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Abstract

Thr hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain 

and body which promote adaptation and survival to changing environmental demands. Adaptation 

to environmental challenges is compromised when these pathways are no longer functioning 

optimally. The physiological and behavioral mechanisms through which HPA axis function 

influences stress adaptation and resilience are not fully elucidated. Our understanding of stress 

biology and disease must take into account the complex interactions between the endocrine 

system, neural circuits, and behavioral coping strategies. In addition, further consideration must be 

taken concerning influences of other aspects of physiology, including the circadian clock which is 

critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also 

offers targets for intervention. Understanding the role of HPA function in mediating these diverse 

biological responses will lead to important insights about how to bolster successful stress 

adaptation and promote stress resilience.
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1. Introduction

1.1 Defining Stress

The term “stress” has a complicated meaning. Stress not only refers to challenges imposed 

on an organism by the external or internal environment but is also used to describe the 

processes engaged by an organism to cope with such demands. Stress can be defined as any 

stimulus or experience which threatens homeostasis [1; 2]. Throughout evolutionary history, 

these threats were largely imposed by challenges originating in the external environment, 

such as predation, infection, and starvation. However, while human physiology evolved in 

these conditions, modern advances in technology greatly reduced the likelihood that one 

*Correspondence and Current Address: Ilia N. Karatsoreos, Department of Psychological and Brain Sciences, Center for 
Neuroendocrine Studies, University of Massachusetts – Amherst, Amherst, MA 01003, T: (413) 545-2383, ikaratsoreos@umass.edu. 

HHS Public Access
Author manuscript
Front Neuroendocrinol. Author manuscript; available in PMC 2020 November 05.

Published in final edited form as:
Front Neuroendocrinol. 2020 January ; 56: 100819. doi:10.1016/j.yfrne.2019.100819.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



would frequently face such direct challenges to survival. In place of these direct threats to 

well-being, stress in modern society is most commonly experienced in response to 

internally-generated challenges. Importantly, the same biological systems are engaged 

whether a person is facing a real threat to survival or instead perceives a situation as 

threatening. The near constant engagement of these systems, in the absence of actual danger 

from the environment, causes wear and tear on tissues and organ systems throughout the 

body, increasing susceptibility to disease and accelerating the detrimental processes of aging 

[3; 4].

The physiological response to stress prepares the body for action in the face of threatening 

events through the coordinated regulation of biological systems throughout the organism. 

The biological systems involved in the stress response are highly conserved between 

vertebrates, and largely rely on the catecholamine and glucocorticoid secretion into the 

circulation to appropriately synchronize tissue and organ-specific responses to stress [5]. 

Acutely, these molecules activate classic “fight or flight” processes, by increasing energy 

availability by stimulating cytokine production, mobilizing glucose in peripheral tissues, 

increasing cardiovascular tone, while suppressing digestion and reproductive functions [3; 

6]. In the face of a threatening situation, these responses increase chances of survival, while 

reducing investment in processes not directly related to that immediate goal. However, if 

stress responses are engaged in an exaggerated fashion (e.g. too readily, too frequently), or 

inadequately, these same processes can cause a breakdown in normal bodily function and 

predispose an organism to disease (Figure 1) [3; 7].

1.2. Allostasis and allostatic load

The term “allostasis” has been conceived to describe the active physiological process of 

adapting to stress [8]. While homeostasis maintains individual physiological parameters (e.g. 

blood pressure, body temperature, blood pH) reactively within a relatively constant range of 

values necessary for life, allostatic processes are engaged in both an anticipatory and 
reactive manner to maintain homeostatic equilibrium when pressure from the internal or 

external environment requires one or more of these vital physiological parameters shift 

outside of their normal range [3; 9]. For example, in anticipation of a threatening situation, 

and subsequent exposure to a threat, an organism may need to maintain elevated blood 

pressure and circulating glucose levels in order to escape from a predator or other 

environmental hazard. The systems that mediate allostasis include the hypothalamic-

pituitary adrenal (HPA) axis, the autonomic nervous system, metabolic systems, and the 

immune system [7]. While helpful in isolated situations of survival, the frequent, prolonged, 

or inadequate engagement of these systems can lead to wear and tear on tissues and organ 

systems, an effect defined as “allostatic load”. To continue the example above, while acute 

increases in blood pressure are helpful in mobilizing a response to an acute threat, 

chronically elevated blood pressure can lead to hypertension and increased risk for heart 

failure [3; 7]. The relationship between allostatic load and physiological performance 

follows an inverted “U” shaped dose-response curve, by which physiological responses to a 

given challenge that are chronically either inadequate or too excessive can lead to a 

breakdown in bodily function and the development of disease states (Figure 1) [3; 4]. 
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Understanding the links between dysregulation of allostatic systems and the development of 

stress-related diseases is one of the key aims of current stress research efforts.

2. The hypothalamic-pituitary-adrenal axis

2.1 Overview

The biological stress response is largely dependent on the release of endocrine signals into 

the circulation which are produced in response to neuronal transmission at key 

neuroendocrine junctions. In vertebrates, this coordinated cascade is carried out by the HPA 

axis. In short, after a stressor is perceived via sensory inputs to the central nervous system, 

corticotrophin-releasing hormone (CRH) is synthesized and secreted from neurons in the 

paraventricular nucleus of the hypothalamus (PVH) into the median eminence, reaching 

proopiomelanocortin (POMC)-containing cells in the anterior lobe of the pituitary via the 

hypophyseal portal system. This stimulates the synthesis and secretion of 

adrenocorticotrophic hormone (ACTH) into the circulating blood, which, in-turn, stimulates 

the synthesis and secretion of glucocorticoids from the adrenal zona fasciculata into the 

circulation [1; 10]. The primary glucocorticoids secreted by the adrenal gland in response to 

stress are cortisol in humans and other primates, and corticosterone (CORT) in murine 

animals. While it has many different biological effects, CORT acts primarily to increase 

metabolic rate in peripheral tissues by stimulating glucose mobilization [6]. The metabolic 

effects of CORT work synergistically with the sympathetic nervous system to promote 

survival in the fight-or-flight response. A key characteristic of the neuroendocrine HPA 

response is that it functions as a negative feedback loop. Specifically, CORT exerts an 

inhibitory effect at the hypothalamus and pituitary, which decrease secretion of CRH and 

ACTH, respectively [11; 12]. This inhibition occurs directly via the binding of CORT to 

glucocorticoid receptors (GR) in these regions, and also indirectly via GR binding in 

upstream limbic brain regions which have inhibitory projections to the PVH and pituitary 

[10; 13].

2.2 Corticotropin-releasing hormone

CRH is a critical upstream effector of pituitary and adrenal hormone secretion into the 

circulating blood. This is accomplished through projections from CRH-producing 

neurosecretory neurons in the hypothalamus to the median eminence, reaching POMC-

containing corticotrophin neurons of the anterior pituitary via the hypophyseal portal system 

[1]. Acting on type 1 CRH receptors (CRHR1) in the anterior pituitary, CRH stimulates the 

synthesis and secretion of ACTH into the circulating blood. CRHR1 is a G-protein coupled 

receptor (GPCR) that acts primarily through Gαs coupling [14], and stimulates ACTH 

synthesis through cAMP-mediated increases in POMC expression [15]. POMC is then 

synthesized into ACTH through proteolytic cleavage by prohormone convertase enzymes 

and secreted upon cellular stimulation [16].

In addition to the PVH, CRH is produced in multiple extrahypothalamic regions of the 

mammalian brain [17], mediating key autonomic and behavioral responses to stress. In 

support of this, CRH projections from limbic and brainstem structures appear to play a role 

in locomotor, metabolic, and emotional function during the stress response [18; 19; 20]. 

Kinlein and Karatsoreos Page 3

Front Neuroendocrinol. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, selective inactivation of the CRHR1 gene in the forebrain (while pituitary 

CRHR1 is maintained) results in reduced anxiety-like behavior in response to stress [21].

2.3 Adrenocorticotropic hormone

ACTH is one of many peptide hormones synthesized and secreted by POMC-containing 

neurons of the anterior pituitary into the circulating blood. This hormone is a critical 

mediator of glucocorticoid release, acting at the level of the adrenal zona fasciculata to 

induce the synthesis and secretion of CORT into the bloodstream [16; 22]. The effects of 

ACTH on glucocorticoid regulation are mediated by type 2 melanocortin receptors (MCR2) 

in the adrenal cortex [23]. The MCR2 is a GPCR that, when bound to ACTH stimulates 

adenylyl cyclase and increases intracellular cAMP to promote the synthesis of CORT from 

11-deoxycorticosterone by the enzyme 11β-hydroxylase [24; 25]. Importantly, genetic 

knockout studies have shown that MCR2-deficient mice have undetectable levels of CORT, 

while retaining normal levels of circulating ACTH [23]. In addition to its roles in 

glucocorticoid synthesis, ACTH plays a key role in adrenal growth and health. In support of 

this, ACTH deficiency decreases, and ACTH treatment increases the volume of the adrenal 

zona fasciculata through effects on cell differentiation [16]. Furthermore, ACTH levels are 

highly correlated with the expression of antioxidant enzymes, suggesting a protective role of 

ACTH on adrenal function [26].

2.4 Glucocorticoids

CORT is synthesized and released into the circulating blood by the adrenal cortex (zona 

fasciculata). This endocrine signal acts on nearly every tissue in the body and nervous 

system to generally increase energy mobilization, and importantly, also acts as a negative 

feedback signal to the hypothalamus and pituitary to inhibit HPA output [6; 27]. CORT acts 

on both mineralocorticoid receptors (MR) and GR, which can modulate both metabolic and 

neurobehavioral aspects of the stress response [28]. The MR is thought to play an important 

role in electrolyte homeostasis in the periphery, where aldosterone is the preferred ligand; 

however CORT is the preferred ligand in the central nervous system [28].The MR binds to 

CORT with a ten-fold higher affinity than the GR, and thus, even under basal (non-stressed) 

conditions, it is thought that 80% of MRs are occupied by CORT [29]. Although research 

into the function of the MR in the brain has been sparse, there is evidence to suggest that 

these receptors play a regulatory role in the neuroendocrine stress response and also in 

glutamatergic synaptic transmission [30; 31].

Compared to MR, much more is known about the function of the GR in the brain. The GR is 

thought to mediate neuroendocrine function under stress-induced levels of CORT, leading to 

decreases in hypothalamic CRH and pituitary ACTH secretion [32]. This occurs through 

inhibitory actions of GR in the hypothalamus [33], as well as excitatory effects in key limbic 

regions of the brain which indirectly inhibit hypothalamic activity, namely the medial 

prefrontal cortex (mPFC) and hippocampus [34]. The GR exerts its effects through rapid 

engagement of cellular signaling systems as well as through slower-acting effects on cellular 

adaptation via control of gene expression [6–8]. The rapid, nongenomic actions of GR in the 

central nervous system are primarily mediated by membrane-bound receptors [35]. These 

actions have been well studied in the context of synaptic excitability and glucocorticoid-
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mediated negative feedback to the HPA axis (discussed below). For example, in 

synaptosomes isolated from the mPFC, CORT rapidly potentiates evoked glutamate release 

through GR-mediated increases in SNARE complex proteins [36]. Membrane-bound GR has 

also been shown to indirectly influence synaptic excitability through rapid induction of 

endocannabinoid signaling in the hypothalamus [11]. This implies that nongenomic GR 

signaling plays an important role in the regulation of excitatory synaptic tone. The genomic 

effects of GR are mediated by receptors located in the cytoplasm [37]. Once bound to 

glucocorticoids, a conformational change and phosphorylation by MAP kinase induce 

translocation of the GR to the nucleus, where GR binds to glucocorticoid response elements 

(GRE) in the promoter region of target genes [38]. The binding of GR to the GRE then 

induces gene transactivation or transrepression through the recruitment of general 

transcription factors [39]. A large portion of the human genome (10–20%) is regulated by 

the genomic effects of the GR [40]. Included in this group are genes related to metabolism, 

inflammation, synaptic excitability, and neuronal plasticity [41].

2.5 Glucocorticoid Negative Feedback

2.5.1 Direct feedback to the HPA axis—Direct glucocorticoid-mediated negative 

feedback to the HPA axis at the level of the hypothalamus occurs through both delayed and 

rapid feedback mechanisms. Studies have shown that glucocorticoids applied to the 

hypothalamus decrease CRH mRNA levels, which subsequently reduces the downstream 

secretion of ACTH and CORT [42; 43]. This delayed glucocorticoid mediated negative 

feedback in the hypothalamus thus occurs as a consequence of genomic actions of the GR. 

In addition to genomic action, the presence of glucocorticoids in the hypothalamus quickly 

reduces glutamate-mediated excitatory synaptic currents in CRH neurons via a GR-mediated 

mechanism [13]. Rapid glucocorticoid-mediated negative feedback is accomplished 

primarily by stimulation of local endocannabinoid synthesis and release into glutamatergic 

synapses; causing an overall depression of excitatory neurotransmission [11; 44; 45]. The 

contribution of endocannabinoid synthesis to glucocorticoid-mediated negative feedback in 

the hypothalamus is supported by the following: 1) cannabinoid receptor antagonism 

completely abolishes glucocorticoid-induced suppression of excitatory post-synaptic 

currents in the PVH [33; 46], and 2) glucocorticoids increase the levels of the 

endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in hypothalamic 

tissue preparations in vitro and in vivo [46; 47]. Taken together, these findings implicate that 

both delayed and rapid glucocorticoid-mediated feedback to the hypothalamus are involved 

in the regulation of HPA output.

2.5.2 Indirect feedback to the HPA axis—Circulating glucocorticoids also negatively 

modulate HPA output indirectly, via action in limbic brain regions which send projections to 

the hypothalamus. This indirect feedback occurs via multi-synaptic connections between the 

mPFC and hippocampus to the PVH, via a sign-changing relay in the bed nucleus of the stria 

terminalis (BNST) [48; 49]. The involvement of the mPFC and hippocampus in 

glucocorticoid-mediated negative feedback was initially discovered in lesion studies, which 

found that damage to either of these regions leads to potentiation of stress-induced 

glucocorticoid secretion [50; 51; 52]. Additionally, local glucocorticoid administration in 

these regions reduces HPA output [53].
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Anatomical tracing studies have revealed that both the mPFC and hippocampus exert their 

inhibitory effect on HPA activity via a relay in the BNST [49]. This region has a dense 

population of inhibitory GABAergic neurons that project to neurosecretory CRH cells in the 

hypothalamus, down-regulating their activity [49]. Glucocorticoids increase activity of 

mPFC and hippocampus pyramidal neurons [34; 54], therefore it is hypothesized that 

circulating CORT works to decrease HPA output indirectly by stimulating excitatory 

projection neurons in these regions, increasing the activity of inhibitory neurons of the 

BNST and thus decreasing the activity of neurosecretory CRH neurons in the PVH. HPA 

axis output can also be indirectly stimulated by the central nucleus of the amygdala (CeA). 

The CeA is thought to stimulate neurosecretory neurons of the PVH indirectly via inhibitory 

GABAergic projections to the BNST. Consistent with this, lesions of the CeA reduce stress-

induced glucocorticoid release and stress-induced anxiety-like behavior [55]. 

Glucocorticoids may also exert negative feedback actions to the PVH through effects on 

amygdala function. For example, electrophysiological experiments have revealed that 

application of glucocorticoids suppresses glutamatergic inputs to the basolateral amygdala 

(BLA) in vitro via effects on non-genomic endocannabinoid signaling [56]. Together, these 

findings reveal that glucocorticoid-mediated negative feedback to the HPA axis occurs both 

directly at the level of the PVH and indirectly through the mPFC, hippocampus, and 

amygdala. Importantly, feedback signals from these brain regions act to modulate HPA 

output via common connections to the BNST. The multiple mechanisms of glucocorticoid-

mediated feedback to the HPA axis highlight the importance of HPA regulation to 

homeostatic regulation and health. However, these different mechanisms of feedback also 

highlight the number of possible areas in which dysfunction can emerge to disrupt normal 

neuroendocrine stress responses and lead to negative health consequences.

3. HPA influences on mood and behavior: Function and dysfunction

3.1 Overview

As discussed above, the effects of stress on physiology and behavior can depend on the 

frequency and duration of stress exposure. While biological responses to an isolated 

exposure to stress, referred to as acute stress, generally only have transient effects on 

metabolic and neural systems, responses to frequent or prolonged exposure to stress, referred 

to as chronic stress, generally lead to longer lasting changes in the basal functions of these 

systems. However, we would be remiss if we neglected the fact that a single intense or 

traumatic stressor can lead to the development of PTSD, which certainly has long-lasting 

changes in function, and this depends on a variety of risk factors that seem to reduce 

resilience in humans (detailed meta-analysis; [57]).

The effects of stress on physiology and behavior are highly dependent on the nature of the 

stressful stimulus experienced. Even though it is likely not possible to completely 

dichotomize stress into “physical” vs. “psychogenic”, more physical stressors (e.g. blood 

loss, cold, infection) engage a reflexive systemic response primarily involving the spinal 

cord and brainstem pathways, while more psychogenic stressors (e.g. restraint, 

immobilization, novel environment) involve additional processing in forebrain circuits, such 

as the amygdala, prior to HPA activation [2; 58; 59]. Furthermore, some stressors involve a 
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combination of physical and psychogenic insults (e.g. foot shock, forced swim). The 

distinction between stressor types has important implications for interpreting the outcomes 

of stress exposure, as each may signal via different neural circuits. To directly test this 

hypothesis, a study by Dayas et. al measured the activation of hypothalamic, brainstem, and 

amygdala sub-regions following exposure to different stressors [60]. Their findings indicated 

that while all stressors measured similarly increased the activity of hypothalamic CRH 

neurons, physical stressors (arterial hemorrhage, ether exposure) preferentially engaged 

neurons in the rostral region of the dorsomedial medulla and the CeA, and psychogenic 

stressors (noise, restraint) preferentially engaged neurons in the caudal region of the 

dorsomedial medulla and the medial amygdala (MeA). Furthermore, Pacak et. al showed 

that different stressor types have different effects on patterns of brain-wide Fos 

immunoreactivity and neuroendocrine stress responses [2; 61], further illustrating that the 

nature of the stressful stimulus can have a large impact on ensuing physiological responses.

In addition to stressor type, the impact of stress on physiology and neural circuits is highly 

dependent on the chronicity and pattern of exposure. Stress habituation is the process by 

which the physiological or behavioral responses to stress decrease following repeated 

exposure to the same (homotypic) stressor over time. However, as discussed by Herman, 

while stress habituation can reduce the overall physiological burden of chronic stress 

exposure, it does not represent a return to “normal” physiologic status [62]. Rather, these 

habituated responses are driven by long-term adaptation in central stress circuits, including 

the hypothalamus [62]. The central processes of stress habituation appear to be regulated in 

part by glucocorticoids, as MR antagonism on the final day of repeated exposure to restraint 

stress prevents habituation of stress-induced CORT secretion [63]. Habituation of the HPA 

response to stress has been observed in response to repeated exposure to both physical and 

psychogenic stressors, including restraint, forces swim, and cold stress [64]. However, if an 

animal is exposed to a stressor that is varied (heterotypic) over time, HPA habituation does 

not occur to the same extent [62; 65]. Additionally, if an animal is exposed to a novel 

stressor following chronic stress, they display an exaggerated HPA response [62; 66]. This 

phenomenon is referred to as stress sensitization, and occurs after both homotypic and 

heterotypic chronic stress exposure [62]. The process of stress sensitization is thought to be 

driven in part by chronic stress-induced increases in hypothalamic CRH expression and 

noradrenergic drive to the PVN which occur as a result of chronic stress exposure [65; 67].

3.2 Modeling HPA dysfunction in rodents

In this section, we will describe four (non-exhaustive) approaches to alter HPA function, as 

well as the wider brain circuits involved in stress responses, in order to understand how they 

contribute both to normal, and abnormal, neurobehavioral responses to stress.

3.2.1 Adrenalectomy—The necessity and sufficiency of HPA-secreted hormones to 

alter physiology and behavior can be tested with various models of removal and 

replacement. The most widely used method of glucocorticoid removal is bilateral 

adrenalectomy (ADX). This procedure involves surgical removal or destruction of the 

adrenal glands, and completely abolishes circulating CORT levels following stress [68; 69]. 

ADX is useful as it allows one to test the necessity of glucocorticoid secretion to 
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physiological or behavioral parameters of interest. Additionally, this method allows one to 

test the sufficiency of CORT in mediating these measures, as known concentrations of 

CORT can be reintroduced into the circulation via injection or the subcutaneous 

implantation of a pellet which continuously releases a tonic amount of CORT. ADX has 

been well-studied for its effects on peripheral metabolism. In both rats and mice, ADX 

typically decreases body weight gain and white adipose tissue (WAT) deposition [70; 71; 

72]. However, some studies in mice report no change in body weight [73], suggesting that 

the metabolic effects of glucocorticoid depletion may be species-dependent. Furthermore, 

replacement of CORT via pellet implantation restores normal body weight and WAT in rats, 

however CORT-induced WAT increases are preferentially deposited in abdominal fat stores 

[70; 74]. In the brain, ADX increases basal hypothalamic CRH expression and significantly 

enhances stress-induced ACTH secretion, effects which are not rescued by CORT 

replacement [53; 69]. Furthermore, while ADX reduces extracellular glutamate responses to 

stress in the mPFC and hippocampus (discussed above) [75; 76], patterns of c-fos responses 

to stress across the brain were not affected by ADX or CORT replacement [77].

While the ADX model has been useful for elucidating some important mechanisms of 

glucocorticoid necessity and sufficiency, the technique has some important limitations in its 

use as a model of HPA dysfunction for understanding disease states. First, the surgical 

procedure used to perform ADX may induce pain or stress itself, which leads to confounds 

when comparing measures between “baseline” and stressed animals. Additionally, the basal 

increases in hypothalamic CRH and circulating ACTH are confounding in the interpretation 

of stress-related measures, as these hormones can have direct effects on the processes in the 

periphery and brain [16; 78]. Finally, while ADX removes plasma CORT responses to stress, 

other important functions (e.g. aldosterone, epinephrine) secreted by the adrenal are also 

lost. For example, while ADX completely abolishes circulating epinephrine levels, extra-

adrenal epinephrine secretion from the SNS increases as a compensatory response [79; 80], 

which can cause significant effects on autonomic functions [81].

3.2.2 Genetic models—In addition to directly removing glucocorticoid secretion, 

disruption of the HPA axis can be achieved using genetic manipulations which interfere with 

glucocorticoids signaling. Genetic manipulations are useful tools, as they overcome the need 

for extensive manipulations that may be stressful or harm the animal. Furthermore, many 

stress-related health disorders have a heritable component [82; 83], giving genetic methods 

added translational value in understanding the etiology of these diseases. The GR and 

FK506 binding protein 51 (FKBP5) are main targets for genetic modulation of HPA 

function, as polymorphisms in these genes are associated with risk of MDD and PTSD [84; 

85; 86]. Genetic GR knockout in mice impairs glucocorticoid negative feedback, resulting in 

elevated levels of circulating ACTH and CORT [87; 88]. Additionally, forebrain-specific GR 

knockout mice exhibit increased basal CORT levels and show markers of behavioral despair 

and anhedonia, similar to characteristics of MDD [89]. In contrast, genetic knockout of 

FKBP5, a negative modulator of GR signaling, results in decreased circulating CORT levels 

and enhanced GR-mediated negative feedback to the HPA axis [90]. Beyond GR and the 

HPA-axis, recent work has shown that GABAergic neurons in the forebrain contribute to 

stress resilience. Genetic deletion of CRH in these neurons can reduce stress-related changes 
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in neuronal activity, and promotes resilience to stress, suggesting that CRH activity in these 

neurons may be a critical extra-HPA node the modulates resilience/vulnerability [91].

While these genetic tools are useful in modeling HPA dysregulation, these techniques still 

possess several drawbacks. First, while polymorphisms in the GR and FKBP5 genes are 

associated with stress susceptibility, a change in GR or FKBP5 function in humans is 

different than complete knockout observed in genetic manipulations in mice. For example, 

global GR knockout is lethal in 90% of mice at the time of birth [88]. Next, in translating the 

effects of genetic deletion to human health disorders it is difficult to dissociate effects 

strictly affecting HPA axis function vs those effects caused by interruption of normal 

developmental processes. For instance, glucocorticoid signaling is involved in processes of 

neuronal migration and myelination of the developing brain [92; 93]. Furthermore, 

heritability is estimated to only account for 30–40% of risk for developing either MDD or 

PTSD [82; 83], indicating that results obtained from genetic knockout studies cannot fully 

explain mechanisms of stress vulnerability in the human population. While these genetic 

approaches are important for the physiological dissection of the circuits underlying HPA 

function and dysfunction, their relevance for many diseases/disorders is likely limited. A 

more powerful approach may be to more fully characterize the functional changes in other 

gene mutations outside of classic HPA-axis/stress pathways that are known to modulate 

resilience and susceptibility to stress-related neuropsychiatric disease. For instance, the 

val66met polymorphism in brain derived neurotrophic factor (BDNF) is associated with 

altered stress resilience in humans [94; 95; 96; 97], and work with the as has val66met 

humanized mouse line aligns well with these findings [98; 99], providing yet another 

approach to study the effects of extra-HPA factors on stress resilience.

3.2.3 Optogenetic and Chemogenetic models—Contemporary neurobiological 

approaches that employ genetic tools have allowed for a further dissection of the underlying 

circuits involved in enhancing resilience or imparting vulnerability. The use of optogenetic 

and pharmacogenetic approaches has allowed for the temporally restricted manipulation of 

genetically defined cell-types within different components of the HPA circuitry. Within the 

HPA, CRH neurons of the PVH contribute to the generation of different stress-induced 

behaviors, as optogenetic manipulation of these cells can clearly alter their expression and 

magnitude [100]. Similarly, a local CRH circuit within the PVH has been implicated in both 

the regulation of the neuroendocrine response to stress, as well as contributing to the activity 

of PVH targets that are important outputs of this nucleus [101]. Outside of the HPA, similar 

approaches have provided remarkable new insights into the wider brain networks important 

in conferring resilience. While the role of the BNST has been well documented in 

modulation of HPA activity and stress responses via classic neuroanatomical, lesion, and 

pharmacologic approaches, newer techniques allow for a finer grained dissection of these 

circuits. Application of optogenetic approaches combined with neuroanatomical tracing has 

revealed that the anteroventral subdivision of the BNST can inhibit HPA output while also 

changing passive coping behaviors [102], thus further refining our understanding of the 

BNST as an important integrative and modulatory node of stress induced changes in 

physiology and behavior. Use of social defeat models in mice, which causes depressive-like 

behaviors in a subset of individuals, has uncovered an important role for midbrain 
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dopaminergic (DA) neurons in resilience. Changes in the biophysical characteristics of 

ventral tegmental area (VTA) DA neurons following social defeat stress reveals that mice 

resilient to developing depressive-like behaviors have an enhanced hyperpolarization 

current, and that by optogenetically increasing this current in susceptible mice imparted 

resilience [103]. In a similar line of work, locus coeruleus (LC ) neurons that project to the 

VTA have increased firing in resilient mice exposed to social defeat, an effect not observed 

in susceptible mice. Optogenetic approaches to mimic this increased firing in this circuit can 

increase resilience in susceptible mice, while pharmacological antagonism of adrenergic 

signalling in this circuit can block the optogenetic rescue [104]. Related, medium spiny 

neurons in the nucleus accumbens are implicated in modulating resilience to chronic social 

defeat, and optogenetic stimulation of these neurons can bidirectionally alter the outcome of 

this stressor on depressive-like behaviors [105].

3.2.4 Chronic corticosterone via drinking water—Our group and others have 

shown that chronic treatment with CORT in the drinking water of mice causes changes in 

HPA activity. For instance, in male mice, the stress-induced rise in CORT is prevented 

following treatment with oral administration of CORT [106; 107]. Furthermore, in contrast 

to ADX, which only prevents glucocorticoid secretion, chronic CORT administration also 

results in reduced hypothalamic CRH mRNA expression and prevents the stress induced rise 

in ACTH [106]. This reduces confounds of compensatory CRH and ACTH increases 

observed after ADX. One large advantage of this method is its non-invasive nature as no 

surgical manipulations or injections are required to achieve downregulation of the HPA 

stress response, reducing the confounds associated with surgical procedures or injections 

which may be stressful themselves [108; 109; 110]. An additional benefit is the maintenance 

of a diurnal CORT rhythm, driven by the diurnal patterns of drinking behavior in mice [106; 

111]. The circadian variation in CORT plays a large role in entrainment of central and 

peripheral clocks, and is known to cause negative effects when absent or flattened [112]. 

This technique also results in atrophy of the adrenal gland, however reductions are largely 

localized to the adrenal zona fasciculata (site of glucocorticoid production) while not 

affecting the adrenal zona glomerulosa (site of aldosterone production) [111; 113]. Thus, the 

structures supporting other physiological functions of the adrenal gland are maintained while 

HPA downregulation is achieved, though whether the production or secretion of aldosterone 

and/or other adrenal factors (e.g. catecholamines) is altered in this model has not been 

explored. Furthermore, since the adrenal is not removed, this model allows one to investigate 

recovery, as many of the physiological changes are reversible [113; 114], allowing for the 

study of long-term consequences of HPA disruption after recovery of normal HPA function. 

This is a notable advantage in understanding stress-related pathological states, as a history of 

HPA dysregulation can have long-term effects on health [115; 116]. This method is not 

without its limitations. For example, this treatment decreases thymus weight, indicating 

potential impacts on immune function [111; 113]. Also, slight increases in body fat and 

decreases in lean mass are observed, as well as increases in plasma insulin and leptin, 

indicating effects on peripheral metabolism [111; 114]. It is also important to note that 

previous work showed that oral CORT administration at the same dose (25μg/ml) for 20 

days resulted in neural structural changes and behavioral despair in mice characteristic of 

chronic stress exposure [117; 118]. However, these studies used CORT hemisuccinate rather 
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than un-modified pure crystalline CORT, which resulted in plasma CORT levels after 

drinking well above physiological levels secreted endogenously during stress (>800ng/ml) 

[117; 118], while the circulating CORT concentrations achieved by drinking using un-

modified CORT are well below stress levels (~100ng/ml) [106; 111].

3.3 Impacts of HPA function on Emotional behavior

Given the pervasive impacts of stress on neural function in limbic brain regions such as the 

mPFC, hippocampus, and amygdala, it is not surprising that stress also exerts a strong 

influence on emotional behaviors. Importantly, the expression of these behaviors depends on 

the internal and external context which they are measured. Behavioral responses to acute 

stress exposure reflect the engagement of processes necessary for survival, generally 

including increased vigilance and anxiety and decreased exploration and reward-seeking [3]. 

In rodents, acute stress exposure increases measures of anxiety, including reduced 

exploration in the open field test and light/dark transition task [119; 120]. Work by Gray et. 

al revealed that CRH in the amygdala leads to anxiety-like behavior through an 

endocannabinoid-mediated mechanism [121]. Specifically, following acute stress, CRH 

activity in the BLA decreases endocannabinoid levels, disinhibiting the amygdala to then 

initiate anxiety-like behavior [121]. These results are consistent with other studies which 

show that genetic knockout of the CRH receptor decreases anxiety-like behaviors in rodents 

[15]. In the short term, anxiogenic effects of stress may be adaptive in that they increase the 

chance for an animal to escape acute danger [122]. However, chronic engagement of these 

behavioral responses can lead to the persistence of anxiety even in the absence of acute 

threat. For example, Nasca et. al showed that, while anxiety-like behaviors measured in a 

light/dark transition task were increased immediately after exposure to acute restraint stress 

exposure in mice, chronic restraint stress caused a similar increase in anxiety even in the 

absence of an acute challenge [119]. While seemingly negative, these prolonged changes in 

behavior induced by chronic stress exposure can be thought of as adaptive. As discussed by 

Herman, increases in anxiety and vigilance minimize risk in a hostile environment, and 

therefore the development of so-called “pathological” behavior in response to chronic stress 

exposure may be a way for an organism to overcome present danger at the expense of long-

term success [62]. In addition to increasing basal measures of anxiety, chronic stress 

exposure also increases the expression of “depressive-like” behaviors such as increased 

behavioral despair and anhedonia, a phenomenon that is of high translational relevance to 

human stress disorders [123; 124]. In both rats and mice, chronic stress exposure increases 

measures of behavioral despair (e.g. forced swim and tail suspension test immobility) and 

anhedonia (e.g. sucrose preference and social interaction) [119; 124; 125]. The mechanisms 

driving these behavioral changes are not well understood, but can be reversed by treatment 

with antidepressants [124]. Strong links have been made between dysregulation of glutamate 

signaling in the mPFC and hippocampus and the development of depressive-like behaviors 

[126; 127]. While chronic restraint stress increases immobility in the forced swim test and 

decreases social interaction, these effects can be prevented by pharmacological or genetic 

overexpression of xCT in the ventral hippocampus [125]. This suggests that changes in 

synaptic excitability in limbic forebrain structures may underlie the expression of 

pathological behaviors.
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While stress can lead to significant changes in emotional behavior which researchers or 

clinicians might label as “pathological”, not all individuals exposed to stress will develop 

these negative outcomes. Understanding the factors which determine an individual’s level of 

stress resilience or vulnerability is an important task in the goal of treating stress-related 

psychiatric disorders. Stress coping has emerged as a factor strongly linked to stress 

resilience. As defined by Koolhaas et al. (1999), this concept refers to the behavioral and 

physiological efforts made to overcome a stressful situation and depends highly on the 

perceived controllability of the stressor [128]. Stress coping styles are typically categorized 

as either proactive or reactive/avoidant in nature [128]. Given that the challenges associated 

with stress can be complex in nature, relying only one coping style may not necessarily be 

more successful in every situation. HPA activity is also strongly linked to coping style. 

Höhne et al. showed that in a sample of subjects with remitted MDD, coping strategy 

predicted ACTH and CORT responses to an acute stress test [129]. In rodents, proactive and 

reactive coping strategies are associated with low and high HPA axis stress reactivity, 

respectively [128]. For example, Pérez-Tejada et al. (2013) showed that mice which 

exhibited more passive coping behaviors in a repeated social defeat paradigm had greater 

plasma CORT responses than mice which showed more active coping behaviors [130]. 

Previous work from our group showed that chronic disruption of normal neuroendocrine 

HPA stress reactivity in mice is associated with altered stress coping responses in a novel 

open field test [106; 131]. We showed that following chronic oral administration of 

glucocorticoids, mice were more resistant to the effects of acute swim stress on self-

grooming (reactive) behavior and rearing (proactive) behavior compared to vehicle-treated 

controls [106; 131]. In addition, these coping responses following acute stress exposure were 

not dependent on acute glucocorticoid secretion, as acute inhibition of CORT synthesis with 

metyrapone prior to stress had no effect on open field grooming or rearing behaviors, and 

acute CORT replacement during stress did not rescue normal stress coping after stress in 

HPA-disrupted mice [131]. These studies indicated that HPA dysregulation may chronically 

alter the function of neural circuits underlying stress coping behaviors. We specifically 

tested how HPA disruption affected the activity of the PVH and the paraventricular thalamic 

nucleus (PVT) in relation to these altered stress coping responses, as pharmacological and 

pharmacogenetic stimulation of these regions is known to affect these behaviors [100; 132]. 

Following chronic HPA disruption, acute stress-induced FOS protein expression was blunted 

in the PVH and PVT, mirroring effects on grooming and rearing behaviors [131]. These 

findings revealed a role of these brain regions in mediating the interactions between HPA 

hormones and stress coping, however more detailed interrogation of these mechanisms 

needs to be performed before causal relationships can be identified. Further exploration of 

these stress-responsive diencephalic brain circuits may yield important findings about the 

regulation of stress coping and could be important targets for therapeutics aimed at reducing 

the negative impacts of stress on health.

4. HPA dysfunction as a risk factor for disease

4.1 HPA hormones in major depressive disorder and post-traumatic stress disorder

Dysfunction of the HPA axis, particularly in glucocorticoid signaling, is highly associated 

with stress-related diseases including MDD and PTSD. A large number of depressed 
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patients have increased basal cortisol levels and exhibit pituitary and adrenal enlargement 

[133; 134]. This elevated HPA output in MDD is thought to be mediated by reduced 

glucocorticoid-mediated negative feedback, an idea which stems from findings that oral 

administration of synthetic glucocorticoids fails to reduce cortisol secretion in patients with 

MDD, whereas the same treatment results in robust suppression of cortisol in healthy 

individuals [134; 135]. In contrast, a significant portion of individuals with PTSD have 

lower basal cortisol levels and enhanced glucocorticoid-mediated negative feedback [136; 

137]. In addition, lower cortisol levels following awakening have been found in patients with 

PTSD compared to healthy individuals [138; 139; 140]. The dichotomy of HPA reactivity in 

MDD and PTSD highlights the inverted “U” shaped relationship between stress mediators 

and health, however while different patterns of glucocorticoid dysregulation are found 

between these disorders, it is still unclear how they contribute to negative emotional and 

cognitive outcomes.

In both MDD and PTSD, changes in structure and function of limbic forebrain regions have 

been observed. In MDD, decreases in hippocampal volume have been observed in both 

functional imaging studies [141], and in overall mass from brains collected postmortem 

from depressed patients [142]. These effects have been attributed to neuronal atrophy and 

reductions in hippocampal neurogenesis, which also occurs following chronic stress 

exposure in rodents [143]. Similar decreases in overall size of the mPFC and changes in 

neuronal morphology have also been observed in MDD [144], indicating similar 

mechanisms mediating stress-induced changes in each region. One study by Stockmeier and 

colleagues (2004) showed that while pyramidal cells are reduced in size in the hippocampus 

in MDD, the density of glial cells is increased, suggesting a role of inflammation in these 

processes [142]. Importantly, high levels of glucocorticoids mimic the effects of stress on 

neuronal atrophy and reduced neurogenesis in rodents [145; 146], suggesting a direct link 

between HPA dysfunction and neural outcomes of MDD in the hippocampus and mPFC. 

Similar reductions in volumes of the hippocampus and mPFC have been observed in 

individuals with PTSD compared to healthy individuals [147; 148]. Interestingly, these 

changes were also observed in comparison to trauma-exposed individuals who did not 

develop PTSD, suggesting that morphological changes in the hippocampus and mPFC may 

be a cause, rather than effect of PTSD development [147].

A leading hypothesis for stress-induced neuronal atrophy in the hippocampus and mPFC in 

human disorders and following stress in rodents relates to changes in synaptic excitability 

[126; 149; 150]. Abnormal increases in glutamate levels following stress can overstimulate 

NMDARs, leading to calcium-mediated excitotoxicity and synaptic depression [149; 151]. 

Furthermore, stress-induced synaptic depression can be mediated through actions of 

glucocorticoids. In support of this, Yuen and colleagues (2012) showed that prolonged 

exposure to glucocorticoids facilitated degradation of NMDAR and AMPAR subunits in the 

mPFC, and GR antagonism blocked repeated stress-induced decreases in excitatory NMDA 

and AMPA currents [152]. These results suggest that glucocorticoid-mediated synaptic 

depression may be a compensatory mechanism to reduce excitotoxicity caused by 

pathological levels of stress and highlight how HPA dysregulation could contribute to 

increased vulnerability to negative health outcomes related to stress. In addition to 

glucocorticoids, dysregulation of CRH signaling may also contribute to negative outcomes 

Kinlein and Karatsoreos Page 13

Front Neuroendocrinol. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of stress exposure. In support of this, significantly higher cerebrospinal fluid concentrations 

of CRH have been observed in individuals with MDD or PTSD, and reduced CRH binding 

sites have been observed in the frontal cortex of suicide victims [153; 154; 155]. 

Furthermore, pharmacological or virally-mediated increases in CRH in the brain increase 

measures of anxiety in rodents, suggesting that CRH signaling is mechanistically linked to 

control of emotional behavior [156; 157]. However, despite these findings, pharmacological 

treatments targeting CRHR1 signaling have not been particularly effective in the treatment 

of MDD, suggesting that the role of dysregulated CRH in human psychiatric disorders may 

involve other CRH receptor types or interactions with other neurotransmitter systems [158].

4.2. Effects of Disrupted HPA function on Resilience: Timing Matters

Most research on stress and HPA function focuses on the major changes observed in HPA 

activity following acute and/or chronic stress. However, there is a more subtle aspect of 

dynamic change in the HPA that does not always receive adequate empirical attention: the 

influence of time of day on HPA activity, and the importance of this circadian influence on 

optimal neurobehavioral function and adaptive responses. Circadian rhythms are found in 

nearly all organisms, from single-celled bacteria to humans. A circadian rhythm is a rhythm 

that persists in the absence of external cues, and thus is endogenously generated. Current 

models suggest that circadian rhythms allow organisms to anticipate daily changes in the 

environment, rather than merely respond to such changes. The circadian system is comprised 

of both central and peripheral clocks, which work in concert to produce coherent behavioral 

and physiological rhythms in an organism. In mammals, the master circadian clock is 

located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. This was 

determined by both lesion studies, which unequivocally demonstrated this necessity of the 

SCN in generating rhythms [159; 160; 161; 162], and transplants of SCN tissue that restored 

rhythmicity in hosts whose own rhythms have been eliminated by SCN lesions [163; 164; 

165]. Though it is undeniable that the SCN is the master circadian clock, the circadian 

system can be considered as a hierarchical network of control nodes throughout the brain 

and body. While the SCN is the master clock it controls a network of oscillators throughout 

the body, which interact with each other. Given that circadian rhythms have been uncovered 

in nearly every physiological system, from activity of the HPA axis (details below), to food 

intake and metabolic processes [166], to immune function [167], and neural plasticity [168], 

this distributed pseudo-hierarchical model of circadian control is well supported. Taken in 

this context, it is therefore clear why disruption of the circadian clock has widespread, 

integrative, and in many cases hormetic effects on the organism, thus affecting the ability of 

many systems to respond to environmental and/or psychological challenge.

Directly addressing the HPA axis, in all vertebrates that have been examined, including 

humans, non-human primates, and rodents, circadian fluctuations in glucocorticoid secretion 

that continue in constant conditions have been observed [161; 169; 170; 171; 172; 173]. In 

fact, the lack of glucocorticoid rhythms following SCN lesions in rats, were among the first 

data implicating the SCN as a brain clock [161]. In both nocturnal and diurnal animals, the 

phase of the rhythm differs, with corticoid secretion beginning to rise before waking, though 

this may be at the start of the day (in diurnal animals) or start of the night (in nocturnal 

species) [174; 175; 176]. The SCN is necessary for overt circadian rhythms in CORT. As 
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noted above, lesions of the SCN completely eliminate CORT rhythms [161; 177]. Circadian 

“forced desynchrony”, which disrupts SCN function can also drive changes in CORT 

rhythms in rats [178]. Though the adrenals possess the necessary molecular machinery to 

generate circadian rhythms, adrenal rhythms of clock gene expression are SCN dependent 

[179]. There are two efferent pathways from the SCN that have been implicated in 

regulation of the HPA. The first is a monosynaptic projection from the SCN to the CRH 

neurons in the PVN [180; 181]. Output from the PVN is clearly important in both generating 

CORT rhythms, as well in response to acute stressors. In addition to this monosynaptic 

pathway, a multisynaptic SCN-Adrenal cortical pathway has also been described [182]. 

However, the specific role of this pathway has not yet been fully characterized.

In addition to broad rhythms in CORT and HPA axis activity, it is important to explain the 

origins of these rhythms in CORT. Heroic work by the Lightman group demonstrate that 

circulating CORT rhythms are generated by alterations in the profile of pulsatile secretion, 

occurring in an ultradian fashion, with a period of about 1hr [183; 184; 185]. This ultradian 

pattern of CORT secretion is driven by feed-forward mechanisms and timed delays in 

processes at both the pituitary and adrenal levels, and unlike pulsatile rhythms in 

reproductive hormones, it does not require a pulse generator in the hypothalamus [185]. The 

significance of these ultradian pulses for overall function is an area of high research activity, 

with additional findings showing that the adrenal responds optimally to a pulsatile pituitary 

adrenocorticotropic hormone (ACTH) profile, given that constant ACTH infusion results in 

significantly reduced CORT levels [186].

Circadian rhythms can be found in many aspects of the HPA axis, and in the brain regions 

that are important for both cognitive and emotional function. Clock genes, the molecular 

“gears” of the circadian clock are clearly found at every level of the HPA axis. In the 

adrenal, clock genes seem to underlie rhythmic responsiveness of the adrenal to pituitary 

ACTH, and to physiological and physical stressors [179; 187; 188; 189; 190; 191]. A large 

body of work has illustrated that the core clock protein PER2 is rhythmic in extra-SCN brain 

areas, including the oval nucleus of the BNST (BNST-OV), and the central (CEA) and 

basolateral nuclei of the amygdala (BLA) [192; 193]. What makes these rhythms noteworthy 

is that while BNST-OV and CEA rhythms depend on an intact adrenal, BLA rhythms in 

PER2 are not affected by adrenalectomy. Indeed, CORT is a key player in this rhythm, as 

PER2 rhythms in BNST and CEA can be restored with CORT in the drinking water (i.e. a 

somewhat rhythmic route of administration), but not by subcutaneous pellets (i.e. tonic 

CORT) [194]. In addition to these subcortical regions, a role for diurnal CORT rhythms has 

been uncovered in cortical areas, being important for spine turnover in motor cortex and 

driving performance in motor learning tasks [195]. More recent work has demonstrated that 

CORT can modulate clock gene expression in the PFC of rats, and these effects can 

modulate fear learning [196].

4.3 Connecting Circadian Rhythms and HPA Function to Resilience/Vulnerability: A 
model

We and others have suggested that allostatic load, and overload, contribute to increased 

vulnerability to stressors, and that buttressed allostatic systems could potentially impart 

Kinlein and Karatsoreos Page 15

Front Neuroendocrinol. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some resilience. But what factors determine how “well” allostatic systems respond to a 

rapidly changing set of circumstances? Our proposal is that underlying allostasis and the 

capacity for resilience is an intact and optimally functioning circadian timing system. Our 

hypothesis is that disruption of the circadian rhythms shifts the organism into a state of 

higher allostatic load, now being less able to adapt to additional stressors, or changes in 

stress severity. Evidence exists demonstrating that in rats lacking normal circadian patterns 

of CORT the HPA axis response is dysregulated, with unreliable/slow termination of the 

adrenocorticotropic hormone (ACTH) response following the end of a stressor [197]. As 

noted above, adrenal clock genes also seem to gate normal ACTH sensitivity. Given that 

CORT is a critical intermediary between the SCN clock and peripheral clocks in many 

tissues, serving as a humoral synchronizer of these extrahypothalamic clocks further 

substantiates our proposal that an important relationship exists between disrupted circadian 

timing and allostatic load. Indeed, a recent review by Rao and Androulakis [198] directly 

explores the importance of circadian regulation of HPA function in the context of allostatic 

load.

With respect to the contribution of disrupted clocks to phenotypes that closely mirror 

instances of high allostatic load, both human and non-human animal studies have been 

undertaken. Humans who suffer from chronic circadian misalignment show abnormalities in 

neurobehavioral and physiological function. In a study of flight crews who endure more 

bouts of jet-lag (short-recovery transmeridian crews) versus crews who fly less 

transmeridican flights (i.e. more north-south flights; long-recovery crews) show shrunken 

medial temporal lobes, increased reaction time and poorer performance in visual-spatial 

cognitive tasks [199]. Physiologically, these populations were also different, in that the 

short-recovery crews had a significant correlation between salivary cortisol levels and medial 

temporal cortical volumes, while this correlation was not observed in long-recovery flight 

crews. The significance of this effect in the temporal lobe with respect to resilience merits 

some speculation, since in PTSD it has been observed that smaller temporal lobes may 

impart decreased resilience to negative outcomes of stress [200; 201].

Animal models on circadian desynchronization and stress resilience are still sparse. We have 

developed a mouse model of chronic circadian desynchronization (CD) in which mice are 

housed in a 20h light-dark cycle (10hrs light, 10hrs dark; T20) compared to standard 24hr 

cycles. These mice show metabolic signs of allostatic load, with increased weight, adiposity 

and leptin levels, as well as an imbalance between insulin and plasma glucose, suggesting a 

pre-diabetic state. The metabolic changes are accompanied by changes in prefrontal cortex 

(PFC) cellular morphology, mirroring those observed in chronic stress, with CD animals 

having shrunken and less complex apical dendritic trees of cells in layer II/III of the medial 

PFC [202]. The effects are very similar to those observed in 21d of chronic restraint stress in 

rodents, which results in morphological simplification of prefrontal cortical neurons and 

impairment in prefrontal mediated behaviors, such as attentional set-shifting or other 

working memory tasks [203]. Importantly, similar effects are observed in humans [204]. 

Behaviorally, CD animals show cognitive rigidity in a version of the Morris Water maze, 

being slower to learn a reversed location of a hidden platform and making more 

perseverative errors by returning to the original location of the platform [202]. At the same 

time, CD mice display an “impulsive” like phenotype in the light-dark box, while not 
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showing any outward behavioral anxiety phenotype [202]. Similar work shows that housing 

mice in a T7 cycle (7hrs light, 7hrs dark) causes particular changes in mood and 

emotionality, with a direct projection from intrinsically photosensitive retinal ganglion cells 

to various thalamic regions being implicated [205].

Our model of circadian-allostatic interaction suggests that desynchronization between the 

master SCN clock and the external environment drives central and peripheral clocks out of 

phase with each other, leading to the state of internal desynchrony within neural circuits and 

other critical physiologic systems, such as the HPA axis. This eventually leads to altered 

neurobehavioral function. A complimentary aspect of this hypothesis is that shorter episodes 

of circadian disruption could lead to temporary changes in these systems, thereby rendering 

them more vulnerable to additional perturbation. Thus, both acute and chronic circadian 

desynchronization results in a whole-body condition that may allow other stressors to 

overwhelm already compromised networks. Therefore, circadian desynchronization 

compromises allostatic responses meant to enable organisms adapt to environmental 

challenge, by disrupting the stress axis, similar to diathesis-stress (e.g. “two hit”) models 

(Figure 2). Viewing these findings in light of the proposed model could explain many of the 

epidemiologic findings of increased risk for development of psychiatric, cardiovascular or 

other physiological syndromes in shift workers or populations undergoing chronic circadian 

disruption [206; 207; 208; 209].

Unravelling the mechanisms of this link between circadian rhythms and allostatic load has 

significant importance for biomedicine, as circadian disruption (e.g. shift work and jet lag) 

and sleep deprivation are both common in the modern world, and an increasing health 

concern [210].

5. Summary and Conclusions

The HPA axis is neuroendocrine system which helps organisms adapt to and overcome 

adverse situations through the secretion of endocrine mediators, including glucocorticoids. 

This system is subject to extensive physiological regulation and equipped to adjust to 

differences in stressor type, severity, and chronicity. Dysregulation of HPA axis function is 

associated with many different metabolic and mental health disorders associated with stress, 

including MDD and PTSD, highlighting the importance of this system in promoting 

resilience to adversity. The brain is a major target of stress, and HPA hormones have 

considerable impacts on neural circuits which regulate cognitive and emotional processing. 

Furthermore, the ability of HPA hormones to adequately bolster adaptive responses to stress 

are influenced greatly by circadian rhythms in in all biological processes, which can have 

profound effects on stress susceptibility.

Our current understanding of the biological factors underlying stress resilience is still 

relatively nascent, and partially obscured by the vast complexity and individual variability 

present in physiological, neural, and behavioral pathways. Developing models that consider 

the interactions between these pathways is necessary in the discovery of novel therapeutic 

strategies aimed at promoting positive adaptation to stressful life circumstances and 

decreasing the negative burdens of stress on individuals and on society. Indeed, rodent 
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models, particularly those using chronic psychosocial stress, significantly affect both 

behavioral and peripheral responses to subsequent physiological challenge [211; 212]. 

Establishing a unifying theory of stress resilience that incorporates an appreciation of 

diversity in both biological function and individual experience will be instrumental in 

improving health outcomes and disease treatment [213].
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Figure 1. Illustration of interactions between stress and physiological responses can affect stress 
resilience.
Stress can lead to strain on an organism, and the response (e.g. catecholamines, 

glucocorticoids, cytokines) supports adaptation to this increased “allostatic load” (left). 

However, if the stress response is inadequate (middle), or exaggerated/protracted (right), the 

increased load can lead to the physiological systems being placed into a state of “allostatic 

overload”. In fact, the very stress resposnes that have evolved to enable stress adaptation 

may lead to allostatic load and overload themselves, even in the face of a small additional 

stressor (right), which may be a substrate for stress resilience.
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Figure 2. Hypothalamic Pituitary Adrenal Axis and Biological Rhythms interact to modulate 
neural, behavioral and physiologicla responses to stress.
Normally functioning HPA responses and biological rhythms promote balance in the 

neurobehavioral and physiological responses to stress (A). If HPA responses (B) or 

biological rhythms (C) are disrupted, then the balance can shift form resilience and healthy 

responses to vulnerability and pathological responses.
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