Skip to main content
. 2020 Jan 8;11(9):2531–2557. doi: 10.1039/c9sc03414e

Table 1. The average predictive performance comparison between DEEPScreen and various novel DL-based and conventional DTI predictors.

Dataset Reference Method/architecture Performance (metric)
ChEMBL temporal-split dataset DEEPScreen: DCNN with 2-D images 0.45 (MCC)
Lenselink et al.18 Feed-forward DNN PCM (best model) 0.33 (MCC)
Feed-forward DNN 0.30 (MCC)
SVM 0.29 (MCC)
LR 0.26 (MCC)
RF 0.26 (MCC)
Naïve Bayes 0.10 (MCC)
Maximum unbiased validation (MUV) dataset DEEPScreen: DCNN with 2-D images 0.88 (AUROC)
Kearnes et al.11 Graph convolution NNs (W2N2) 0.85 (AUROC)
Ramsundar et al.49 Pyramidal multitask neural net (PMTNN) 0.84 (AUROC)
Multitask neural net (MTNN) 0.80 (AUROC)
Single-task neural net (STNN) 0.73 (AUROC)
RF 0.77 (AUROC)
LR 0.75 (AUROC)