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SUMMARY

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDBY/) integrates drug sensitivity and
genomic data, including high-resolution methylome and transcriptome from 118 patient-derived
small cell lung cancer (SCLC) cell lines, providing a resource for research into this “recalcitrant
cancer.” We demonstrate the reproducibility and stability of data from multiple sources and
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validate the SCLC consensus nomenclature on the basis of expression of master transcription
factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks
linking SCLC subtypes with MY C and its paralogs and the NOTCH and HIPPO pathways. SCLC
subsets express specific surface markers, providing potential opportunities for antibody-based
targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH
pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM)
genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC
biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.

In Brief

Tlemsani et al. provide a unique resource, SCLC-CellMiner, integrating drug sensitivity and multi-
omics data from 118 small cell lung cancer (SCLC) cell lines. They demonstrate that SCLCs have
differential transcriptional networks driven by lineage-specific transcription factors (NEUROD1,
ASCL1, POU2F3, and YAP1). Furthermore, YAP1-driven SCLCs have distinct drug sensitivity
profiles.
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INTRODUCTION

Although small cell lung cancer (SCLC) represents only 15% of all lung cancers, it accounts
for more than 30,000 cases/year in the United States, with most patients presenting with
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widely metastatic disease. Unlike the increasingly personalized treatment approaches for
non-small cell lung cancer (NSCLC), SCLC is currently treated as a homogeneous disease
(Rudin et al., 2019; Thomas and Pommier, 2016). The typical short life expectancy and the
therapeutic options, which have not changed for decades (platinum-etoposide combination
as first-line therapy and topotecan at relapse), caused the National Cancer Institute (NCI) to
categorize SCLC as a “recalcitrant” cancer.

SCLC tumors are usually characterized by their neuroendocrine (NE) differentiation, which
is immuno-histochemically visualized with markers including synaptophysin (SYP) and
chromogranin A (CHGA) (Gazdar et al., 2017; McColl et al., 2017). Yet a small subset of
SCLCs express low levels of these NE markers (“non-NE”) (McColl et al., 2017; Zhang et
al., 2018). Hence, SCLCs have been historically defined as “classic” (NE) or “variant” (non-
NE) (Zhang et al., 2018). Gazdar and colleagues proposed a classification (“NE score”) on
the basis of the expression of 50 genes (25 with increased and 25 with decreased expression)
for NE SCLC, including the transcription factors ASCL 1 (achaete-scute homolog 1) and
NEURODI (neurogenic differentiation factor 1), which are highly expressed in NE SCLC
(Zhang et al., 2018). A consensus nomenclature for molecular subtypes has been recently
proposed on the basis of differential expression of two additional transcription factors, YAP1
('YYes-associated protein 1) and POU2F3 (POU class 2 homeodomain box 3) for the non-NE
SCLC subtypes (Rudin et al., 2019). POU2F3 encodes a POU domain transcription factor
normally expressed in chemosensory cells of the intestinal and lung epithelium (Huang et
al., 2018). YAP1, a key mediator of the Hippo signaling pathway, is reciprocally expressed
relative to the NE marker INSM1 (McColl et al., 2017). Hence, SCLCs can be classified into
four groups on the basis of the expression of NEURODI1, ASCL 1, POUZF3, and YAPI
(Rudin et al., 2019). For brevity, we refer to this classification as “NAPY” (N for
NEURODI, A for ASCL1, P for POUZF3, and Y for YAPI).

Genomic initiatives spearheaded by The Cancer Genome Atlas (TCGA) consortium have
accelerated the pace of discovery for many cancers. Yet TCGA was not extended to SCLC,
because of a lack of readily accessible and adequate tumor tissue, as most patients are
diagnosed by fine-needle aspiration. Nevertheless, SCLC research has benefited from the
systematic collection of a large number of tumor cell lines, most of them developed at the
NCI in the NCI-VA and NCI-Navy Medical Oncology Branches (Mulshine et al., 2019).
This collection has been distributed widely and included in the cancer drug genomic
databases of the NCI, Broad Institute/MIT, and Sanger/Massachusetts General Hospital
(MGH) (Barretina et al., 2012; Garnett et al., 2012; lorio et al., 2016; Polley et al., 2016).
However, the data were until now accessible only from individual platforms, making it
challenging to translate genomic knowledge of SCLC tumor biology and therapeutic
possibilities. Additionally, a number of SCLC cell lines generated by the Minna-Gazdar
group at UT Southwestern (UTSW) Medical Center (McMillan et al., 2018) had not been
integrated in the NCI (NCI-SCLC), Broad Institute (Cancer Cell Line Encyclopedia
[CCLE]/Cancer Therapeutics Response Portal [CTRP]), and Sanger/MGH (Genomics of
Drug Sensitivity in Cancer [GDSC]) databases.

To extend our understanding of the genomics of SCLC, we performed genome-wide
promoter methylation on the NCI set of 66 SCLC cell lines and whole-genome RNA
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sequencing (RNA-seq) for 72 cell lines of the UTSW set. We integrated those data in a
global drug and genomic database (SCLC-Global) encompassing 118 SCLC lines from 115
individual patients. The integrated data, SCLC-CellMiner-CrossDataBase (SCLC-Cell-
Miner), are available from a web-based tool (https://discover.nci.nih.gov/
SclcCellMinerCDBY/) derived from our CellMiner cross-database (CDB) web application
(Rajapakse et al., 2018).

SCLC-CellMiner Resource

SCLC-CellMiner integrates genomic and drug activity data for 118 molecularly
characterized SCLC cell lines, all of which have DNA fingerprints establishing their
provenance (Figures 1A and 1C): 68 from the NCI collection (Polley et al., 2016), 74 from
the GDSC (Garnett et al., 2012), 53 from the CCLE, 39 from the CTRP (Barretina et al.,
2012), and 73 from UTSW (Gazdar et al., 2010). Seventeen cell lines (14%) are in all five
data sources, 20 (17%) are in four data sources, 23 (20%) in three data sources, 15 (13%) in
two data sources, and 43 (36%) in only one data source (Figure 1A; Table S1).

Our integrated resource includes new analyses for high-resolution methylome (Krushkal et
al., 2020) and copy number for 66 NCI cell lines and RNA-seq for 72 UTSW cell lines
(Figure 1B). SCLC-CellMiner also makes accessible whole-exome mutation data for 12,537
genes across 72 cell lines of the UTSW SCLC database in addition to the previously
released exome sequencing data for 52 cell lines from CCLE and 62 cell lines from GSDC.

Tested clinical drugs and investigational compounds in each dataset and across data sources
are summarized in Figure 1D. The NCI dataset provides the largest number (n = 526),
followed by the CTRP (n = 481), GDSC (n = 297), and CCLE (n = 224).

SCLC-CellMiner allows multiple analyses (Table 1): confirming cell line reproducibility and
identity across datasets, drug activity reproducibility, determinants of gene expression (on
the basis of DNA copy number, promoter methylation, and microRNA expression),
exploration and validation of genomic networks, classification of the cell lines on the basis
of metadata such as the NAPY, epithelial-mesenchymal transition (EMT) and antigen-
presenting machinery (APM) scores, and validation and discovery of drug response
determinants.

Data Validation, CDB Analyses, and CellMiner Univariate Analyses

Cross-comparison for matched cell lines was used to validate the new NCI-SCLC
methylome (850K Illumina array) (Krushkal et al., 2020) by comparison with the published
SCLC data of GDSC (450K array) (Rajapakse et al., 2018). The comparison yields high
overall correlation for promoter methylation (Reinhold et al., 2017), with a median of 0.90
for 9,015 common genes with a wide expression range for the 43 common cell lines (Figures
2A and S1). Cross-correlation of the new RNA-seq data from UTSW with other gene
expression data (microarray and RNA-seq) is also highly significant (Figures 2A and S1).
This demonstrates the high reproducibility and stability of the key molecular characteristics
in SCLC lines grown in tissue culture for widely divergent passages at different institutions
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and analyzed independently with different technical platforms (RNA-seq versus microarray,
850K versus 450K methylome arrays).

Reproducibility across datasets can be tested with CellMinerCDB by plotting the same gene
(expression, copy number, or promoter methylation), drug, or microRNA on the x and the y
axes. For instance, Schlafen 11 (SLFN11), whose expression is highly predictive of response
to a broad range of frontline treatments of SCLC (etoposide, topotecan, cis- and carboplatin)
as well as drugs under investigation such as the poly(ADP-ribose polymerase) inhibitors
(Farago et al., 2019; Gardner et al., 2017; Murai et al., 2019; Zoppoli et al., 2012) measured
by RNA-seq in the UTSW database, shows a 0.92 Pearson correlation with its measured
values by Affymetrix microarray in the NCI database (Figure 2B). SLFN11 promoter DNA
methylation in the NCI database also shows a Pearson correlation of 0.9 with its value in the
GDSC (Figure 2C).

CDB analyses are shown in Figure 2 for MYC, which is commonly amplified and drives
proliferation of SCLC (Ireland et al., 2020), for BCL2, which encodes a canonical
antiapoptotic protein targeted by navitoclax (ABT-263) (Rudin et al., 2012), and for two
SCLC drugs, etoposide and topotecan. MY C amplification (in NCI) is correlated with its
overexpression (by RNA-seq in CCLE) (Figure 2D). Navitoclax activity is correlated with
BCL2expression (Figure 2E). Response to etoposide is correlated in the NCI and CTRP
despite different assays; cells responding to etoposide overlap for topotecan (Figures 2F and
2G).

Integrating the CellMinerCDB database of more than 1,000 cell lines of all lineages, which
includes 74 and 53 SCLC cell lines in GDSC and CCLE (Figures 1A and 1C) (Rajapakse et
al., 2018), allows comparisons among tissue of origin. For instance, MYC expression is
correlated with the replication processivity factor PCNA (proliferating cell nuclear antigen)
in SCLC versus other tissues, including NSCLC, consistent with the replicative genotype of
SCLC and high PCNA expression compared with NSCLC (Figure 2H).

The SCLC Methylome

Two prior studies described the promoter methylation profiles of SCLC with limited data for
cell lines; 18 were examined by Kalari et al. (2013) and 7 by Poirier et al. (2015) together
with primary tumors and patient-derived xenograft (PDX) samples. Here we analyzed the
methylome of the 66 cell lines of the NCI and processed the methylome of the whole 985
GDSC cancer cell line dataset, including its 61 SCLC cell lines. Individual probe analysis
for the Illumina 850K platform in the NCI SCLC cell lines is reported in a parallel
publication (Krushkal et al., 2020), while SCLC-CellMiner provides promoter methylation
score (Reinhold et al., 2017). The promoter methylation data are highly reproducible
between the NCI and GDSC datasets for the 43 common cell lines despite the different
Illumina platforms (850K versus 450K) (Figures 2A and 2C). Thus, SCLC-CellMiner
provides promoter methylation for a total of 84 individual SCLC cell lines (43 common + 23
specific to NCI-SCLC + 18 specific to GDSC).

Low Global Methylation and Promoter Methylome of SCLC Cell Lines—Global
methylation levels show marked differences between the SCLC and the other cancer cell
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lines from different histologies across the GDSC, with SCLC showing the lowest median
level of global methylation among 21 cancer subtypes (Figure 3A).

To assess the distinctiveness of the methylome of the SCLC cell lines, we compared 61 cell
lines from GDSC and 66 cell lines from NCI with the 75 NSCLC cell lines of the GDSC and
the 60 cell lines of the NCI-60, which include nine NSCLC cell lines. We selected 1,813
genes with the highest methylation range (SD > 0.25). Hierarchical clustering (Figure 3B)
shows that SCLC cell lines come together (cluster b), except for nine cell lines (one in
cluster a, eight in cluster c), which are all SCLCs not expressing NE features (“non-NE”
SCLCs). Of the five NSCLC cell lines in the SCLC cluster (b), three are large cell lung
cancers and one is a carcinoid (Table S2). This demonstrates a promoter methylation
signature for SCLC cell lines associated with NE phenotype.

Genes clustered as (1) hypomethylated in SCLC (clusters 1-3), including ASCL 1,
NEURODI, INSM1, and CHGA (Figure S2); (2) hypermethylated in SCLC (cluster 5); and
(3) variably methylated independently of tissue of origin (cluster 4) (Table S2). Pathway
analysis of the 1,082 hypomethylated genes (clusters 1-3) shows enrichment of neurological
as well as extracellular matrix (ECM) pathways (Figure 3C; Table S2), consistent with the
NE and aggregation features of classic SCLC cell lines. Many genes involved in EMT (Kohn
et al., 2014) also tend to be hypomethylated in SCLC cell lines, including ZEB1, CLDN?7,
and ESRPZ2.

Histone and Epithelial Genes Are Driven by Methylation in SCLC Cell Lines—
To determine the influence of promoter methylation on gene expression, we selected gene
categories on the basis of our previously established Development Therapeutics Branch
(DTB) gene sets (Table S3) (Reinhold et al., 2017). Epithelial and histone genes stood out
(Figure 3D, with median correlation of —0.53 and —0.50, respectively). Canonical histones
showed the highest negative correlation between expression and methylation (Figure 3E),
suggesting that epigenetic regulation of canonical histones is a feature of SCLC
carcinogenesis.

We also performed gene set enrichment analyses (GSEAS) looking at Gene Ontology (GO)
and functional gene set collections (MSigDB Hallmark gene set, C2 curated pathway gene
set, and C5 GO gene set, as well as our DTB functional gene sets; Table S3). They
confirmed the high significance of the histones and epithelial genes as well as additional GO
categories, including protein modifications, microtubule cytoskeleton, mitotic cell cycle, and
cellular responses to DNA damage (Table S4).

SCLC DNA Copy Number versus Methylome as Drivers of Gene Expression

To evaluate the relative importance of promoter methylation and gene copy number, we
derived copy number data from the Illumina 850K methylome array and correlated the
expression of each gene with DNA copy number and methylation in the NCI-SCLC dataset
(Figure 3E) (Reinhold et al., 2017). Correlations for individual genes can be readily
displayed with SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/), and
snapshots of genes involved in SCLC carcinogenesis and driven by methylation
(NEURODI1, ASCL1, POU2F3, YAPI1, and SLFN11) are presented in Figure S1.
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Unlike the histone and epithelial genes, the expression of SCLC growth-driving genes, such
as the oncogenes (MYC, MYCL, MYCN, and AKTI), tumor suppressor genes (CDKNZA,
BAP1, and VHL), and chromatin remodeler genes (EP300and CREBBP), are driven
primarily by copy number alterations (Figure 3E; Table S5). CellMinerCDB snapshots
showing increased (MYC, MYCL, and MYCN) or decreased (BAPI and VHL) copy
number variation are provided in Figure S1.

SCLC-Global Integrates Transcriptomes and Molecular and Phenotypic Data for 116 Cell

Lines

To integrate expression data from microarray and/or RNA-seq across the five data sources
(Figure 1), we created the “SCLC-Global” expression set by regrouping all datasets by 2
score normalization, which enables CDB analyses of gene expression (and also other
genomic, epigenomic, and phenotypic drug response information). Principal-component and
correlation analyses (Circos- and CAT-plots) validated the approach (Figures S2A-S2D and
S2F). The “SCLC-Global” data are available in the pull-down tabs “x-Axis Cell Line Set”
and “y-Axis Cell Line Set” (https://discover.nci.nih.gov/SclcCellMinerCDB/). The “SCLC-
Global” mRNA dataset shows very high correlation with each dataset (NCI-SCLC, GDSC,
CCLE, and UTSW) (Figure S2E). For example, ASCL 1 expression in SCLC-Global versus
SCLC NCI/DTP is highly correlated (r = 0.99, p = 1.9¢e-55). SCLC-Global offers many other
features, including cross-correlation with other databases for DNA methylation, DNA copy
number, DNA mutation, microRNA expression, and drug activity.

SCLC-Global can also be used to retrieve all the genes correlated with the expression of any
given gene. For instance, for MYCN, the top correlate (p = 0.967) is MYCNOS (Figures
S2G-S2l), the MYCN Opposite Strand antisense RNA. The data for individual cell lines can
also be visualized by plotting MYCNOS against MYCN in the SCLC-Global database
(Figure S2H). Plotting MYCN versus MYCNOS in the CCLE database using
CellMinerCDB extends the finding that MYCN is co-expressed with its antisense RNA in
both SCLC and brain tumor cell lines (Figure S2I).

NE, NAPY, MYC, and EMT Molecular Signatures

Ranking of the 116 cell lines of SCLC-Global on the basis of their NE scores (Zhang et al.,
2018) shows the expected high correlation with SYP, CHGA, NCAM1, and INSM1
expression (Figure 4A). To explore the selectivity of those genes for SCLC, we examined
the GDSC and CCLE human tumor cell line collections with CellMinerCDB (Rajapakse et
al., 2018). CHGA, INSM1, and SYP are selective for SCLC and brain tumors, consistent
with the neuronal differentiation of SCLC (Figures S3A and S3B). The SCLC cell lines with
high NE scores, which can be readily labeled in SCLC-CellMinerCDB under the “Select
Tissues to Color” tab, have significantly higher levels of expression of CHGA and SYPthan
cell lines with low NE score (Figure S3C).

Next we tested the lineage transcription factor molecular classification on the basis of the
expression of NEURODI and ASCL 1 for NE and YAPI and POU2ZF3for non-NE SCLC
(Rudin et al., 2019) and found clear separation (Figure 4B; Table S6). Comparison with
other tissues showed selective expression of NEURODI and ASCL1in SCLC and brain
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tumors (Figure 4C), while POUZF3 was expressed only in a subset of SCLC cell lines
(Figure 4D). In contrast, YAPI is not exclusive to SCLC and is expressed in a wide range of
cancer types (except blood and lymphoid tumors) (Figure 4E), consistent with its broad role
in carcinogenesis (Ma et al., 2019). We also noted a significant fraction of NE-SCLC cells
with dual expression of ASCL1and NEURODI (Figures 4B and 4F).

The three MYC genes (MYC, MYCL, and MYCN) play key roles in SCLC carcinogenesis
(Johnson et al., 1987; Little et al., 1983; Nau et al., 1985, 1986). With SCLC-Global, ~80%
of the SCLC cell lines highly express one of the MYC genes, and MYCand MYCL are
most prevalent (Figure 4H). Expression of the MYC genes is mutually exclusive (Ireland et
al., 2020; Mollaoglu et al., 2017), with the non-NE cell lines (Y and P) expressing MYC and
the NE cell lines expressing MYCL and MYCN (Figures 4H and S3).

The EMT status (Rajapakse et al., 2018) derived from the expression of 37 genes (Kohn et
al., 2014) showed that the SCLC-P cell lines are consistently epithelial, while the SCLC-Y
cell lines have a mesenchymal signature (Figure 41), except for NCI-H1607, expressing both
YAPI and POUZF3 (Figure 4B, left). The SCLC-NE cells form two subgroups, one
mesenchymal and the other intermediate (Figure 41).

SCLC Transcriptional Networks for the ASCL1, YAP/TAZ, and NOTCH Pathways

As a pioneer transcription factor, ASCL1 binds E-box motifs (as does NEUROD?1) to
promote chromatin opening and activation of neuronal genes. Figure 5A summarizes the
ASCL1-NOTCH network on the basis of our molecular interaction map (MIM) conventions
(https://discover.nci.nih.gov/mim/index.jsp) (Kohn et al., 2006). Notably both NKX2.1 and
PROX1 transcription factors are highly significantly co-expressed with ASCL 1, suggesting
that they function together (Pozo et al., 2020). This co-expression is not due to the location
of those genes on the same chromosomes (Figure 5A), indicating upstream regulatory
transcriptional control with the likely implication of super-enhancers. As expected, the
transcriptional targets of ASCL1 were co-expressed with ASCL 1 (Figures 5A and 5B). One
of those, BCL 2, is positively correlated not only with ASCL 1 but also with POUZF3,
whereas BCLZ expression is negatively correlated with NEURODI expression (Figures S3H
and S3I). Expression of the cancer-driving genes RET, SOX1, SOX2, FOXAL and FOXAZ2
is also highly correlated with ASCL 1 (Figure 5A). Expression of DL/ 3, a known inhibitor
of the NOTCH pathway and direct target of ASCL1, was found to be significantly correlated
with ASCL1 (r = 0.61, p = 4.05e-13; Figure 5A).

Analysis of the NOTCH pathway whose inactivation is crucial in NE-SCLC (Gazdar et al.,
2017; Leonetti et al., 2019; Ouadah et al., 2019) showed that NOTCH1, NOTCH?Z, and
NOTCH3are jointly downregulated in the SCLC-A cell lines (Figures 5A and 5B).
Functional downregulation of the NOTCH pathway is consistent with the negative
correlation (r = —0.545, p = 2.45e-10) between ASCL 1 and REST, the transcriptional target
of NOTCH (Figure 5A). The NEUROD1 subset of NE-SCLC (SCLC-N) did not show
significant correlation between NEURODI and DL L3 expression (r = —0.18, p = NS)
(Figures S3J and S3K), questioning whether DL L3 downregulates the NOTCH pathway in
SCLC-N cell lines.
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Of the 116 SCLC cell lines in SCLC-CellMiner, 9 belong to the YAP subset (Figure 4).
Because expression of YAP1 is a feature in a wide variety of solid tumors (Figure 4E), we
explored the YAP transcriptional network (Figure 5C). The first notable finding is that YAPZ
expression is highly correlated with the expression of its heterodimeric partner TAZ
(encoded by the WWTR1/ TAZ gene) both in the SCLC-Global dataset (Figures 5C and 5D)
and across the 986 cell lines of the GDSC (Figure S4), suggesting a master transcriptional
regulator upstream of both genes, or YAPI acting as super-enhancer (Figure 5C).

YAP/TAZ functions as a direct activator of the TEAD transcription factors (encoded by
TEADZI TEAD3 TEAD4), whose expressions are highly significantly coregulated with

YAPI (Figure 5C). As expected, known transcriptional targets of the TEADs are also
significantly correlated with YAPI expression (Figure 5C). Others can readily be revealed
with the “Compare Patterns” feature of SCLC-CellMiner using TEAD or YAP1 as “seeds.”
Among those are the cancer- and growth-related SMAD3and SMADS5 genes, CCN1/CYR61
(encoding a growth factor interacting with integrins and heparan sulfate), and VGLL4
(Figures 5C and 5D).

Next, we explored the Hippo pathway, which acts as a negative regulator of YAP/TAZ and is
commonly inactivated in solid tumors (Dasgupta and McCollum, 2019; Ma et al., 2019;
Totaro et al., 2018). Expression of LA7S2and LATS1, which encode the core kinase of the
Hippo pathway and negatively regulate YAP by sequestering phosphorylated YAP in the
cytoplasm, are significantly positively correlated with YAPZ expression (Figures 5C and
5D). Similarly, the transcripts of MOB1A and MOBIB, the cofactors of LATS1/2, are
positively correlated with YAPZ (Figures 5C and 5D). Moreover, the transcripts of the
negative regulators of YAP, AMOT and AMOTL 2, which are released by depolymerized F-
actin and sequester YAP from its nuclear translocation, are also significantly positively
coregulated with YAPI (Figures 5C and 5D) (Dasgupta and McCollum, 2019; Wang et al.,
2019). Together, these results demonstrate that the SCLC-Y cell lines co-express both
YAP/TAZ and its negative regulator genes driving the Hippo pathway, suggesting an
equilibrium (“metastable™) state in which the Hippo pathway remains active to potentially
negatively regulate YAP/TAZ in SCLC-Y cells.

Consistent with the NOTCH pathway as transcriptional target of YAP/TAZ and the TEADs
(Totaro et al., 2018), YAPI expression is highly correlated with NOTCHI, NOTCH?Z,
NOTCH3, and REST (Figures 5C-5E). In contrast, expression of the NOTCH ligand DLLS3,
which acts as negative regulator of the NOTCH receptors (Andersson et al., 2011), is
negatively correlated with YAPZI (Figure 5E). These results support the conclusion that the
NOTCH pathway is “on” in the SCLC-Y cells. In contrast, in the SCLC-A cells, the
opposite is observed (Figures 5E and S4C). The SCLC-P cells also show a positive
correlation between the NOTCH receptor and REST effector transcripts and POUZF3
expression (Figures 5F, S4C, and S4F). These analyses demonstrate a difference between
NE and non-NE SCLC with respect to NOTCH, with the pathway “off” in the NE subset (N
and A) and “on” in the non-NE subset (P and Y).

Global analyses of the NOTCH pathway across 1,036 cell lines from the 22 different tissue
types of CCLE (Figures 5G, S4D, and S4E) show that NOTCHZ2and NOTCH3 are co-
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expressed in many tumor types and that the NE-SCLC cell lines are characterized by low
NOTCH expression (Figures 5G and S4D). In contrast, the SCLC-Y- and -P cells are among
the highest NOTCH-expressing cells.

The SCLC-Y Transcriptome Clusters with NSCLC Cell Lines

Next, we examined the relationship between the SCLC-Y and the NSCLC cell lines (Figure
51). tSNE (t-distributed stochastic neighbor embedding) is a method to highlight strong
patterns by reducing the dimensionality of a dataset while preserving as much “variability”
as possible. tSNE analysis using gene expression data between NSCLC (n = 100) and SCLC
(n = 60) cell lines from the GDSC grouped the SCLC-Y with the NSCLC cell lines. Among
the few NSCLC cancer cell lines clustering with the NE-SCLC were carcinoids and large
cell lung cancers (Figure 3B; Table S2). Our analysis supports that SCLC-Y cell lines are
distinct among the SCLC subtypes with transcriptome similarity to NSCLC.

Another characteristic of the SCLC-Y cell lines is their low number of B mutations (only
one cell line among nine shows RBI mutation; Figure 5H). However, several of the SCLC-Y
lines (NCI-H196, NCI-H841, NCI-H1339, and NCI-H1607) do not express RB1 protein
(Modi et al., 2000). The SCLC-Y cell lines also show reduced replication transcriptional
network with lowest PCNA, MCM?Z, and RNASEHZA expression (Figure S5). Additionally,
the SCLC-Y cells express the mesenchymal marker V/M, the cytoskeleton component and
regulators CNNZ (actomyosin and F-actin component), and the AMOT genes, which
regulate cell migration and actin stress fiber assembly (Figure 5C) (Dasgupta and
McCollum, 2019).

Global Drug Activity Profiling Suggests Transcription Elongation Pathways as General
Drug Response Determinants and Hypersensitivity of the SCLC-P Cell Lines

To explore connections between the NAPY classification and drug responses, we analyzed
the drug responses of the 66 SCLC-NCI cell lines using 134 compounds with the broadest
activity range (Polley et al., 2016). Unsupervised hierarchical clustering generated two
groups of cell lines: those globally drug resistant and those globally drug sensitive, with a
bimodal distribution (Figure 6A). Although the NE cell lines (SCLC-N and SCLC-A) and
SCLC-Y were distributed in both clusters, the SCLC-P cell lines clustered among the most
drug sensitive.

Differential gene expression followed by enrichment pathway analyses (Figures S6A and
S6B) showed the ribosomal and EIF2 signaling pathway selectively activated in the sensitive
cell lines. EIF2 (eukaryotic translation initiation factor 2A) catalyzes the first regulated step
of protein synthesis initiation, promoting the binding of the initiator tRNA to 40S ribosomal
subunits. EIF2 factors are also downstream effectors of the PI3K-AKT-mTOR and RAS-
RAF-MAPK pathways. These results suggest that global drug response in SCLC is
associated with active protein synthesis.

Drug Activity Profiling in Relationship with the NAPY Classification

Both the SCLC-A and N subgroups showed a broad range of response to etoposide,
topotecan, and cisplatin, as well as to the PARP inhibitor talazoparib (Figures 6B and S6C).
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The most significant genomic predictor of response for this NE subgroup is SLFN11
expression (Figure S6C), consistent with analyses in other tissue types (Barretina et al.,
2012; Rajapakse et al., 2018; Zoppoli et al., 2012). The potential value of SLFN11
expression as a predictive biomarker is borne out by its highly dynamic and bimodal
expression pattern (Figure 6F). Approximately 40% of the 116 SCLC cell lines of SCLC-
Global do not express SLFN11 (Figure S6D) and are predicted to be DNA damaging agent
resistant.

Methylguanine methyltransferase (MGMT) is a predictive biomarker of drug response is for
temozolomide (TMZ). Cancer cells (typically glioblastomas) with MGMT inactivation are
selectively sensitive to TMZ. Analyses of SCLC-Global reveals lack of MGMT expression
in 33% (N = 38) of the cell lines (Figure S6D). Notably, the non-NE SCLC cell lines all
express MGMT, indicating that the SCLC-P- and -Y cancer cells are predicted to be poor
candidates for TMZ-based therapies (Farago et al., 2019).

The SCLC-Y cell lines show the greatest resistance to the standard-of-care drugs (etoposide,
cisplatin, and topotecan) (Figure 6B). This result is not limited to SCLC, as a highly
significant drug resistance phenotype is observed between YAPI expression and response to
etoposide and camptothecin across the whole database of the CCLE-CTRP (Figure S6E).

To determine whether the NAPY classification predicts sensitivity to drugs not commonly
used as standard of care for SCLC, we analyzed 526 compounds of the NCI database (Polley
etal., 2016) (Table S7). Eighteen drugs were highly subtype specific (p < 0.01, Kruskal-
Willis test). Although the BCLZ2 inhibitor ABT-737 was selective of the SCLC-A cells, seven
PI3K-AKT-mTOR inhibitors showed high activity in the non-NE cell lines (SCLC-Y and
SCLC-P) (Figures 6D and 6E). The SCLC-P and -Y cell lines are also more sensitive to
multi-kinase inhibitors, including dasatinib and ponatinib.

Immune Pathways Are Selectively Expressed in the YAP1 Subgroup of SCLC

Although immune checkpoints inhibitors have been approved for SCLC, the benefit in an
unselected patient population is modest with approximately 2-month improvement in
median overall survival when immunotherapy is added to first-line platinum and etoposide.

To explore the immune pathways in the 116 cell lines of SCLC-Global and the potential
value of the NAPY classification for selecting SCLC patients likely to respond to immune
checkpoint inhibitors, we explored the transcriptome of a subset of established native
immune response and antigen-presenting genes. Figures 6G and 6H shows that the SCLC-Y
cell lines are the only subset expressing innate immune response genes. Expression of the
innate immune effector genes CGASand STING, HLA-E and interferon-inducible genes
(IFIT3, IFITM1, IFI44L, IFIT, IFITM8P, and IFITM3) are positively correlated with YAPZ
expression. In contrast, the NE subtype shows negative correlation between NEURODI and
ASCL 1 expression for those same immune genes (Figure 6G).

On the basis of the study of Wang et al. (2019) reporting a novel APM transcription
signature score yielding a high prediction index for tumor response to immune checkpoint
inhibitors, we tested the APM score in the SCLC cell lines (Figure S6). The APM score
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showed a high correlation with PD-L 1 expression, which is notable as PD-L 1 is not included
among the 13 genes constituting the APM score. Interestingly, the SCLC-Y subtype showed
the highest APM score (Figure S6K).

Cell Surface Biomarkers for Targeted Therapy in Relation with the NAPY Classification

Antibody-targeted therapies including antibody-drug conjugates (ADC) represent a
promising approach for specific homing, increased uptake, and drug retention at tumor sites
while reducing drug exposure to normal tissues and the associated dose-limiting side effects
(Coats et al., 2019).

A primary criterion for efficient drug delivery is to choose an exclusively or overexpressed
target for the cancer cells. Figures 61 and S6 show the expression of two receptors of clinical
ADCs in the SCLC cell lines: DLL 3 (used for SCLCs as rovalpituzumab tesirine [Rova-T];
Morgensztern et al., 2019; Rudin et al., 2017) and the carcinoembryonic antigen
CEACAMCS (used in other clinical indications as labetuzumab govitecan; Das, 2017).

DL [ 3expression is highly correlated with ASCL 1 expression (p = 0.62), suggesting that
targeting DLL3 could be selective toward SCLC-A tumors. CEACAMS5 is highly expressed
in only a subset of SCLC-A cell lines that may be potentially sensitive to labetuzumab
govitecan (IMMU-130). Both DLL3and CEACAMS5 show highest expression in SCLC
among all GDSC tissue types (Figure S6). Expression of TACSTDZ2 (TROP2), which is used
as target for sacituzumab govitecan (IMMU-132) in patients with triple-negative breast
cancer (TNBC), exhibits a low expression level in all SCLC cell lines, suggesting that
TACSTD? as a targeted receptor may not be efficient in SCLC (Figure S6).

Among potential new targets for the development of ADCs, the specific NE markers
NCAMI, CD24, CADM1, and ALCAM are highly expressed in non-YAP1 SCLC (Figure
6J), suggesting the potential of developing ADCs targeting such surface receptors for NE-
SCLC and SCLC-P patients. In contrast, the non-NE surface markers CD151 and EPHZ are
highly expressed in the YAPI cell lines (Figure 6K), suggesting their potential for SCLC-Y
cancers.

DISCUSSION

SCLC-CellMiner (https://discover.nci.nih.gov/SclcCelIMinerCDB/) provides a unique and
first-of-its-kind resource of patient-derived SCLC cell lines characterized comprehensively
using multi-omics and drug sensitivity. It also includes new high-resolution methylome,
detailed in a complementary publication (Krushkal et al., 2020). SCLC-CellMiner enables
interrogation of different databases. The data are highly reproducible across databases,
which allowed us to build an integrated platform (“SCLC-Global”) to examine genomic
characteristics and drug sensitivities across 116 SCLC cell lines.

Patient-derived cancer cell lines remain the most widely used models and the primary basis
to study the biology of cancers. They enable high-throughput testing of new drugs and
determinant-of-response hypotheses. The database of 116 SCLC cell lines reported here
models the genetic and molecular diversity of SCLC, as exemplified by their stratification
across the four recently proposed subgroups (NAPY classification) (Rudin et al., 2019).
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Several studies of human cancer cell lines have revealed a drift at the transcriptomic level for
individual cell lines over multiple passages, or passages in different laboratories. This raised
the concern that cancer cell lines bear more resemblance to each other, regardless of the
tissue of origin, than to the clinical samples that they model. However, several other studies
have come to the opposite conclusion, demonstrating the need for human cancer cell line
panels (Barretina et al., 2012; Neve et al., 2006; Reinhold et al., 2019; Wang et al., 2006;
Weinstein, 2012; Zoppoli et al., 2012). For lung cancer cell lines, it has been shown that the
genomic drift during culture life is not a dominant feature (Wistuba et al., 1999). The recent
analyses across SCLC cell lines, PDX models, and human tissues reported by Rudin et al.
(2019) and our present analyses provide strong evidence that the molecular features of
SCLC are stable.

SCLC is highly proliferative and under replication stress (Thomas and Pommier, 2016).
SCLC-CellMiner confirms that genes involved in DNA replication such as PCNA and
MKI67 are highly expressed in SCLC (Figure S7). We also found evidence of chromatin
adaptation in SCLC. Not only are many core histone gene promoters hypermethylated
(Figure 3) but also HZAFY; a non-canonical histone encoding macroH2A.1, is highly
expressed in SCLC cell lines. Two H2AFY splice variants have been identified and SCLC
cell lines predominantly express the macroH2A1.2 variant, known to promote homologous
recombination and proliferation (Kim et al., 2018). In the context of chromatin and histone
genes, ACTL6B, which encodes a subunit of the BAF (BRG1/brm-associated factor)
complex, is highly expressed in the SCLC cell lines (Figure S7). The BAF complex is
functionally related to SWI/SNF complexes that facilitate transcriptional activation of
specific genes by antagonizing chromatin-mediated transcriptional repression. ACTL68
expression is specific to SCLC and brain tumor cell lines and highly correlated with the
expression of other chromatin genes, including HMGNZ2, KDM4B, and SMARCA4 (Figure
S7). Only the NE cells express ACTL6B, while the non-NE cells express lowest KDM4B
and SMARCAA4. These results suggest that this specific BAF complex subunit may be
critical in determining the cell fate of NE cells.

Supporting the importance of epigenetics in SCLC carcinogenesis, SCLC cell lines exhibit
distinct promoter methylation profile. First, they are globally hypomethylated, suggesting
their plasticity. Second, they exhibit a distinct epigenetic profile compared with NSCLC
(Figure 3B). Most genes with low methylation are involved in neuronal pathways,
suggesting that NE differentiation is driven by promoter methylation. In contrast, Poirier et
al. (2015) reported that SCLCs tend to have high methylation levels. The apparent
discrepancy could be due to the inclusion of PDX and tumor samples in their study. Also,
they did not measure promoter methylation but the proportion of highly variable CpGs,
leading them to conclude that high methylation instability is consistent with the plasticity of
SCLC (Poirier et al., 2015).

SCLC-CellMiner validates the NAPY classification (Rudin et al., 2019) and provides
insights into the coordinated network regulated by each lineage transcription factor. Potential
upstream regulators (super-enhancers, microRNAs, or non-coding RNAs) may explain the
co-expression of ASCL1with NKX2-1and PROXZand YAPI with TAZand warrants
further investigations, which can be facilitated by SCLC-CellMiner. Consistent with the
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results of Rudin et al. (2019), the NAPY classification shows that the cell lines driven by
ASCL1and NEURODI often overlap and share common features (Figures 4 and 6). Yet
they differ in their relationship with respect to the NOTCH pathway, with the SCLC-A cells
showing strong negative correlation with NOTCH genes expression, consistent with NOTCH
acting as negative regulator of ASCL1 (George et al., 2015) (Figure 5).

Transcriptome and drug response analyses highlight the distinguishing features of the
SCLC-Y. In contrast to ASCL 1, NEUROD1, and POUZF3, YAPI is expressed widely across
different tissue types (Figure 4) (Ma et al., 2019), and transcriptome analyses cluster the
SCLC-Y cell lines with NSCLC (Figure 5F). SCLC-Y cells also express the NOTCH
pathway, in contrast to SCLC-A. This feature could be related to the direct transcriptional
activation of the NOTCH pathway by YAP/TAZ (Figure 5C) (Yimlamai et al., 2014). In
addition, SCLC-Y cells do not express MYCL or MYCN but rather MYC (Figure 4)
(McColl et al., 2017; Mollaoglu et al., 2017). They tend to be RB1 wild-type (Figure 5H)
and have lower expression of replication and proliferation genes than the other SCLC
subtypes (Figures S5 and S7). SCLC-Y cells were also often derived from non-smoking
patients (Table S1; Figure S5). In total, our data suggest that SCLC-Y cell lines are probably
derived from a different cell type compared with the NE and SCLC-P subgroups. Our
findings of differential drug sensitivities on the basis of transcriptional subtypes support this
notion (Figures 6 and S6) and are consistent with recent studies showing that non-NE and
MY C-driven SCLC cell lines are sensitive to PI3K-AKT-mTOR, AURKA, and HSP90
inhibitors (Chalishazar et al., 2019; Wooten et al., 2019).

Overall, our data suggest that targeted therapies in patient subgroups selected on the basis of
NAPY stratification may be beneficial. Additional therapeutic insights can be derived from
our study. First, although SCLC is among the cancer types with the lowest expression of
immune-related genes, the SCLC-Y cells notably demonstrate high presenting and native
immune predisposition (Figures 6G, 6H, and S6). If verified in clinical cohorts of
immunotherapy-treated patients, this finding might enable patient selection. Second, we
highlight potential surface markers that could be targeted on the basis of the NAPY
subgroups. For example, SCLC-Y cells express neither the therapeutically relevant surface
epitopes DLL3 or CEACAMS (Das, 2017; Morgensztern et al., 2019; Rudin et al., 2017),
which tend to be specific for the SCLC-A (and N). However, SCLC-Y express CD151 and
EPHAZ2 (Figure 6K) and might respond to the YAP1 and NOTCH inhibitors in clinical
development (Crawford et al., 2018; Leonetti et al., 2019).

Our analyses demonstrate the value of cancer cell line databases and imply that updating
drug testing with new clinical drug candidates shall provide valuable information to guide
clinical trials. Our results also suggest the potential value of using the NAPY classification
to select patients for targeted therapies. It is likely that genomic signatures based on
transcriptome and promoter DNA methylation will have to be developed to build reliable
tools to assign samples to each of the NAPY subgroups and determine their prognostic and
therapeutic value.
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STARXMETHODS
RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to and will
be fulfilled by Lead Contact Yves Pommier (pommier@nih.gov).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The scripts and data used for the analysis can be obtained
at https://zenodo.org/record/3959142.

All newly generated methylation datasets are available from the Gene Expression Omnibus
(GEO, https://www.nchi.nIm.nih.gov/geo/) under the accession number GEO: GSE145156.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

SCLC-CellMiner is a dedicated CellminerCDB version for SCLC cell lines (Reinhold et al.,
2012, 2014, 2017, 2019) https://discover.nci.nih.gov/cellminercdb/).

The cell line sets included in SCLC-CellMiner Cross-Data-Base (CDB) currently are from
the National Cancer Institute SCLC cell lines from the Developmental Therapeutics
Program Small Cell Lung Cancer Project (SCLC NCI-DTP), Cancer Cell Line Encyclopedia
(CCLE), Genomics and Drug Sensitivity in Cancer (GDSC), Cancer Therapeutics Response
Portal (CTRP), the University of Texas SouthWestern (UTSW) and a new resource SCLC-
Global. The data source details are described in “Help” section of the SCLC-Cell-Miner
website.

Most of the data including drug activity and genomics experiments were processed at the
institute of origin and were downloaded from their website or provided from their principal
investigator. The genomic data from CTRP and CCLE are common for the overlapping cell
lines. However, methylation, mutation and copy number data were processed at
Development Therapeutics Branch (DTB), CCR, NCI to generate a gene level summary as
described previously (Barretina et al., 2012; Garnett et al., 2012; Krushkal et al., 2020;
McMillan et al., 2018; Polley et al., 2016). The new Global expression (SCLC-Global) was
developed at DTB by merging the gene expression of all the data sources.

METHOD DETAILS

DNA methylation data—Gene-level methylation using the 850K Illumina Infinium
MethylationEPIC BeadChip array was summarized based on (Reinhold et al., 2017). In
short, methylation data were normalized using the minfi package using default parameters,
where probe-level beta-values and detection p values were calculated for each probe. This
provided 866,091 methylation probe measurements. Methylation probe beta-values for
individual cell lines with detection p values > = 10-3 were set to missing. Also probes with
median p value > = 10-6 were set to missing for all cells and removed from the analysis.
Probe locations on the human genome (hgl19 version) defined by Illumina was used for the
analysis, annotating proximal gene transcripts and CpG islands. Probes were designated as
category “1” or “2,” with category “1” considered to be most informative. Category “1”

Cell Rep. Author manuscript; available in PMC 2020 November 05.


https://zenodo.org/record/3959142
https://www.ncbi.nlm.nih.gov/geo/
https://discover.nci.nih.gov/cellminercdb/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tlemsani et al.

Page 16

probes overlapped CpG islands and they overlapped either the TSS region within a 1.5kb
distance, the first exon or 5’-UTR region. Additionally, probes on the upstream shore of a
CpG island with a maximal distance of 200bp from the TSS were also included as category
“1” probes. Category “2” probes were positioned either in the upstream- or downstream
shore of a CpG island and overlapping the first exon, or on the downstream shore of CpG
islands overlapping a 200bp region from the TSS, or in 5’-UTR. In case of genes with
multiple transcript start sites, the transcript methylation with the most negative correlation to
the gene level expression was used. The analysis resulted in gene-level methylation values
for 23,202 genes.

Copy humber—Genome wide copy number for the cell lines was estimated from the
methylation array data using the Chip Analysis Methylation Pipeline (CAAMP) (Tian et al.,
2017) package. ChAMPreturns lists of genomic segments with putative copy number
estimates. However, the estimate is not valid for regions with high methylation detection p
values. For this reason, regions spanning more than 1kb with at least 5 probes with high
detection p values (p > 0.05) were filtered out. The copy number estimates were set to
missing for those areas. Gene level copy number (for n = 25,568 genes) was calculated for
each gene individually, by calculating the average estimate between the transcription start
sites and transcription end sites.

RNaseq data—The RNA-seq gene expression data from UTSW SCLC were obtained
from analyses based on McMillan et al. (2018). The raw data have been previously
submitted to dbGaP (accession phs001823.v1.pl). The paired-end RNA-seq reads from the
70 UTSW SCLC cell lines were aligned to the human reference genome GRCh38 using
STAR aligner (version 2.7), FPKM expression values were generated with cufflinks (version
2.2.1) (Bullard et al., 2010) and log-transformation.

Global expression data—We generate a new Global SCLC dataset (SCLC-Global) using
all combined cell line resources: NCI SCLC, CCLE, CTRP, GDSC and UTSW. The data
sources have a mixture of microarray and RNA-seq gene expression. For each experiment,
genes were scaled across all cell lines to create a z-score normalized dataset. The SCLC-
Global expression was calculated by averaging the z-scored gene expressions from all
sources. To test for removal of batch effects by gene scaling (z-score normalization), we
clustered the cell lines based on gene expression using the raw data (Figure S2A) and the
normalized data (Figure S2B) in R using the Aclust() for clustering, and the ape package
(version 5.3) to create the clustering dendrograms.

QUANTIFICATION AND STATISTICAL ANALYSES

Pathway level correlation of expression and DNA methylation—The correlation
between methylation and gene expression for multiple functional categories was calculated
based on genes in Table S4 using R programming language. For each category, the median
correlation of the related genes was calculated to identify potential categories of interest.

Predictive power of DNA copy number and methylation on transcript
expression—Testing the predictive power of DNA copy number and methylation on
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transcript expression was performed with linear regression analysis (as seen in Figure 3E.
For each of the 15,798 genes with all three forms of data available (transcript, methylation,
and copy number levels) a linear regression model was fit, with both copy number and
methylation as independent variables and transcript expression as the dependent variable.
The model provided coefficients for the copy number and methylation that gave the lowest
squared error between fitted values and true expression. We separated individual
contributions of these two factors for gene expression prediction using the method of relative
importance (Gromping, 2006), using the Img method (Bacher, 1980) from the R package
relaimpo to compute individual R? values. Total (or combined) R? is the summation of these
two. Square roots of the R2 values were multiplied by the sign of the coefficients of the
factors in the combined model to get the value of R.

Methylome cluster analysis—The methylation cluster analysis was performed using the
methylation data from the NCI-SCLC cell lines, GDSC lung cancer (SCLC and NSCLC)
cell lines and the NCI-60 cell lines. Genes with high standard deviation (> 0.25) in the
GDSC lung cancer cell lines were selected for the analysis. The number of reported clusters
was selected based on the cutreeDynamic() function of the dynamicTree- Cut R package
(v1.63-1), which split genes into 5 main clusters and cells into 3 main clusters (as reported
in the figure). The methylation heatmap was created with the ComplexHeatmap (Gu et al.,
2016) R package (version 1.20.0).

SCLC subtypes and heatmaps—The SCLC cell lines were classified into the NAPY
subtypes using the expression of NEURODZ1, ASCL1, POU2F3 and YAP1 with the SCLC-
Global expression dataset. Clustering was performed using distance matrix based on
Euclidean distance and “ward.D” clustering using the Ac/ust() function in R programming
language.

SCLC neuroendocrine score—Cell line neuroendocrine score was calculated based the
method reported in Zhang et al. (2018) that uses a gene set of 25 neuroendocrine and 25
non-neuroendocrine genes for classification. For each cell line, the expression values of
genes were correlated with the expression averages of neuroendocrine [NE] cells and non-
neuroendocrine [non-NE] cells from Zhang et al. (2018). The NE score was calculated with
the following formula:

correl([X;], INE]) — correl([ X;], [nonN E])

N Escore = 5

where X; denotes the gene expression values of cell line 7 [NE] is the mean expression of
genes in neuroendocrine cells from Zhang et al. (2018) and [nonNE] is the mean expression
of genes in non-neuroendocrine cells from Zhang et al. (2018). The R script that calculates
the NE score from the SCLC-Global expression data is available in the supplementary
materials.

t-SNE clustering of GDSC lung cell lines using gene expression—SCLC and
NSCLC cell line grouping was performed with the gene expression data from the GDSC
microarray dataset using the t-SNE algorithm in R (v3.5.1). The random seed was set to 1,
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the Euclidean distance of genes was calculated with the a’st() function with default settings.
The t-SNE grouping was calculated using the Ritsne() function from the Rtsne (van der
Maaten, 2014) package (v0.15) using the calculated distance matrix, with perplexity set to
10, and 5k maximum iterations.

Clustering drug data of NCI-SCLC cell lines—SCLC cell line expression heatmaps
for the SCLC markers, NAPY genes and MYC genes were done using the ComplexHeatmap
(Gu et al., 2016) R package (version 1.20.0).

The NCI SCLC drug activity heatmap was generated using R. First, drugs with coefficient of
variation less or equal to 0.09 were filtered out. Then the remaining data for the selected 134
drugs (from originally 527) across the 66 SCLC lines were clustered using the hierarchical
method based on Euclidean distance and complete linkage.

Gene set enrichment analysis and GSEA analysis—A preranked gene set
enrichment analysis was run in R using the clusterProfiler (Yu et al., 2012) and ReactomePA
(YYu and He, 2016) packages. Pathways with an adjusted p value below 0.05 were considered
as significantly enriched. Single sample gene set enrichment score (APM score) was
computed using the R package GSVA (version 1.28.0).

A pre-ranked gene set enrichment analysis (GSEA version 4.0.3) was performed for the
correlation between the gene expression and methylation across all the NCI SCLC cell lines.
The score was 1/p value if correlation was positive and —1/p value otherwise. The gene sets
included our DTB 21 gene sets with the Hallmark, C2 (pathways) and C5 (GO) GSEA
signatures. The analysis was done using the classic enrichment statistic with a minimum
gene set size of 15 and a maximum of 1000.

Statistical methods—Correlations, heatmaps, and histograms were generated mostly
using The R Project for Statistical Computing. Some plots and analysis (such as the Kruskal
Willis test) were generated using Partek Genomics suite v7.17.1222 (https://
www.partek.com/partek-genomics-suite/) or using SCLC-CellMiner and CellMinerCDB
(https://discover.nci.nih.gov/cellminercdb).

Wilcoxon rank-sum tests were used to test the difference between continuous variables such
as drug sensitivity and gene expression according NAPY classification. We considered
changes significant if p values were below 0.05. In the figures, p values below 0.00005 were
summarized with four asterisks, p values below 0.0005 were summarized with three
asterisks, p values below 0.005 were summarized with two asterisks and p values below 0.05
were summarized with one asterisk. The scripts and data used for the analysis can be
obtained at https://zenodo.org/record/3959142.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

SCLC-CellMiner is an extensive cell line genomic and pharmacology
resource

SCLC cell lines show a methylome consistent with their plasticity and lineage

Transcriptome analyses reveal lineage transcriptional networks and drug
predictions

SCLC-Y cells differ from other subgroups by transcriptome and potential
therapeutics
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Figure 1. Summary of the Data Included in SCLC-CellMiner and Resources
(A) Cell line overlap between the data sources. Cell lines in red are from the NCI database

(n = 68), dark blue from CTRP (n = 39), light blue from CCLE (n = 53),orange from GDSC
(n =74), and green from UTSW (n = 73). Cell line details are provided in Table S1.

(B) Summary of the genomic and drug activities data in SCLC-CellMiner (https://
discover.nci.nih.gov/SclcCellMinerCDB/). For microarray, mutations, copy number, and
promoter methylation data, the numbers indicate the number of genes. For RNA-seq data,
the numbers indicate the number of transcripts. The bottom row shows the total number of
cell lines (N = 118) integrated in SCLC-CellMiner. New data analyses are highlighted in
yellow.

(C) Cell line overlap between data sources (see Table S1 for details).

(D) Drug overlap between data sources.
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Figure 2. Validation and Reproducibility of the SCLC-CellMiner Data and Snapshots of
Representative Outputs of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDBY/)

(A) Reproducibility between data sources. Pearson’s correlations are indicated above violin
plots.

(B) Snapshot showing the reproducibility of SLFN11 gene expression across the 41 common
cell lines (AffyArray for NCI/DTP on the x axis versus RNA-seq for UTSW). Each dot is a
cell line. The data can also be readily displayed in tabular form and downloaded in tab-
delimited format by clicking on the “View Data” tab to the right of the default “Plot Data”
tab.

(C) Snapshot showing the reproducibility of SLFN11 promoter methylation across the 43
common cell lines independently of the methods used (850K Illumina Infinium
MethylationEPIC BeadChip array for NCI/DTP versus lllumina HumanMethylation 450K
BeadChip array for GDSC).

(D) Highly significant correlation between MYC copy number (NCI/DTP) and MYC
expression (CCLE) for the 36 common SCLC cell lines.

(E-G) Examples of drug activity across databases for the common cell lines.

(H) High proliferation signature of SCLC cell lines on the basis of high PCNA and MYC
expression. Snapshot shows that SCLC (green) overexpress PCNA and fall into two groups
with respect to MYC.
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Figure 3. Methylation Profile of SCLC Cell Lines
(A) Global hypomethylation in SCLC cell lines. Each point represents the median

methylation level of individual cell lines for the total set of 17,559 genes. Twenty-one cancer
subtypes from GDSC are ranked according their global methylation levels. SCLC cell lines
are in red (NCI) and green (GDSC).

(B) Comparison of promoter methylation profiles for 287 cell lines including SCLC (NCI
and GDSC), NSCLC (GDSC and NCI-60), and non-lung cancer cell lines from the NCI-60.
The heatmap displays the levels of methylation of 1,813 genes with high dynamic range.
Examples of genes are indicated at right and details provided in Table S3. Clusters a, b, and
cinclude 68, 117, and 102 cell lines, respectively.

(C) Pathway analysis.

(D) Functional categories with significant correlation between gene expression and promoter
methylation for the NCI-SCLC cell lines (n = 66). Median values transcript expression
versus DNA methylation level correlations of 20 functional groups including 17,144 genes
(Table S5).

(E) Correlations between gene expression and predictive values of DNA copy humber. R
values of —1 and +1 indicate perfect negative and positive predictive power, respectively.
Each point represents 1 of a total of 14,046 genes analyzed. Oncogenes and tumor
suppressor genes (highlighted in purple and in blue, respectively) are driven primarily by
copy number. Histone genes (red) and epithelial genes (green) are driven primarily by DNA
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methylation (Table S5). SCLC key genes (ASCL 1, NEUROD1, POU2ZF3, and YAPI) are
also labeled.
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Figure 4. SCLC Genomic Molecular Classifications
(A) NE classification. Cell lines with high and low NE score are in dark brown and gray,

respectively (n = 116 cell lines; CellMiner-Global). CHGA, SYP, and INSM1 expression
after Zscore normalization.

(B) NAPY classification for the 116 SCLC cell lines. Expression values across the five data
sources were obtained after normalization by Zscore (Table S3).

(C) NEURODI1 and ASCL 1 expression are specific for both SCLC and brain tumor cell lines
(GDSC database; each point is a cell line; n = 986).

(D) POUZF3is selectively expressed in SCLC but not in brain tumor cell lines (GDSC; n =
986).

(E) YAPIshows a high range of expression across different cell line subtypes (GDSC; n =
986). (C)—(E) are snapshots (https://discover.nci.nih.gov/cellminercdb).

(F) Co-expression of NEUROD1 and ASCL1in SCLC-Global.

(G) Subtypes of cell lines in GDSC.

(H) EMT signature and NAPY classification in CellMiner-Global.

(1) Classification based on expression of the three MYC genes in 106 SCLC cell lines across
the five data sources after Zscore normalization.
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Figure 5. Integration of the Transcriptional Networks of the SCLC-A and SCLC-Y Cell Lines
with the NOTCH Pathway for the 116 Cell Lines Derived from SCLC-Global Analyses

(A) Highly significant correlations between ASCL 1 expression and NKX2-1 and PROX1
and downstream transcriptional targets (bayonet arrows). Numbers to the right indicate the
significantly positive Pearson’s correlations coefficients (red) (https://discover.nci.nih.gov/
SclcCellMinerCDBY) irrespective of chromosome locations (black in parenthesis). The
NOTCH receptor network with its transcriptional target REST (yellow box) shows
significant negative Pearson’s correlations (blue).
(B) Correlations between the expression of ASCL 1 and the genes shown in (A) (snapshot
from the multivariate analysis tool of SCLC-CellMiner).
(C and D) Same as (A) and (B) except for YAPL
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(E) Correlations between the NOTCH receptors and ligands genes and ASCL1 versus YAPL
Pearson’s correlation coefficients are indicated in parenthesis.

(F) Correlation between NOTCH1 and NOTCH?Z expression. YAPI cells show significantly
high expression of both NOTCHI and NOTCH?Z.

(G) Correlation between NOTCHI and NOTCH?Z expression across the 1,036 cell lines of
the CCLE. SCLC-Y cells have highest expression.

(H) SCLC-Y cells have significantly fewer RB1 mutations.

(1) t-Distributed stochastic neighbor embedding clustering plot using gene expression data of
60 SCLC and 100 NSCLC cell lines (microarray; GDSC data source).
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Figure 6. Predictive Biomarkers for SCLC Responses
(A) Global response of the NCI-SCLC cell lines (NAPY classification to the left).

(B) SCLC-P cells are the most sensitive to etoposide and talazoparib. SCLC-Y cell lines are
the most resistant.

(C) Selective activity of the BCL2-BCL-XL inhibitor in a subset of the SCLC-A cells and
highly significant correlation with BCLZ2 expression (right).

(D) Activity of mTOR/AKT inhibitors in a subset of non-NE cells.

(E) Activity of the PI3K inhibitors in non-NE SCLC cells.

(F) SLFN11 expression across the 116 SCLC cells exhibits bimodal distribution in all four
SCLC subsets and is predictive of response to DNA damaging chemotherapeutics (Figure
S6).

(G) Selective expression of native immune pathway genes in SCLC-Y (correlations between
each of the NAPY genes and the listed native immune response genes. Significantly positive
and negative correlations are in red and blue, respectively.

(H) Snapshot from SCLC-CellMiner illustrating the correlation between the YAPZ and
IFITM3transcripts across the 116 cell lines of SCLC-Global (Figure S6).

(1) Selective expression of the DLL3and CEACAMS5 (Figure S6).
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(J) Potential surface biomarker targets for NE-SCLC and SCLC-P cells.

(K) Potential surface biomarkers for SCLC-Y cells.

Data in (A)—(E) and (I)—(K) are from the 66 cell lines from the NCI-DTP drug and genomic
database.
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KEY RESOURCES TABLE
RESOURCE SOURCE IDENTIFIER
Deposited Data
NCI-SCLC cell line methylation (850K  This paper and (Krushkal et al., 2020) GSE145156

UTSW cell line RNA-seq

(McMillan et al., 2018)

dbDAP phs001823.v1.pl

CellMinerCDB cell line data

(Rajapakse et al., 2018)

https://discover.nci.nih.gov/cellminercdb/

Software and Algorithms

ChAMP (Tian et al., 2017) https://bioconductor.org/packages/release/bioc/html/
ChAMP.html

STAR aligner (Dobin et al., 2013) https://github.com/alexdobin/STAR

Cufflinks (Trapnell et al., 2012) http://cole-trapnell-lab.github.io/cufflinks/

Ape (Paradis et al., 2004) https://cran.r-project.org/web/packages/ape/index.html

Relaimpo (Gromping, 2006) https://cran.r-project.org/web/packages/relaimpo/

index.html

dynamicTreeCut

(Langfelder et al., 2008)

https://cran.r-project.org/web/packages/dynamicTreeCut/
index.html

ComplexHeatmap

(Gu et al., 2016)

https://bioconductor.org/packages/release/bioc/html/
ComplexHeatmap.html

Rtsne

(van der Maaten, 2014)

https://cran.r-project.org/web/packages/Rtsne/index.html

clusterProfiler

(Yuetal., 2012)

https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

ReactomePA

(Yu and He, 2016)

https://bioconductor.org/packages/release/bioc/html/
ReactomePA.html

Partek Genomics Suite (software for Partek https://www.partek.com/partek-genomics-suite/
analysis of microarray data)

GraphPad Prism 7 (software for drawing  GraphPad

graphs and statistics analysis)

Analysis scripts This paper https://zenodo.org/record/3959142
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