/5 identical Neurons in cortical layer V and hippocampus

Variable Neurons, 40%+ GABAergic, variable
subtypes

4/4 identical Oligodendrocytes

3/4 identical Neurons

where 5/10 were evaluated.

Four open chromatin regions showing cell specificity in the human brain were evaluated for enhancer activity in mice, here named by their putative target genes. The cell specificity in humans of the open
chromatin region is shown in the leftmost column. Genomic locations of the OCRs are provided in Methods. mCherry was used as a reporter. All positive founders were evaluated except for TYROBP

both cell type and cell/region-specific OCRs. We also included
two studies that utilized bulk, unsorted, tissue samples from fetal
and adult human tissue3!32. For SCZ (Fig. 5b), the signal seems
to almost exclusively be neuronal and, among neurons, GLU-
specific OCRs showed the highest enrichment. Bulk DLFPC and
fetal brain also showed a significant, albeit less marked,
enrichment than the GLU-specific OCRs. For Alzheimer’s disease
(AD) (Fig. 5¢), we saw no enrichment in any of the neuronal or
bulk epigenomes, whereas there was a tendency for enrichment in
those of non-neurons. Specifically, heritability for AD seems to be
very highly enriched in microglia- and astrocyte-specific open
chromatin, albeit at nominal significance, consistent with a
purported causative role of microglia in the trait33-34. Jointly, this
highlights the importance of studying tissue- and cell-type-
specific gene regulation to properly interrogate epigenomic
disease signatures.

The schizophrenia epigenome implicates glutamatergic neu-
rons. Given that schizophrenia risk genetic loci were significantly
enriched within GLU-specific OCRs, we next explored whether
chromatin accessibility was altered in cases with schizophrenia
compared to controls. For this, we employed a recently published
chromatin accessibility analysis from the CommonMind Con-
sortium313> of homogenate DLPFC tissue from 121 cases with
schizophrenia and 126 controls. We note that the original study
did not consider correction for heterogeneity in cell-type com-
position and it did not reveal disease signatures in chromatin
accessibility3!. We examined the utility of our cell-specific dataset
as a reference panel to perform deconvolution analysis and to
improve the power for differential analysis in the homogenate
study by first removing heterogeneity due to differences in cell
type composition (Methods, Supplementary Data 5). We identi-
fied individual heterogeneity in cell-type composition, which was
not significant among cases and controls, suggesting that differ-
ences in cell composition among samples may be due to dissec-
tion biases (e.g. different ratio of gray to white matter) rather than
disease effects (Supplementary Fig. 20). The selected cell type
estimates that we used as covariates in the differential analysis
among schizophrenia cases and controls explained overall 10.9%
of variation in chromatin accessibility (Fig. 6a; Methods) and
increased statistical power to identify disease signatures (Fig. 6b).
The statistical difference between schizophrenia and controls
estimated by pil was increased by 52% when cell composition was
considered (pil =7.3%) compared to the model where it was not
(pil =4.8%). We then examined whether OCRs for a given cell
type showed a higher statistical difference between SCZ and
controls. We found that GLU-specific OCRs showed the highest
statistical difference (pil =7.6%) (Fig. 6b), with a 24% increase in
the pil estimate compared to GABA (pil =6.3%), OLIG
(pil =5.7%) and MGAS (pil = 6.4%). Overall, we increased the
power in a homogenate study by utilizing our reference OCR
panel and identified GLU as the most impaired in schizophrenia
with respect to chromatin accessibility.

Discussion

Understanding spatial differences in epigenome regulation of the
human brain tissue is a major challenge due to heterogeneity in
cell-type composition. Here we examined cell type and brain
region variability of chromatin accessibility by generating ATAC-
seq libraries in four broadly defined cell types across three cortical
brain regions. Based on clustering and differential analyses, we
found chromatin accessibility to vary markedly by cell type and
moderately by brain region. For instance, an oligodendrocyte
from the DLPFC is very similar to one from the PVC but vastly
different from a GABAergic neuron. Among all cell types studied,
glutamatergic neurons showed the largest regional variation in
chromatin structure and had the highest fraction of chromatin
accessible regions that were distal to TSS, suggesting regulatory
mechanisms with higher complexity. A larger sample size would
probably lead to identification of more regional variation, but
based on the variance partitioning and pil estimates will be much
subtler than cell-type differences.

We linked OCRs to transcripts by direct overlap with their TSS
as well as by inferring transcription factor regulation. This
allowed us to predict cell-specific transcript expression and reg-
ulation for protein-coding genes, as well as IncRNA and micro-
RNA, at cellular resolution. We acknowledge that this is an
indirect way to catalog cell-specific transcripts; however, other
approaches, such as nuclear transcriptome profiling, suffer from a
variety of limitations such as detection bias for transcripts with
lower abundance, including IncRNAs.

Our ATAC-seq experiments identified cell and spatially spe-
cific OCRs, some of which represent enhancer sequences. Func-
tional validation of such genome-wide enhancer candidate maps
are needed, but few such studies are available. In an investigation
of retinal rods and cones?®, validation via electroporation was as
low as ~25%. In this study, we improved the efficacy of functional
validation through transgenesis by including enhancer-blocking
insulators to prevent interactions with chromatin surrounding the
transgene insertion site. This led to successful validation of
enhancer activity in 75% of OCRs tested.

Possible explanations for the lack of validation for the MGAS
(TYROBP) OCR include: (1) interspecies differences; (2) specific
promoter-enhancer interactions are lost when only transfecting
the putative enhancer; (3) conformational/insulator differences
between the in situ enhancer and the transgenic mice; (4)
uncertainty of the original OCR function; and (5) insertional
effects overcame the CTCG insulators in the vector. Overall, our
results argue that coupling ATAC-seq with functional validation
through transgenesis provides a powerful means to identify cell-
specific enhancer activity. These enhancer sequences can be used
as drivers for molecules such as EGFP and Cre recombinase to
trace specific neuronal connections, suppress the expression of
specific genes, and modulate activity via optogenetics and
chemogenetics.

Common risk variation for complex, neuropsychiatric traits are
located within noncoding regions of the genome. Overlap of

| (2020)11:5581 | https://doi.org/10.1038/s41467-020-19319-2 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

GABA

OLIG

MGAS

BDNF

GABA

OLIG

DLX6-AST =+ —

DLX6
C
GABA
ouic '
MGAS
o (;NDP1;

b
Merge
Merge
MGAS
B 25pm

1200um

Fig. 4 Transgenic evaluation of putative cell-type-specific enhancers. Left column: Cell-type-specific OCRs identified by ATAC-seq and nearby
genes: (a) glutamatergic (BDNF), (b) GABAergic (DLX6), and (¢) oligodendrocytes (CNDPT). The horizontal gray bars denote OCR assayed in directed
transcription via transgenesis. Right: Representative immunofluorescent images showing mCherry (red) expression in 30 um thick sagittal sections from
(@) BDNF and (¢) CNPDT1 transgenic mice. In (a), specific mCherry expression is identified in Layer V of the cortex and in hippocampus. In (b) representative
images of mCherry (red) staining in the cortex of DLX6 transgenic mice (top panel) and double labeling with NeuN (green; bottom panel), showing
expression restricted to neurons and scattered in the cortex, similar to the distribution of GABAergic interneurons. In (¢) mCherry expression is shown to
be restricted to white matter. Four image frames of three independent brain slices per each mouse were analyzed (BDNF enhancer n = 5; DLX6 enhancer

n = 6; CNDP1 enhancer n = 4).

common risk variation with cell-specific epigenome sequences
has the potential to identify cell types and molecular mechanisms
that are relevant for the etiopathogenesis of a given disease. We
previously demonstrated a significant enrichment of neuronal
OCRs with schizophrenia and no significant overlap with Alz-
heimer’s disease®. Here, we improved the resolution of these
results by identifying glutamatergic cortical neurons, followed by
GABAergic interneurons as the cell types most relevant to the
etiology of schizophrenia. This is consistent with a recent study
that leveraged cellular taxonomy of the brain from single-cell
RNA-sequencing and mapped schizophrenia risk loci to similar
cortical cell types’”. In addition, we identified a nominally

significant enrichment for microglia/astrocyte OCRs in Alzhei-
mer’s disease, which is consistent with a recent study implicating
microglia enhancers in Alzheimer’s disease38

The cell-specific map of chromatin accessibility generated in
this study can be used to deconvolute bulk tissue ATAC-seq data
from the human brain cortex. Estimated cell type composition in
bulk tissue data explained overall ~10% of variation in chromatin
accessibility. By correcting individual heterogeneity in cell type
composition, we substantially increased power to perform dif-
ferential chromatin accessibility analysis among schizophrenia
cases and controls. In addition, by using cell-specific OCRs,
we ranked cell types based on the fraction of OCRs showing a
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heritability. “Multiregion” was our previous study of neuronal and non-Neuronal cells across multiple regions of the adult human brain. The region-specific
OCRs are neuronal, as only neuronal cells showed a marked region variability. In all cases, the overlap was assessed using LD-score partitioned heritability
where the OCRs were padded with 1000 bp to also capture adjacent genetic variants and corrected for the general genomic background. "#": Significant for
enrichment in LD score regression after FDR correction of multiple testing across all tests in the plot (Benjamini & Hochberg); "-": Nominally significant for
enrichment; DLPFC: dorsolateral prefrontal cortex. Error bars indicate standard errors from LD score regression using respectively 1,021,224 and
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parentheses indicate the median. b In various scenarios the proportion of non-null tests, pil, was estimated for OCRs. Higher estimates indicate more
significant differences between schizophrenia cases and controls. First, the effect of deconvolution on the pil was assessed, and the addition of a
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difference in chromatin accessibility between schizophrenia cases
and controls. Overall, our analysis highlighted glutamatergic
cortical neurons as the most perturbed cell type in schizophrenia
based on two orthogonal approaches: (1) overlap with common
genetic risk variation and (2) differential chromatin accessibility
analysis. This provides additional support to the glutamate
hypothesis of schizophrenia and is consistent with morphological
alterations of dendrites of glutamatergic neurons in the cerebral
cortex of individuals with schizophrenia3®.

Broader insight into gene regulation in the human brain could
be gained by studying additional brain regions in additional cell
types and at different developmental time points. It would be
interesting to assay the epigenome of dopaminergic neurons and
particularly their involvement in schizophrenia. We do, however,
also note that our study encompassed the DLPFC, which has long
been implicated in schizophrenia*’. Our MGAS signal is a mix-
ture of microglia and astrocytes, with the former being more
prevalent!®, this likely biases towards this cell type, however, we
did note a strong signal for both known microglia and astrocyte
genes. Single-cell assays such as scATAC-seq provide unpar-
alleled resolution to identify cell-specific OCRs; however,
scATAC-seq data are very sparse with only one copy of each
chromosome per cell. Therefore, the FANS-generated OCRs of
this study will provide additional support to perform de novo
taxonomy using single-cell data. Furthermore, chromatin acces-
sibility could be studied in combination with additional epige-
nomic assays as well as gene expression, although the latter would
suffer from the loss of cytoplasmic RNA when studying nuclei
derived from frozen tissue specimens. Finally, future studies could
examine OCR profiles of glutamatergic neurons in individuals
with schizophrenia to elucidate which molecular mechanisms are
affected.

In conclusion, the present study illustrates how studying open
chromatin in different cell-types can be used to better understand
gene regulation in the human brain and to interpret the impact of
genetic variants associated with neuropsychiatric traits. We pro-
vide our results as a resource to further study gene regulation
both genome-wide and at the single-gene level.

Methods

Description of the postmortem brain samples. Brain tissue was obtained from
four postmortem donors, three males and one female, ages 20-28 from a single
brain collection. All four subjects (Supplementary Data 1) were of Caucasian
ancestry based on self-report and genetic markers of ancestry. Samples were col-
lected with a postmortem interval of less than 24 h at autopsy from The Depart-
ment of Forensic and Insurance Medicine, Semmelweis University, Hungary, as
previously described*!. Informed consent from legally authorized representatives
was obtained at the time of autopsy. The forensic pathologist performing the
autopsy determined the cause of death. All were determined to have died a sudden,
natural death. The subjects had no history of illicit substance abuse, alcohol abuse,
or psychiatric disorders. The subjects had a negative toxicology and were not taking
neuropsychiatric medications (including benzodiazepines, anticonvulsants, any
antipsychotics, antidepressants, or lithium). To the best of our knowledge these
sample characteristics should jointly preclude selection biases that would affect the
postmortem brain analyses.

From each subject a dissection was obtained from the anterior cingulate cortex,
the dorsolateral prefrontal cortex, and the primary visual cortex (Supplementary
Fig. 1) yielding a total of 12 dissections. The Department of Forensic and Insurance
Medicine, Semmelweis University provided ethical oversight. CerebroViz was used
to illustrate the locations of these three brain regions*2.

FANS sorting of four different cell types. From each dissection, 50 mg of frozen
brain tissue was homogenized in cold lysis buffer (0.32 M Sucrose, 5 mM CaCl,,
3 mM Magnesium acetate, 0.1 mM, EDTA, 10 mM Tris-HCI, pH8, 1 mM DTT,
0.1% Triton X-100). Samples were then filtered through a 40 pm cell strainer, and
the flow-through was underlaid with sucrose solution (1.8 M Sucrose, 3 mM
Magnesium acetate, 1 mM DTT, 10 mM Tris-HCI, pH8) and subjected to ultra-
centrifugation at 107,000g for 1 h at 4 °C. Pellets were resuspended in 500 ul DPBS
and incubated in BSA at a final concentration of 0.1% together with anti-NeuN
antibody (1:1000, PE conjugated, Millipore Cat FCMAB317PE), anti-SOX67 and

anti-SOX108. Following incubation in primary antibodies, samples were subjected
to a second ultracentrifugation step prior to incubation in secondary antibodies?.
Preceding FANS sorting, DAPI (Thermoscientific) was added to a final

concentration of 1 pg/ml. GABAergic neurons (DAPI4+NeuN+ SOX6+),
Glutamatergic neurons (DAPI+NeuN+ SOX6—), oligodendrocytes (DAPI+NeuN—
SOX10+) and microglia/astrocytes (DAPI4+NeuN— SOX10—) nuclei were sorted
into individual tubes (pre-coated with 5% BSA) using a FACSAria flow cytometer
(BD Biosciences) equipped with FACSDiva Version 8.0.1 software. Hence, each of the
12 dissected tissue samples yielded four different cell types giving a total 48 samples.

Generation of ATAC-seq libraries and sequencing. ATAC-seq reactions were
performed on the 48 samples using an established protocol** with minor mod-
ifications. In brief, 75,000 sorted nuclei were centrifuged at 500g for 10 min at 4 °C.
Pellets were resuspended in transposase reaction mix (25 uL 2x TD Buffer (Illu-
mina Cat #FC-121-1030) 2.5 uL Tn5 Transposase (Illumina Cat #FC-121-1030)
and 22.5 pL Nuclease Free H,O) on ice. Reactions were incubated at 37 °C for
30 min and then purified using the MinElute Reaction Cleanup kit (Qiagen Cat
#28204), eluting in 10 uL of buffer EB. Following purification, library fragments
were amplified using the Nextera index kit (Illumina Cat #FC-121-1011) under the
following cycling conditions: 72 °C for 5 min, 98 °C for 30 s, followed by thermo-
cycling at 98 °C for 10s, 63 °C for 30s, and 72 °C for 1 min for a total of five cycles.
To prevent saturation due to over-amplification, a 5 pl aliquot was then removed
and subjected to qPCR for 20 cycles for calculation of the optimal number of cycles
needed for the 45 uL reaction that remained. How many additional cycles were
needed was determined by first plotting linear Rn vs. Cycle and secondly calcu-
lating the cycle number corresponding to a quarter of the maximum fluorescence
intensity. Adding two to four cycles to this estimate was found to yield optimal
libraries, as evidenced by analysis on Tapestation D5000 ScreenTapes (Agilent
technologies Cat# 5067-5588). Following amplification, libraries were resolved on
2% agarose gels and fragments ranging in size from 100-1000 bp were excised and
purified (Qiagen Minelute Gel Extraction Kit—Qiagen Cat#28604). Before
sequencing, libraries were quantified with the Qubit dsDNA HS assay kit (Invi-
trogen Cat#Q32851) and using quantitative PCR (KAPA Biosystems Cat#KK4873).
Fragment sizes were estimated using Tapestation D5000 ScreenTapes (Agilent
technologies Cat# 5067-5588) and libraries were sequenced on Hi-Seq2500 (Illu-
mina) obtaining 2x50 paired-end reads.

Processing of data. An outline of the pipeline for the data processing is provided
in Supplementary Fig. 2 and detailed in the following. R was used for job sub-
missions and statistical analyses unless otherwise noted.

Alignment of reads. Sequenced reads were delivered by the sequencing facility
already demuxed and with adaptors trimmed. FASTQ files were matched to the
respective samples based on pooling IDs and barcodes. The one to one match and
file integrity was confirmed using MD5 checksums.

Reads were subsequently aligned to the hgl9 reference genome with the
pseudoautosomal region masked on chromosome Y with the STAR aligner#
(v2.5.0) and the following parameters:

--alignIntronMax 1

--outFilterMismatchNmax 100

--alignEndsType EndToEnd

--outFilterScoreMinOverLread 0.3

--outFilterMatchNminOverLread 0.3.

For STAR and other java programs, java v1.7.0 was used. The alignment yielded
a BAM file for each sample consisting of mapped paired-end reads sorted by
genomic coordinates. From these files, reads that mapped to multiple loci were
removed using samtools#>, duplicated reads were removed with PICARD (v2.2.4;
http://broadinstitute.github.io/picard), and, finally, reads mapping to the
mitochondrial genome were removed. On this file, quality was assessed using
Qualimap, fastqc, and phantompeakqualtools. For the latter and other programs in
python v2.7.14 was used.

Genotype calling. Genotypes were called using GATK (v3.5.0)4%, and the resultant
files were compressed using bamUTil. In brief, the following steps were performed:
(1) indel-realignment; (2) base score recalibration; and (3) joint genotype calling
across all samples for variants with a phred-scaled confidence threshold > = 10. All
clustered variants, variants in ENCODE blacklisted regions of the genome*’, and
variants not in dbSNP v1468 were not considered. Read depth was not used as a
filtering criterion. Finally, only variants with minor allele frequencies (MAF) > 25%
were retained. For genotype file processing, bcftools, vcftools and plink was used.
The genotype concordance amongst samples was quantified using both the fraction
of concordant genotype calls and the kinship coefficient from KING v1.9%. Both
approaches gave comparable outcomes, and both indicated an unambiguous
separation of samples from the four different individuals.

Peak calling and read quantification for quality control. Peak calling was done
using MACS v2.1 as previously described®. In short, we merged samples from the
same brain region and cell type into one BAM-file (e.g. one file would contain all
reads from the four samples of glutamatergic neurons derived from the ACC
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dissections). The resultant twelve bam files were then subsampled to a uniform
depth and used as an input for peak calling.

Gender determination of samples. Three different metrics were used to assess the
gender of the samples: (1) The rate of heterozygotic genotyping calls on the X
chromosome outside the pseudoautosomal regions. For this, variants with MAF <
5% were discarded. In samples from male individuals, a high heterozygosity rate
potentially indicates sample contamination or an incorrect gender. (2) The read
counts of OCRs adjacent to FIRRE and XIST, which predominantly show chro-
matin accessibility in samples from female individuals>?. (3) Read counts in OCRs
identified on the Y chromosome outside the pseudoautosomal region. No gender
mismatches were identified using these three metrics.

Metrics used for quality control. For each sample, the following quality control
metrics were used: the total number of initial reads; the number of uniquely
mapped reads; the fraction of reads that were uniquely mapped; further metrics
from the STAR aligner; the duplication and insert metrics from Picard; the rate of
reads mapping to the mitochondrial genome; the PCR bottleneck coefficient (PBC),
which is an approximate measure of library complexity estimated as uniquely
mapped non-redundant reads divided by the number uniquely mapped reads; the
normalized strand cross-correlation coefficient (NSC) and the relative strand cross-
correlation coefficient (RSC), which are metrics that use cross-correlation of
stranded read density profiles to assess sample quality independently of peak
calling; and, finally, the fraction of reads in peaks (FRiP), which is the fraction of
reads that fall in detected peaks, the fraction of reads in only blacklisted peaks, and
the ratio between these two metrics (for these metrics the consensus set of peaks
was used). The main quality metrics are shown in Supplementary Data 1.

Quality control and further processing. More than 28.9 million sequenced
paired-end reads were obtained for each sample. Because of using FANS sorted
nuclei as opposed to whole cells, only a low fraction of the reads mapped to the
mitochondrial genome (mean 1.32% of the uniquely mapped reads). We examined
libraries that had a low FRiP (<5%), had a low final read count (<5 million reads),
visually were outliers in clustering, or looked to have outright failed when
inspecting the bigWig track. In this analysis, one sample of GABAergic neurons
from the anterior cingulate cortex was clearly of inferior quality and was left out,
thereby leaving 47 samples for downstream analyses (Supplementary Data 1).

To assess the reproducibility among biological samples within the same cell type
and brain region, we performed pairwise correlation between the raw read counts
over consecutive bins of 10,000 bp genomic regions using bamCorrelate®!. We also
calculated transcription start site (TSS) enrichment in housekeeping genes as
implemented in ataqv®? for the current dataset as well as three other postmortem
brain studies®31:53. Ataqv calculates coverage around the TSS using ATAC-seq
fragments up to 1 kb from the TSS in both directions.

The samples from the same brain region and cell type were subsequently
subsampled and merged, creating 12 BAM-files (GLU from the anterior cingulate
cortex, GLU from the dorsolateral prefrontal cortex, etc.) with a uniform depth of
98.1 million paired-end reads. Using these BAM-files, bigWig files were created
using bedtools, bedGraphToBigWig, wigToBigWig, and wiggleTools. Peaks were
called with the same parameters as for QC. A consensus set of peaks was
subsequently created requiring a peak to be called in one or more of the merged
BAM-files. After removing peaks overlapping blacklisted genomic regions, 177,178
peaks remained. Next, read counts of the individual 47 non-merged samples within
these peaks were quantified, again, using the same parameters as for quality
control.

To assess the potential functional impact of the identified OCRs, we evaluated
the overlap with genetic variants affecting gene expression. In particular, we
downloaded the variants annotated to the 95% credible set interval by Hormozdiari
et al. for eGenes in GTEx brain samples®!?, and used the genome-wide profile as
background for evaluating whether variants in the ATAC-seq OCRs have a larger
chance to affect gene expression. Significance was evaluated with a Fisher exact test.
To rule out potential bias, we also permuted the positions of the ATAC-seq OCRs
with consistent results. To assess the impact of adjacent regions, we also reanalyzed
the overlap using various paddings around the OCRs.

Analysis of cell and region-specific chromatin accessibility. To assess which
OCRs showed cell or regional specificity we performed differential chromatin
accessibility analysis. For this, chromatin accessibility was estimated by the number
of ATAC-seq reads overlapping a given OCR. The more overlaps seen with an
OCR, the more accessible that OCR was deemed to be. The statistical analyses of
these read counts were conducted as follows:

First Read counts and OCRs were filtered. A sample by OCR matrix of read
counts was generated as described in the preceding section (47 samples by 177,178
OCRs). From this matrix, we excluded OCRs that were lowly accessible by only
keeping OCRs that had at least 1 count per million reads in at least 10% of the
samples. This removed just 26 OCRs and resulted in a final read count matrix of
47 samples by 177,152 OCRs.

Next, the read counts were normalized using the trimmed mean of M-values
(TMM) method®4, but here only OCRs directly overlapping an autosomal

transcription start site (TSS) of a protein-coding gene were considered for
calculating the normalization factor. This approach was employed based on the
observations that the coverage of open chromatin and composition (promoter and
non-promoter OCRs) varied by cell type. Non-promoter OCRs have on average
less accessible chromatin and, hence, lower read counts. As TMM normalization
includes a log transformation of read counts, it puts comparatively more emphasis
on these non-promoter OCRs compared to if no transformation was used. Likely
due to the two observed differences between cell types, we found standard TMM
normalization to yield biologically implausible results with OCRs overlapping TSSs
of housekeeping genes skewed towards being more accessible in one cell type than
another when using a standard TMM normalization. When we used only the
aforementioned promoter OCRs, we observed a balanced accessibility of
housekeeping genes. We further evaluated the normalization procedure as follows:
TMM normalization is always between pairs of samples, so one is chosen as a
reference. In the edgeR implementation of TMM normalization, the sample whose
upper quartile most closely matches the mean upper quartile is selected as the
reference sample, which might not be equally applicable to ATAC-seq data on
markedly different cell types. To examine this, we calculated the normalization
factor, considering each sample in turn as the reference. This demonstrated that the
choice of reference sample had only a very modest effect on the normalization
factor (standard deviation of 0.0161, on average). However, we opted to use the
mean of these normalization factors to avoid arbitrariness relating to which sample
was used as the normalization reference.

As the next step, covariate exploration and model selection was carried out.
Several biological and technical sample-level metrics were examined for their effect
on the observed read counts. Here, some parameters were found to show different
distributions in different cell types (e.g. yield of nuclei from FANS, the number of
peaks called in a sample, FRiP, chrM metrics, RSC and NSC, and Picard insert
metrics). We normalized such metrics to the median of each cell type.

To explore the effect of these technical and biological covariates, we first did a
principal component analysis (PCA) on the normalized read counts to identify
high-variance components explaining more than 1% of the variance. This was done
separately for the different cell types as the PCA otherwise largely picked up the
cell-type differences. We then accessed the correlation of covariates with the PCs
and selected those that showed a significant correlation with one or more PCs at a
lenient FDR cut-off of 0.2 as candidate covariates for the analysis of differential
chromatin accessibility. This encompassed 39 covariates, including FRiP, mapping
metrics, insert metrics, the rate of reads mapping to the mitochondrial genome,
PBC, RSC, and barcode. These covariates were subsequently assessed as detailed in
the following.

Next, the starting point for modeling chromatin accessibility was chosen with
the variables “cell type by brain region” (4 x 3 =12 levels) and “gender” (2 levels)
for a base model. “gender” was included as it is known to have a strong effect on a
few OCRs primarily located on the sex chromosomes. To assess which covariates
should be included in order to have a good average model for OCR accessibility,
we employed the Bayesian information criterion (BIC). In particular, it was for
each additional covariate tested how many OCRs showed an improved BIC
score minus how many showed a worse BIC score when the covariate was included
in the linear regression model compared to when it was not. Here, a covariate
was required to net improve least 5% of the OCRs showed a change of 2 in the
BIC score, which corresponds to the lower boundary of “positive” evidence
against the null hypothesis®?, in order for it to be included in the final model.
Initially, 34 numeric covariates were evaluated in this way. Compared to the
base model, FRiP showed the largest and a very pronounced improvement in
the fit of the model as it improved a net of 54.4% of the OCRs. After this
variable was added to the base model and testing the remaining covariates against
this new base model, no additional covariates were found to fulfill the criteria for
inclusion.

Subsequently, 5 categorical covariates were considered for inclusion due to the
higher number of degrees of freedom of each covariate. None of these fulfilled the
BIC criteria for inclusion.

Finally, it was considered if the selected numeric covariate (FRiP) affected
chromatin accessibility as a quadric term by testing the squared FRiP for inclusion.
It did not meet the BIC inclusion criteria and was therefore not added to the model.

Resultantly the final model of chromatin accessibility included three variables:
cell type by brain region (12 levels), gender (2 levels), and FRiP (numeric). This
model jointly encompassed 14 degrees of freedom.

Following model selection, statistical analyses of differences in chromatin
accessibility were carried out. To model the normalized read counts the
voomWithQualityWeights function from the limma package®® was used. This
function employs both observational-level and sample-level weights. In particular,
voom first residualizes the read counts and fits a mean-variance function across all
OCRs to account for the fact that more accessible OCRs (e.g. those with higher log
counts per million) show lower variance. The observation level weights are then set
as the inverse of the estimated variance. Secondly, the sample weights are similarly
estimated and used to calculate a final set of weights. For this, quantile
normalization was not employed as it was found unfit to handle cells with different
chromatin compositions. In particular, the different cell types had different
proportions of promoter and non-promoter OCRs. They also had different
compositions of highly accessible OCRs (primarily promoters) and lowly accessible
OCRs (primarily non-promoters). As the quantile normalization forces all samples
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to have the same empirical distribution function of read counts this would incur
artefactual changes to the chromatin accessibility.

The normalized read count matrix from voom WithQualityWeights was then
modeled by fitting weighted least-squares linear regression models estimating the
effect of the right-hand side variables on the accessibility of each OCR: chromatin
accessibility ~ cell type:brain region + gender + FRiP. In so doing, we model both
cell type and brain region effects. In this model, the effect on the chromatin
accessibility of an OCR can then be assessed by testing the coefficient of interest for
being non-vanishing using the linear regression utilities implemented in limma.

As an initial assessment of how dissimilar the brain regions and cell types were,
all pairwise statistical comparisons amongst the cell type by brain region groups
were conducted (12 groups, 66 comparisons) giving in each comparison P-values
for all OCRs. These P-values were then used to assess the proportions of true tests
by estimating pil using “propTrueNull” function from limma with pil given as pil
= 1-pi0. These measures were then used as a measure for how different the
chromatin accessibility was in relevant comparisons such as between different cell
types and brain regions.

To establish cell specificity of chromatin accessibility we first conducted all
pairwise comparisons of chromatin accessibility between the cell types (e.g. GLU vs
GABA). In each of these contrasts, the cells were compared with the respective cells
of the same brain region, and significance was established as this contrast differing
from 0 (e.g. p(GLU_ACC- GABA_ACC + GLU_DLPFC—GABA_DLPFC +
GLU_PVC—GABA_PVC! =0)). In this way, potential overall differences in the
brain region are accounted for. We subsequently defined OCRs specific to the four
different cell types (GLU, GABA, OLIG, and MGAS) by requiring an OCR to be
significantly more accessible at FDR 5% in all pairwise comparisons. For example,
the GLU-specific OCRs were defined as

GLU specific OCRs

= OCRs significantly more accessible in GLU than GABA

() OCRs significantly more accessible in GLU than OLIG

() OCRs significantly more accessible in GLU than MGAS

Consequently, such cell-specific OCRs are truly specific to the cell type in

question. For example, an OCR showing high and comparable chromatin
accessibility in GLU and GABA, and a low accessibility in OLIG and MGAS, would
not be assigned as specific to GLU. The OCRs specific to neurons were defined as
the union of GLU OCRs more accessible than either non-neuronal sample and
GABA OCRs more accessible than either non-neuronal sample. The non-neuronal
samples were similarly defined. Stated as sets this would be

Neuron specific OCRs
= (OCRs significantly more accessible in GLU than OLIG
() OCRs significantly more accessible in GLU than MGAS)
[J (OCRs significantly more accessible in GABA than OLIG
() OCRs significantly more accessible in GABA than MGAS)

nonNeuron specific OCRs
= (OCRs significantly more accessible in OLIG than GLU
() OCRs significantly more accessible in OLIG than GABA)
|J (OCRs significantly more accessible in MGAS than GLU
() OCRs significantly more accessible in MGAS than GABA)

Thus, these “Neuron” and “non-Neuron” sets also include OCRs that are
specific to the overall cell group but might be equally accessible in both of the
constituent cell subtypes. For instance, an OCR which is highly and equally
accessible in GLU and GABA but lowly accessible in both OLIG and MGAS would
be listed here as a “Neuronal” OCR. It would, however, not be listed as GLU or
GABA specific, as detailed above. For the tables of these six sets of cell-specific
OCRs we list the statistics for the least significant comparison. Next, to establish
OCRs of a given cell type that showed regional differences, the linear model was
fitted for the complete dataset, but to increase power in significance testing (e.g.
topTable in limma) only consensus OCRs overlapping OCRs called in cell type in
question were considered. For each cell type, one region was tested against the
average of the other brain regions. For instance, GLU OCRs showing accessibility
specific to ACC was assessed as OCRs having a higher accessibility in GLU ACC
samples than the average of GLU DLPFC and GLU PVC samples. As with the cell-
specific OCRs, an FDR cut-off of 0.05 was employed.

Using the cell-specific OCRs, we also compared the cell specificity identified
here to that which was found in other human brain studies:

ATAC-seq from Fullard et al. 2018 (115 NeuN+/— samples from 14 regions)®
ATAC-seq from Rizzardi et al. 2019 (22 NeuN+/— samples from 2 regions)>>
RNA-seq from Rizzardi et al. 2019 (20 NeuN+/— samples from 2 regions)>3
RNA-seq from Mendizabal et al. 2019 (89 NeuN-+/Olig2+ DLPFC samples)°”

With the exception of Mendizabal et al., these studies did not provide the
differential analysis results. We therefore reprocessed their raw data (GSE96613,
GSE96614, GSE96949) using our pipeline, and ran a differential analysis. For
Mendizabal et al., we used the differential expression analysis provided in their
supplementary materials.

Finally, an adjusted matrix of chromatin accessibility was created where the
effect of gender and FRiP was removed. This residualization was done by
subtracting the estimated effect of these variables on the read count matrix and
hence retaining just the effect of the cell type and brain region. Subsequently, this
matrix was used as an input to Rtsne 0.13 with a perplexity parameter of 7 to do a
t-SNE based clustering of the samples.

Annotating OCRs. The Ensembl 75 genes were used for all analyses in this paper.
For the protein-coding genes, a few share the same gene name (n=81). To have
unique gene names, these were appended “_v1”, “_v2”, etc. Further, ChIPSeeker®3
was used to assign genomic context and the closest gene of the ATAC-seq OCRs.
For ChIPSeeker, a transcript database was created using GenomicFeatures?® and

the Ensembl genes. Finally, the genomic contexts were defined as promoter (+3 kb
of any TSS), 5/-UTR, 3’-UTR, exon, intron, and distal intergenic.

To compare the OCRs identified using ATAC-seq in this study to previously
reported open chromatin and chromatin states from REMC?>!1, the overlap was
calculated using the Jaccard index. The Jaccard index here was taken as the
intersection of base pairs divided by union of base pairs. For the previously
reported epigenome data, the imputed datasets were used due to their broader
scope and higher quality!!. From these datasets, the DNase-seq OCR sets and the
chromHMM 25-state epigenome model were used. For the chromHMM model,
related chromatin states were grouped as follows to reduce dimensions as and thus
keep the analyses manageable: Promoter (Active TSS, Promoter Upstream TSS,
Promoter Downstream TSS 1, Promoter Downstream TSS 2); and Primary
enhancers (Active Enhancer 1, Active Enhancer 2, Active Enhancer Flank). We
additionally organized the 127 epigenomic samples into four categories:

1. “Brain tissue™: Brain Hippocampus Middle, Brain Substantia Nigra, Brain
Anterior Caudate, Brain Cingulate Gyrus, Brain Inferior Temporal Lobe,
Brain Angular Gyrus, Brain Dorsolateral Prefrontal Cortex, Brain Germinal
Matrix, Fetal Brain Female, and Fetal Brain Male.

2. “Brain-derived cells”: NH-A Astrocytes Primary Cells, Ganglion Eminence
derived primary cultured neurospheres, Cortex-derived primary cultured
neurospheres, H1 Derived Neuronal Progenitor Cultured Cells, H9 Derived
Neuronal Progenitor Cultured Cells, and H9 Derived Neuron Cultured Cells.

3. “Immune”: Primary mononuclear cells from peripheral blood, Primary
T cells from peripheral blood, Primary T cells effector/memory enriched
from peripheral blood, Primary T cells from cord blood, Primary T
regulatory cells from peripheral blood, Primary T helper cells from
peripheral blood, Primary T helper naive cells from peripheral blood,
Primary T helper cells PMA-I stimulated, Primary T helper 17 cells PMA-I
stimulated, Primary T helper memory cells from peripheral blood 1,
Primary T helper memory cells from peripheral blood 2, Primary T CD8+
memory cells from peripheral blood, Primary T helper naive cells from
peripheral blood, Primary T CD8+ naive cells from peripheral blood,
Dnd41 TCell Leukemia Cell Line, GM12878 Lymphoblastoid Cells, K562
Leukemia Cells, Monocytes-CD14+ RO01746 Primary Cells, Primary
monocytes from peripheral blood, Primary B cells from cord blood,
Primary hematopoietic stem cells, Primary hematopoietic stem cells G-CSF-
mobilized Male, Primary hematopoietic stem cells G-CSF-mobilized Female,
Primary hematopoietic stem cells short term culture, Primary B cells from
peripheral blood, Primary Natural Killer cells from peripheral blood,
Primary neutrophils from peripheral blood, Spleen, Thymus, and
Fetal Thymus.

4. “Other”: all other REMC samples.

Gene set enrichment analyses of open chromatin regions. Gene set enrichment
analyses were conducted as previously described”. In short, the number of OCRs
overlapping the presumed regulatory domains of genes in a particular gene set is
compared to OCRs overlapping any regulatory domains. Enrichment is then the
OCR density for the regulatory domains of the gene set compared to the OCR
density in the union of all regulatory domains.

Direct mapping of open chromatin regions by overlap with TSS. As a means to
link OCR to gene(s) they are likely to affect, we intersected the OCRs with TSSs of
Ensembl protein-coding genes, long noncoding RNA (IncRNA)!8, and micro-
RNA!7. For the protein-coding genes we only considered TSSs of protein-coding
transcripts. For IncRNA we used the “Robust” assembly. For microRNA we only
considered genes encoding a conserved microRNA according to TargetScan 7.1°°.
To estimate the specificity of the chromatin accessibility, we first used the resi-
dualized read counts matrix described above and averaged across the four cell types
and thus giving an OCR by four cell-type matrix. We next counted for each cell
type and each gene the sum of ATAC-seq reads in any OCR overlapping the given
gene’s TSS(s). Together this yielded a gene by four cell types matrix. Using these
counts we further calculated the fraction of reads originating from each cell type by
dividing by the sum of reads for a gene. In the majority of cases at most one OCR
overlapped the TSS(s) of a gene, and genes having no TSS overlapping any OCR
were not considered. These counts were subsequently mapped back to the con-
stituent OCRs and intersected with the cell-specific OCRs to obtain a direct
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mapping of OCRs along with the fraction of reads in the gene’s TSS(s) in each cell
type as a measure of specificity.

Overlap with common genetic variants. To investigate if the OCRs of the brain
cell types played a role in various diseases and traits, it was investigated if the OCRs
were enriched in common trait-associated genetic variants identified using differ-
ent GWAS studies. To do this, LD-score partitioned heritability>® was employed. In
LD-score partitioned heritability, it is calculated if common genetic variants in
genomic regions of interest explain more of the heritability than variants not in the
regions of interest, adjusting for the number of variants in either category. The
approach allows for a correction of the general genetic context of the genetic
regions of interest by using a baseline model of general genomic annotation (such
as conserved regions and coding regions) and hence makes it possible to assess the
enrichment above what is expected from the general genetic context of the genomic
regions of interest. In addition to a P-value for this regression, a coefficient is
outputted from the algorithm; to make this comparable across traits with a wide
range of estimated heritability, we normalized it by the per-SNP heritability and
called this the “heritability coefficient”. This is different from the “enrichment” also
outputted by the program in that the heritability coefficient takes the aforemen-
tioned baseline into account. We included the provided baseline model in our
analyses and used the approach on a selection of neuropsychiatric3460-76 and
unrelated’”-81 GWAS traits. In particular, one GWAS was tested at a time against
the combination of one of our open chromatin datasets and the baseline model.
When available the European only version of the summary statistics was used and,
as a consequence, all GWAS results were European with the exception of coronary
artery disease (which was 77% Europeans). The depression GWAS included only
the subset of individuals in the publicly available summary statistics. The broad
MHC-region (chr6:25-35MB) was excluded due to its extensive and complex LD
structure, but otherwise default parameters were used for the algorithm.

Predicting transcription factor binding using footprinting. Using so-called
footprinting analyses, ATAC-seq studies as well as similar approaches to study
chromatin accessibility can be used for predicting transcription factor binding?’.
To do such footprinting analyses using the current dataset, a footprinting algo-
rithm called PIQ?° was applied to the 12 merged BAM-files. Motif selection,
binding site filtering and estimation of gene regulation from TF binding were done
as previously described”. In brief, transcription factor motifs were obtained from
the CIS-BP database?!. When multiple motifs were present for the same motif, the
best one was selected in a majority vote-approach based on similarities between the
motifs. Overlapping binding sites from the same transcription factor were dis-
carded (e.g. palindromic motifs on opposite strands) preferentially keeping the
binding site with the highest binding probability. When assigning binding sites to
genes, the probability of the transcription factor regulating a given gene was
approximated as an exponential decaying function. When a burden of “regulation”
was estimated on the gene level, a non-redundant set of motifs were selected by
iteratively removing motifs until none overlapped by 50% or more with 50% or
more positional overlap. This was done, as transcription factors share motifs and
without pruning, it would thus incur a bias.

Training of the PIQ model was done per cell type and subsequently applied to
the three individual brain region sets of each cell type. To identify cell-type-specific
regulatory differences at the gene level amongst the samples, three different sets of
genes were used:

1. Ensembl protein-coding genes.

2. Long intergenic noncoding RNA (lincRNA) genes from a meta-assembly of
IncRNA generated with the use of capped-end analysis of gene expression!8.
Of the different assemblies provided by the consortium, the default.
“Robust” assembly of lincRNA genes was used. As a means primarily to
focus on lincRNA genes transcribed independently of neighboring genes
and to focus on lincRNA genes located in regions where it would be easier to
identify differences in regulation unrelated to adjacent protein-coding genes,
only lincRNA genes in the category “far from protein-coding genes” were
considered. Further, lincRNA genes with coding status “uncertain” were
excluded.

3. microRNA genes taken from miRBase 20%2. Since some microRNA genes
are believed to be erroneous annotations and/or non-functional, the
microRNA genes that did not encode a conserved microRNA according
to TargetScan 7.1 were discarded®.

We next wanted to use the estimates of the gene level regulatory burden to
access how the genes were regulated differently in the different cell types. For this
we did pairwise comparisons of samples in each case calculating the difference in
regulatory burden between the two samples and used these to rank the samples
(from — 51 to %51). We then averaged such pairwise ranks amongst samples of
interest. To establish a neuronal versus non-neuronal samples we took the mean of
all the pairwise comparisons: on one side a neuronal sample and on the other side a
non-neuronal sample. Similarly, for each of the four cell types, we took the mean of
the rankings from all the pairwise comparisons: on one side a sample from the cell
of interest and on the other a sample not from that cell type. To avoid incorrectly

counting the regulatory burden of a TF binding site on a gene multiple times, only
non-redundant TF motifs were considered in all of the pairwise comparisons.

Transcription Factors showing cell specificity. In an attempt to identify TFs that
were important to the different cell types, it was examined which TF motifs were
overrepresented in the cell-specific OCRs. For this, we first created a consensus list
of predicted binding sites from the union of TF binding sites that were considered
to be bound in one or more samples based on the previously outlined criteria. This
consensus list was then used to identify overrepresentation in the cell-specific
OCRs. In particular, the fold enrichment was calculated and the statistical sig-
nificance established by a one-sided binomial test accounting for the coverage of
the OCRs. For the GLU, GABA, OLIG, and MGAS samples the background was for
a given cell type taken as the union of OCRs specific to the other cell types. For
neuronal vs. non-neuronal comparison the background was taken as the OCRs
specific to the opposite cell type.

For neuronal samples vs. non-neuronal samples we aggregated all comparisons
of, on one side, neuronal samples, and the other, non-neuronal samples. For each of
the four cell types, we aggregated all comparisons of samples for the given cell-type
on one side and samples of the remaining cell-types on the other, between
samples from different cell types and brain regions. These scores were subsequently
aggregated.

Deconvoluting homogenate ATAC-seq samples in schizophrenia. A study of
ATAC-seq homogenate brains of individuals with and without schizophrenia was
used to quantify the effect of dissection and cell composition bias on the identi-
fication of disease-related epigenetic changes®!. 41 out of 288 samples were dis-
carded as they had unrelated phenotypes and/or possible contamination®?.
Subsequently, a similar approach as applied to the ATAC-seq samples of this paper
was used to process the data and identify covariates for differential analysis
between schizophrenia cases and controls. Compared to the base model, i.e.,
Diagnosis + Sex (2 x2 levels), mean GC content per sample showed the largest and
very pronounced improvement in the fit of the model as it improved a net of 60.2%
of the OCRs (i.e., 58,824 out of 97,688. OCRs). In the next rounds of BIC, the
model selected also the ratio of glutamatergic neurons and ratio of oligoden-
drocytes that improved a net of 20.1% and 5.0% of OCRs, respectively. No other
covariate fulfilling the criteria for inclusion was found.

Next, a reference panel of marker OCRs that capture cell type differences was
derived from differential analysis results among cell-type-specific samples. We
required marker OCRs to be cell-type-specific when compared against all other
cell types at significance threshold of FDR < 5% and log(fold change) >2. Using
these criteria, the following numbers of marker OCRs were obtained: 685
(glutamatergic neurons), 2,259 (GABAergic neurons), 890 (oligodendrocytes)
and 1,511 (astrocytes and microglia). Then, for all ATAC-seq homogenate
samples (see previous section), we quantified their accessibility in marker OCRs
and used such epigenetics profiles as an input of dTangle®4, a deconvolution
method built on the linear mixing model of linear-scale expressions of known
marker OCRs.

Mice. Experimental procedures were carried out in compliance with the United
States Public Health Service’s Policy on Humane Care and Use of Experimental
Animals and were approved by the Institutional Animal Care and Use Committee
at Icahn School of Medicine at Mount Sinai. We used an approved protocol with
the number16-0847. The IACUC is LA09-00272.. Both male and female B6D2F1/]
transgenic founders were used for analysis. 6-week-old male and female B6D2 F1
hybrid mice were used as the basis for transgenic strains. Mice were maintained at
2242 °C and 40-60% humidity with 12 h light/dark cycle, with ad libitum access to
food and water.

Vector. The vector is shown in Supplementary Fig. 14, and contained the minimal
hsp68 promoter, a heterologous intron, mCherry as reporter and 5" and 3’ insu-
lators to minimize effects of transgene insertion sites. CTCF insulator sequences
were taken from litterature8®. The transgenic vector was constructed by GeneB-
ridges (Heidelberg, Germany). Cloning strategy is available upon request. The
following human enhancer candidates were assayed with 50 bp padding (hgl9):

Glutamatergic (BDNF): chr11:27782533-27783536
GABAergic (DLX6): chr7:96626530-96627270
Oligodendrocytes (CNDP1): chr18:72208398-72209567
Microglia/astrocytes (TYROBP): chr19:36400061-36400725

Transgenesis. The generation of transgenic mice was performed as previously
described using standard pronuclear injection protocols® at ISMSS Mouse
Genetics and Gene Targeting core, directed by Dr. Kevin Kelley. Transgenic
founders were identified by PCR analysis of genomic tail DNA (Extract-N-Amp™
Tissue PCR Kit; Sigma, St Louis, MO) with the following mCherry specific primers:

Forward GGAGGATAACATGGCCATCATCAAGG
Reverse CGTACTGTTCCACGATGGTGTAGTCCTCG
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Histology. Adult mice at 6 weeks of age were deeply anesthetized with pento-
barbital (50 mg/kg), and intracardially perfused with ice-cold PBS followed by 4%
paraformaldehyde in PBS. Brains were removed and post-fixed by overnight
immersion in the same solution and then stored in PBS at 4 °C. Serial sagittal
sections were obtained on a Leica microtome at 30 pm. All the following steps were
done with gentle shaking. Free-floating brain sections were washed two consecutive
times in 1x PBS, 10 min each, permeabilized in PBS with 0.25% Triton X-100 and
5% goat serum for 1h at room temperature. Free-floating sagittal sections were
incubated with the corresponding primary antibodies in PBS with 0.05% Triton X-
100 and 1% goat serum: rat anti-mCherry (1:10000; Invitrogen; M11217), rabbit
anti-NeuN (1:1000; Millipore; ABN78), rabbit anti-GABA (1:2000; Sigma; A2052),
rabbit anti-PARV (1:1000; Swant; PV27), rabbit anti-Somatostatin (1:500; Penin-
sula; T-4103), rabbit anti-NPY (1:500; Abcam; ab30914), rabbit anti-VIP (1:1000;
Immunostar; 20077), rabbit anti-Ibal (1:500; WAKQ; 019-19741), rabbit anti-
Olig2 (1:500; Abcam; ab136253), rabbit anti-Ctip2 (aka Bcll1b; 1:500; Bethyl
Laboratories; A300-385A), and rabbit anti-GFAP (1:500; DAKO; Z0334). Sections
were washed three consecutive times, 10 min each, with 1x PBS plus 0.1% Triton
X-100, then incubated for 2 h at room temperature with the appropriate secondary
antibody: anti-rat Alexa Fluor 594 (1:500; ThermoFisher; A11007) and anti-rabbit
Alexa Fluor 488 (1:500; ThermoFisher; A11034). Nuclei were visualized by DAPI
staining (1:10000; ThermoFisher; 62248). Negative controls were performed for
each primary antibody. Slides were sealed with Vectashield hard-set mounting
medium (H-1400, Vector Laboratories) No signal was detected in sections incu-
bated in the absence of the primary antibody. Layer V of the cortex was identified
by comparison of mCherry(+) sections to sections stained with 0.1% cresyl violet.

Images were acquired with a Zeiss 700 confocal microscope (Zeiss, Thornwood,
USA). For co-localization experiments, we acquired four image frames of three
independent brain slices per each mouse (BDNF enhancer n = 5; DLX6 enhancer
n = 6; CNDPI enhancer n = 4; TYROBP enhancer n = 4) using a x40 objective.
Images were analyzed using Image] v1.51.

Additional images were acquired with an Olympus BX61 fluorescence
microscope and processed with ImageJ v1.51.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability

The ATAC-seq data generated as part of this publication have been deposited in Gene
Expression Omnibus and are accessible through GEO Series accession number
“GSE143666”. Further, UCSC tracks and downloads are provided at our webpage http://
icahn.mssm.edu/boca2. The following reference datasets were downloaded from for the
purpose of comparison with our study: https://www.synapse.org/#!Synapse:syn5584622,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96614, https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?token=ofwzsggybrihviv&acc=GSE96949, https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE108066. The following online resources and
databases were used: dbSNP: https://www.ncbi.nlm.nih.gov/snp, REMC: http://www.
roadmapepigenomics.org, MSigDB (GO, KEGG, and Biocarta gene sets): https://www.
gsea-msigdb.org, lincRNA and microRNA from FANTOM: https://fantom.gsc.riken.jp,
and miRBase: http://www.mirbase.org.

Summary statistics are available from the following links: “Complex Trait Genetics Lab
[ctg.cncr.nl/software/summary_statistics]”, “Coronary Artery Disease
[cardiogramplusc4d.org]”, “Genetic Investigation of ANthropometric Traits [portals.
broadinstitute.org/collaboration/giant], “International Inflammatory Bowel Disease
Genetics Consortium [ibdgenetics.org]”, “The Psychiatric Genomics Consortium [med.
unc.edu/pgc]”, “Social Science Genetic Association Consortium [thessgac.org/data]”.

All other relevant data supporting the key findings of this study are available within
the article and its Supplementary Information files or from the corresponding author
upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file.

Code availability

The analysis was done using free, publicly available software programs and libraries. In
particular, the ATAC-seq reads were aligned with STAR [github.com/alexdobin/STAR],
and analyzed using the R packages limma and edgeR [cran.r-project.org]. LDSc [github.
com/bulik/ldsc] was used for integration with GWAS data. A stepwise approach of the
deconvolution procedure of bulk ATAC-seq results is shown at http://icahn.mssm.edu/
boca2.
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