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SUMMARY

CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and 

genomic data, including high-resolution methylome and transcriptome from 118 patient-derived 

small cell lung cancer (SCLC) cell lines, providing a resource for research into this “recalcitrant 

cancer.” We demonstrate the reproducibility and stability of data from multiple sources and 
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validate the SCLC consensus nomenclature on the basis of expression of master transcription 

factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks 

linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC 

subsets express specific surface markers, providing potential opportunities for antibody-based 

targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH 

pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) 

genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC 

biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.

In Brief

Tlemsani et al. provide a unique resource, SCLC-CellMiner, integrating drug sensitivity and multi-

omics data from 118 small cell lung cancer (SCLC) cell lines. They demonstrate that SCLCs have 

differential transcriptional networks driven by lineage-specific transcription factors (NEUROD1, 

ASCL1, POU2F3, and YAP1). Furthermore, YAP1-driven SCLCs have distinct drug sensitivity 

profiles.

Graphical Abstract

INTRODUCTION

Although small cell lung cancer (SCLC) represents only 15% of all lung cancers, it accounts 

for more than 30,000 cases/year in the United States, with most patients presenting with 
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widely metastatic disease. Unlike the increasingly personalized treatment approaches for 

non-small cell lung cancer (NSCLC), SCLC is currently treated as a homogeneous disease 

(Rudin et al., 2019; Thomas and Pommier, 2016). The typical short life expectancy and the 

therapeutic options, which have not changed for decades (platinum-etoposide combination 

as first-line therapy and topotecan at relapse), caused the National Cancer Institute (NCI) to 

categorize SCLC as a “recalcitrant” cancer.

SCLC tumors are usually characterized by their neuroendocrine (NE) differentiation, which 

is immuno-histochemically visualized with markers including synaptophysin (SYP) and 

chromogranin A (CHGA) (Gazdar et al., 2017; McColl et al., 2017). Yet a small subset of 

SCLCs express low levels of these NE markers (“non-NE”) (McColl et al., 2017; Zhang et 

al., 2018). Hence, SCLCs have been historically defined as “classic” (NE) or “variant” (non-

NE) (Zhang et al., 2018). Gazdar and colleagues proposed a classification (“NE score”) on 

the basis of the expression of 50 genes (25 with increased and 25 with decreased expression) 

for NE SCLC, including the transcription factors ASCL1 (achaete-scute homolog 1) and 

NEUROD1 (neurogenic differentiation factor 1), which are highly expressed in NE SCLC 

(Zhang et al., 2018). A consensus nomenclature for molecular subtypes has been recently 

proposed on the basis of differential expression of two additional transcription factors, YAP1 

(Yes-associated protein 1) and POU2F3 (POU class 2 homeodomain box 3) for the non-NE 

SCLC subtypes (Rudin et al., 2019). POU2F3 encodes a POU domain transcription factor 

normally expressed in chemosensory cells of the intestinal and lung epithelium (Huang et 

al., 2018). YAP1, a key mediator of the Hippo signaling pathway, is reciprocally expressed 

relative to the NE marker INSM1 (McColl et al., 2017). Hence, SCLCs can be classified into 

four groups on the basis of the expression of NEUROD1, ASCL1, POU2F3, and YAP1 
(Rudin et al., 2019). For brevity, we refer to this classification as “NAPY” (N for 

NEUROD1, A for ASCL1, P for POU2F3, and Y for YAP1).

Genomic initiatives spearheaded by The Cancer Genome Atlas (TCGA) consortium have 

accelerated the pace of discovery for many cancers. Yet TCGA was not extended to SCLC, 

because of a lack of readily accessible and adequate tumor tissue, as most patients are 

diagnosed by fine-needle aspiration. Nevertheless, SCLC research has benefited from the 

systematic collection of a large number of tumor cell lines, most of them developed at the 

NCI in the NCI-VA and NCI-Navy Medical Oncology Branches (Mulshine et al., 2019). 

This collection has been distributed widely and included in the cancer drug genomic 

databases of the NCI, Broad Institute/MIT, and Sanger/Massachusetts General Hospital 

(MGH) (Barretina et al., 2012; Garnett et al., 2012; Iorio et al., 2016; Polley et al., 2016). 

However, the data were until now accessible only from individual platforms, making it 

challenging to translate genomic knowledge of SCLC tumor biology and therapeutic 

possibilities. Additionally, a number of SCLC cell lines generated by the Minna-Gazdar 

group at UT Southwestern (UTSW) Medical Center (McMillan et al., 2018) had not been 

integrated in the NCI (NCI-SCLC), Broad Institute (Cancer Cell Line Encyclopedia 

[CCLE]/Cancer Therapeutics Response Portal [CTRP]), and Sanger/MGH (Genomics of 

Drug Sensitivity in Cancer [GDSC]) databases.

To extend our understanding of the genomics of SCLC, we performed genome-wide 

promoter methylation on the NCI set of 66 SCLC cell lines and whole-genome RNA 
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sequencing (RNA-seq) for 72 cell lines of the UTSW set. We integrated those data in a 

global drug and genomic database (SCLC-Global) encompassing 118 SCLC lines from 115 

individual patients. The integrated data, SCLC-CellMiner-CrossDataBase (SCLC-Cell-

Miner), are available from a web-based tool (https://discover.nci.nih.gov/

SclcCellMinerCDB/) derived from our CellMiner cross-database (CDB) web application 

(Rajapakse et al., 2018).

RESULTS

SCLC-CellMiner Resource

SCLC-CellMiner integrates genomic and drug activity data for 118 molecularly 

characterized SCLC cell lines, all of which have DNA fingerprints establishing their 

provenance (Figures 1A and 1C): 68 from the NCI collection (Polley et al., 2016), 74 from 

the GDSC (Garnett et al., 2012), 53 from the CCLE, 39 from the CTRP (Barretina et al., 

2012), and 73 from UTSW (Gazdar et al., 2010). Seventeen cell lines (14%) are in all five 

data sources, 20 (17%) are in four data sources, 23 (20%) in three data sources, 15 (13%) in 

two data sources, and 43 (36%) in only one data source (Figure 1A; Table S1).

Our integrated resource includes new analyses for high-resolution methylome (Krushkal et 

al., 2020) and copy number for 66 NCI cell lines and RNA-seq for 72 UTSW cell lines 

(Figure 1B). SCLC-CellMiner also makes accessible whole-exome mutation data for 12,537 

genes across 72 cell lines of the UTSW SCLC database in addition to the previously 

released exome sequencing data for 52 cell lines from CCLE and 62 cell lines from GSDC.

Tested clinical drugs and investigational compounds in each dataset and across data sources 

are summarized in Figure 1D. The NCI dataset provides the largest number (n = 526), 

followed by the CTRP (n = 481), GDSC (n = 297), and CCLE (n = 224).

SCLC-CellMiner allows multiple analyses (Table 1): confirming cell line reproducibility and 

identity across datasets, drug activity reproducibility, determinants of gene expression (on 

the basis of DNA copy number, promoter methylation, and microRNA expression), 

exploration and validation of genomic networks, classification of the cell lines on the basis 

of metadata such as the NAPY, epithelial-mesenchymal transition (EMT) and antigen-

presenting machinery (APM) scores, and validation and discovery of drug response 

determinants.

Data Validation, CDB Analyses, and CellMiner Univariate Analyses

Cross-comparison for matched cell lines was used to validate the new NCI-SCLC 

methylome (850K Illumina array) (Krushkal et al., 2020) by comparison with the published 

SCLC data of GDSC (450K array) (Rajapakse et al., 2018). The comparison yields high 

overall correlation for promoter methylation (Reinhold et al., 2017), with a median of 0.90 

for 9,015 common genes with a wide expression range for the 43 common cell lines (Figures 

2A and S1). Cross-correlation of the new RNA-seq data from UTSW with other gene 

expression data (microarray and RNA-seq) is also highly significant (Figures 2A and S1). 

This demonstrates the high reproducibility and stability of the key molecular characteristics 

in SCLC lines grown in tissue culture for widely divergent passages at different institutions 
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and analyzed independently with different technical platforms (RNA-seq versus microarray, 

850K versus 450K methylome arrays).

Reproducibility across datasets can be tested with CellMinerCDB by plotting the same gene 

(expression, copy number, or promoter methylation), drug, or microRNA on the x and the y 

axes. For instance, Schlafen 11 (SLFN11), whose expression is highly predictive of response 

to a broad range of frontline treatments of SCLC (etoposide, topotecan, cis- and carboplatin) 

as well as drugs under investigation such as the poly(ADP-ribose polymerase) inhibitors 

(Farago et al., 2019; Gardner et al., 2017; Murai et al., 2019; Zoppoli et al., 2012) measured 

by RNA-seq in the UTSW database, shows a 0.92 Pearson correlation with its measured 

values by Affymetrix microarray in the NCI database (Figure 2B). SLFN11 promoter DNA 

methylation in the NCI database also shows a Pearson correlation of 0.9 with its value in the 

GDSC (Figure 2C).

CDB analyses are shown in Figure 2 for MYC, which is commonly amplified and drives 

proliferation of SCLC (Ireland et al., 2020), for BCL2, which encodes a canonical 

antiapoptotic protein targeted by navitoclax (ABT-263) (Rudin et al., 2012), and for two 

SCLC drugs, etoposide and topotecan. MYC amplification (in NCI) is correlated with its 

overexpression (by RNA-seq in CCLE) (Figure 2D). Navitoclax activity is correlated with 

BCL2 expression (Figure 2E). Response to etoposide is correlated in the NCI and CTRP 

despite different assays; cells responding to etoposide overlap for topotecan (Figures 2F and 

2G).

Integrating the CellMinerCDB database of more than 1,000 cell lines of all lineages, which 

includes 74 and 53 SCLC cell lines in GDSC and CCLE (Figures 1A and 1C) (Rajapakse et 

al., 2018), allows comparisons among tissue of origin. For instance, MYC expression is 

correlated with the replication processivity factor PCNA (proliferating cell nuclear antigen) 

in SCLC versus other tissues, including NSCLC, consistent with the replicative genotype of 

SCLC and high PCNA expression compared with NSCLC (Figure 2H).

The SCLC Methylome

Two prior studies described the promoter methylation profiles of SCLC with limited data for 

cell lines; 18 were examined by Kalari et al. (2013) and 7 by Poirier et al. (2015) together 

with primary tumors and patient-derived xenograft (PDX) samples. Here we analyzed the 

methylome of the 66 cell lines of the NCI and processed the methylome of the whole 985 

GDSC cancer cell line dataset, including its 61 SCLC cell lines. Individual probe analysis 

for the Illumina 850K platform in the NCI SCLC cell lines is reported in a parallel 

publication (Krushkal et al., 2020), while SCLC-CellMiner provides promoter methylation 

score (Reinhold et al., 2017). The promoter methylation data are highly reproducible 

between the NCI and GDSC datasets for the 43 common cell lines despite the different 

Illumina platforms (850K versus 450K) (Figures 2A and 2C). Thus, SCLC-CellMiner 

provides promoter methylation for a total of 84 individual SCLC cell lines (43 common + 23 

specific to NCI-SCLC + 18 specific to GDSC).

Low Global Methylation and Promoter Methylome of SCLC Cell Lines—Global 

methylation levels show marked differences between the SCLC and the other cancer cell 
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lines from different histologies across the GDSC, with SCLC showing the lowest median 

level of global methylation among 21 cancer subtypes (Figure 3A).

To assess the distinctiveness of the methylome of the SCLC cell lines, we compared 61 cell 

lines from GDSC and 66 cell lines from NCI with the 75 NSCLC cell lines of the GDSC and 

the 60 cell lines of the NCI-60, which include nine NSCLC cell lines. We selected 1,813 

genes with the highest methylation range (SD > 0.25). Hierarchical clustering (Figure 3B) 

shows that SCLC cell lines come together (cluster b), except for nine cell lines (one in 

cluster a, eight in cluster c), which are all SCLCs not expressing NE features (“non-NE” 

SCLCs). Of the five NSCLC cell lines in the SCLC cluster (b), three are large cell lung 

cancers and one is a carcinoid (Table S2). This demonstrates a promoter methylation 

signature for SCLC cell lines associated with NE phenotype.

Genes clustered as (1) hypomethylated in SCLC (clusters 1–3), including ASCL1, 

NEUROD1, INSM1, and CHGA (Figure S2); (2) hypermethylated in SCLC (cluster 5); and 

(3) variably methylated independently of tissue of origin (cluster 4) (Table S2). Pathway 

analysis of the 1,082 hypomethylated genes (clusters 1–3) shows enrichment of neurological 

as well as extracellular matrix (ECM) pathways (Figure 3C; Table S2), consistent with the 

NE and aggregation features of classic SCLC cell lines. Many genes involved in EMT (Kohn 

et al., 2014) also tend to be hypomethylated in SCLC cell lines, including ZEB1, CLDN7, 

and ESRP2.

Histone and Epithelial Genes Are Driven by Methylation in SCLC Cell Lines—
To determine the influence of promoter methylation on gene expression, we selected gene 

categories on the basis of our previously established Development Therapeutics Branch 

(DTB) gene sets (Table S3) (Reinhold et al., 2017). Epithelial and histone genes stood out 

(Figure 3D, with median correlation of −0.53 and −0.50, respectively). Canonical histones 

showed the highest negative correlation between expression and methylation (Figure 3E), 

suggesting that epigenetic regulation of canonical histones is a feature of SCLC 

carcinogenesis.

We also performed gene set enrichment analyses (GSEAs) looking at Gene Ontology (GO) 

and functional gene set collections (MSigDB Hallmark gene set, C2 curated pathway gene 

set, and C5 GO gene set, as well as our DTB functional gene sets; Table S3). They 

confirmed the high significance of the histones and epithelial genes as well as additional GO 

categories, including protein modifications, microtubule cytoskeleton, mitotic cell cycle, and 

cellular responses to DNA damage (Table S4).

SCLC DNA Copy Number versus Methylome as Drivers of Gene Expression

To evaluate the relative importance of promoter methylation and gene copy number, we 

derived copy number data from the Illumina 850K methylome array and correlated the 

expression of each gene with DNA copy number and methylation in the NCI-SCLC dataset 

(Figure 3E) (Reinhold et al., 2017). Correlations for individual genes can be readily 

displayed with SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/), and 

snapshots of genes involved in SCLC carcinogenesis and driven by methylation 

(NEUROD1, ASCL1, POU2F3, YAP1, and SLFN11) are presented in Figure S1.
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Unlike the histone and epithelial genes, the expression of SCLC growth-driving genes, such 

as the oncogenes (MYC, MYCL, MYCN, and AKT1), tumor suppressor genes (CDKN2A, 

BAP1, and VHL), and chromatin remodeler genes (EP300 and CREBBP), are driven 

primarily by copy number alterations (Figure 3E; Table S5). CellMinerCDB snapshots 

showing increased (MYC, MYCL, and MYCN) or decreased (BAP1 and VHL) copy 

number variation are provided in Figure S1.

SCLC-Global Integrates Transcriptomes and Molecular and Phenotypic Data for 116 Cell 
Lines

To integrate expression data from microarray and/or RNA-seq across the five data sources 

(Figure 1), we created the “SCLC-Global” expression set by regrouping all datasets by Z 
score normalization, which enables CDB analyses of gene expression (and also other 

genomic, epigenomic, and phenotypic drug response information). Principal-component and 

correlation analyses (Circos- and CAT-plots) validated the approach (Figures S2A–S2D and 

S2F). The “SCLC-Global” data are available in the pull-down tabs “x-Axis Cell Line Set” 

and “y-Axis Cell Line Set” (https://discover.nci.nih.gov/SclcCellMinerCDB/). The “SCLC-

Global” mRNA dataset shows very high correlation with each dataset (NCI-SCLC, GDSC, 

CCLE, and UTSW) (Figure S2E). For example, ASCL1 expression in SCLC-Global versus 

SCLC NCI/DTP is highly correlated (r = 0.99, p = 1.9e-55). SCLC-Global offers many other 

features, including cross-correlation with other databases for DNA methylation, DNA copy 

number, DNA mutation, microRNA expression, and drug activity.

SCLC-Global can also be used to retrieve all the genes correlated with the expression of any 

given gene. For instance, for MYCN, the top correlate (p = 0.967) is MYCNOS (Figures 

S2G–S2I), the MYCN Opposite Strand antisense RNA. The data for individual cell lines can 

also be visualized by plotting MYCNOS against MYCN in the SCLC-Global database 

(Figure S2H). Plotting MYCN versus MYCNOS in the CCLE database using 

CellMinerCDB extends the finding that MYCN is co-expressed with its antisense RNA in 

both SCLC and brain tumor cell lines (Figure S2I).

NE, NAPY, MYC, and EMT Molecular Signatures

Ranking of the 116 cell lines of SCLC-Global on the basis of their NE scores (Zhang et al., 

2018) shows the expected high correlation with SYP, CHGA, NCAM1, and INSM1 
expression (Figure 4A). To explore the selectivity of those genes for SCLC, we examined 

the GDSC and CCLE human tumor cell line collections with CellMinerCDB (Rajapakse et 

al., 2018). CHGA, INSM1, and SYP are selective for SCLC and brain tumors, consistent 

with the neuronal differentiation of SCLC (Figures S3A and S3B). The SCLC cell lines with 

high NE scores, which can be readily labeled in SCLC-CellMinerCDB under the “Select 

Tissues to Color” tab, have significantly higher levels of expression of CHGA and SYP than 

cell lines with low NE score (Figure S3C).

Next we tested the lineage transcription factor molecular classification on the basis of the 

expression of NEUROD1 and ASCL1 for NE and YAP1 and POU2F3 for non-NE SCLC 

(Rudin et al., 2019) and found clear separation (Figure 4B; Table S6). Comparison with 

other tissues showed selective expression of NEUROD1 and ASCL1 in SCLC and brain 
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tumors (Figure 4C), while POU2F3 was expressed only in a subset of SCLC cell lines 

(Figure 4D). In contrast, YAP1 is not exclusive to SCLC and is expressed in a wide range of 

cancer types (except blood and lymphoid tumors) (Figure 4E), consistent with its broad role 

in carcinogenesis (Ma et al., 2019). We also noted a significant fraction of NE-SCLC cells 

with dual expression of ASCL1 and NEUROD1 (Figures 4B and 4F).

The three MYC genes (MYC, MYCL, and MYCN) play key roles in SCLC carcinogenesis 

(Johnson et al., 1987; Little et al., 1983; Nau et al., 1985, 1986). With SCLC-Global, ~80% 

of the SCLC cell lines highly express one of the MYC genes, and MYC and MYCL are 

most prevalent (Figure 4H). Expression of the MYC genes is mutually exclusive (Ireland et 

al., 2020; Mollaoglu et al., 2017), with the non-NE cell lines (Y and P) expressing MYC and 

the NE cell lines expressing MYCL and MYCN (Figures 4H and S3).

The EMT status (Rajapakse et al., 2018) derived from the expression of 37 genes (Kohn et 

al., 2014) showed that the SCLC-P cell lines are consistently epithelial, while the SCLC-Y 

cell lines have a mesenchymal signature (Figure 4I), except for NCI-H1607, expressing both 

YAP1 and POU2F3 (Figure 4B, left). The SCLC-NE cells form two subgroups, one 

mesenchymal and the other intermediate (Figure 4I).

SCLC Transcriptional Networks for the ASCL1, YAP/TAZ, and NOTCH Pathways

As a pioneer transcription factor, ASCL1 binds E-box motifs (as does NEUROD1) to 

promote chromatin opening and activation of neuronal genes. Figure 5A summarizes the 

ASCL1-NOTCH network on the basis of our molecular interaction map (MIM) conventions 

(https://discover.nci.nih.gov/mim/index.jsp) (Kohn et al., 2006). Notably both NKX2.1 and 

PROX1 transcription factors are highly significantly co-expressed with ASCL1, suggesting 

that they function together (Pozo et al., 2020). This co-expression is not due to the location 

of those genes on the same chromosomes (Figure 5A), indicating upstream regulatory 

transcriptional control with the likely implication of super-enhancers. As expected, the 

transcriptional targets of ASCL1 were co-expressed with ASCL1 (Figures 5A and 5B). One 

of those, BCL2, is positively correlated not only with ASCL1 but also with POU2F3, 

whereas BCL2 expression is negatively correlated with NEUROD1 expression (Figures S3H 

and S3I). Expression of the cancer-driving genes RET, SOX1, SOX2, FOXA1, and FOXA2 
is also highly correlated with ASCL1 (Figure 5A). Expression of DLL3, a known inhibitor 

of the NOTCH pathway and direct target of ASCL1, was found to be significantly correlated 

with ASCL1 (r = 0.61, p = 4.05e-13; Figure 5A).

Analysis of the NOTCH pathway whose inactivation is crucial in NE-SCLC (Gazdar et al., 

2017; Leonetti et al., 2019; Ouadah et al., 2019) showed that NOTCH1, NOTCH2, and 

NOTCH3 are jointly downregulated in the SCLC-A cell lines (Figures 5A and 5B). 

Functional downregulation of the NOTCH pathway is consistent with the negative 

correlation (r = −0.545, p = 2.45e-10) between ASCL1 and REST, the transcriptional target 

of NOTCH (Figure 5A). The NEUROD1 subset of NE-SCLC (SCLC-N) did not show 

significant correlation between NEUROD1 and DLL3 expression (r = −0.18, p = NS) 

(Figures S3J and S3K), questioning whether DLL3 downregulates the NOTCH pathway in 

SCLC-N cell lines.
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Of the 116 SCLC cell lines in SCLC-CellMiner, 9 belong to the YAP subset (Figure 4). 

Because expression of YAP1 is a feature in a wide variety of solid tumors (Figure 4E), we 

explored the YAP transcriptional network (Figure 5C). The first notable finding is that YAP1 
expression is highly correlated with the expression of its heterodimeric partner TAZ 

(encoded by the WWTR1/TAZ gene) both in the SCLC-Global dataset (Figures 5C and 5D) 

and across the 986 cell lines of the GDSC (Figure S4), suggesting a master transcriptional 

regulator upstream of both genes, or YAP1 acting as super-enhancer (Figure 5C).

YAP/TAZ functions as a direct activator of the TEAD transcription factors (encoded by 

TEAD2/TEAD3/TEAD4), whose expressions are highly significantly coregulated with 

YAP1 (Figure 5C). As expected, known transcriptional targets of the TEADs are also 

significantly correlated with YAP1 expression (Figure 5C). Others can readily be revealed 

with the “Compare Patterns” feature of SCLC-CellMiner using TEAD or YAP1 as “seeds.” 

Among those are the cancer- and growth-related SMAD3 and SMAD5 genes, CCN1/CYR61 
(encoding a growth factor interacting with integrins and heparan sulfate), and VGLL4 
(Figures 5C and 5D).

Next, we explored the Hippo pathway, which acts as a negative regulator of YAP/TAZ and is 

commonly inactivated in solid tumors (Dasgupta and McCollum, 2019; Ma et al., 2019; 

Totaro et al., 2018). Expression of LATS2 and LATS1, which encode the core kinase of the 

Hippo pathway and negatively regulate YAP by sequestering phosphorylated YAP in the 

cytoplasm, are significantly positively correlated with YAP1 expression (Figures 5C and 

5D). Similarly, the transcripts of MOB1A and MOB1B, the cofactors of LATS1/2, are 

positively correlated with YAP1 (Figures 5C and 5D). Moreover, the transcripts of the 

negative regulators of YAP, AMOT and AMOTL2, which are released by depolymerized F-

actin and sequester YAP from its nuclear translocation, are also significantly positively 

coregulated with YAP1 (Figures 5C and 5D) (Dasgupta and McCollum, 2019; Wang et al., 

2019). Together, these results demonstrate that the SCLC-Y cell lines co-express both 

YAP/TAZ and its negative regulator genes driving the Hippo pathway, suggesting an 

equilibrium (“metastable”) state in which the Hippo pathway remains active to potentially 

negatively regulate YAP/TAZ in SCLC-Y cells.

Consistent with the NOTCH pathway as transcriptional target of YAP/TAZ and the TEADs 

(Totaro et al., 2018), YAP1 expression is highly correlated with NOTCH1, NOTCH2, 

NOTCH3, and REST (Figures 5C–5E). In contrast, expression of the NOTCH ligand DLL3, 

which acts as negative regulator of the NOTCH receptors (Andersson et al., 2011), is 

negatively correlated with YAP1 (Figure 5E). These results support the conclusion that the 

NOTCH pathway is “on” in the SCLC-Y cells. In contrast, in the SCLC-A cells, the 

opposite is observed (Figures 5E and S4C). The SCLC-P cells also show a positive 

correlation between the NOTCH receptor and REST effector transcripts and POU2F3 
expression (Figures 5F, S4C, and S4F). These analyses demonstrate a difference between 

NE and non-NE SCLC with respect to NOTCH, with the pathway “off” in the NE subset (N 

and A) and “on” in the non-NE subset (P and Y).

Global analyses of the NOTCH pathway across 1,036 cell lines from the 22 different tissue 

types of CCLE (Figures 5G, S4D, and S4E) show that NOTCH2 and NOTCH3 are co-
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expressed in many tumor types and that the NE-SCLC cell lines are characterized by low 

NOTCH expression (Figures 5G and S4D). In contrast, the SCLC-Y- and -P cells are among 

the highest NOTCH-expressing cells.

The SCLC-Y Transcriptome Clusters with NSCLC Cell Lines

Next, we examined the relationship between the SCLC-Y and the NSCLC cell lines (Figure 

5I). tSNE (t-distributed stochastic neighbor embedding) is a method to highlight strong 

patterns by reducing the dimensionality of a dataset while preserving as much “variability” 

as possible. tSNE analysis using gene expression data between NSCLC (n = 100) and SCLC 

(n = 60) cell lines from the GDSC grouped the SCLC-Y with the NSCLC cell lines. Among 

the few NSCLC cancer cell lines clustering with the NE-SCLC were carcinoids and large 

cell lung cancers (Figure 3B; Table S2). Our analysis supports that SCLC-Y cell lines are 

distinct among the SCLC subtypes with transcriptome similarity to NSCLC.

Another characteristic of the SCLC-Y cell lines is their low number of RB1 mutations (only 

one cell line among nine shows RB1 mutation; Figure 5H). However, several of the SCLC-Y 

lines (NCI-H196, NCI-H841, NCI-H1339, and NCI-H1607) do not express RB1 protein 

(Modi et al., 2000). The SCLC-Y cell lines also show reduced replication transcriptional 

network with lowest PCNA, MCM2, and RNASEH2A expression (Figure S5). Additionally, 

the SCLC-Y cells express the mesenchymal marker VIM, the cytoskeleton component and 

regulators CNN2 (actomyosin and F-actin component), and the AMOT genes, which 

regulate cell migration and actin stress fiber assembly (Figure 5C) (Dasgupta and 

McCollum, 2019).

Global Drug Activity Profiling Suggests Transcription Elongation Pathways as General 
Drug Response Determinants and Hypersensitivity of the SCLC-P Cell Lines

To explore connections between the NAPY classification and drug responses, we analyzed 

the drug responses of the 66 SCLC-NCI cell lines using 134 compounds with the broadest 

activity range (Polley et al., 2016). Unsupervised hierarchical clustering generated two 

groups of cell lines: those globally drug resistant and those globally drug sensitive, with a 

bimodal distribution (Figure 6A). Although the NE cell lines (SCLC-N and SCLC-A) and 

SCLC-Y were distributed in both clusters, the SCLC-P cell lines clustered among the most 

drug sensitive.

Differential gene expression followed by enrichment pathway analyses (Figures S6A and 

S6B) showed the ribosomal and EIF2 signaling pathway selectively activated in the sensitive 

cell lines. EIF2 (eukaryotic translation initiation factor 2A) catalyzes the first regulated step 

of protein synthesis initiation, promoting the binding of the initiator tRNA to 40S ribosomal 

subunits. EIF2 factors are also downstream effectors of the PI3K-AKT-mTOR and RAS-

RAF-MAPK pathways. These results suggest that global drug response in SCLC is 

associated with active protein synthesis.

Drug Activity Profiling in Relationship with the NAPY Classification

Both the SCLC-A and N subgroups showed a broad range of response to etoposide, 

topotecan, and cisplatin, as well as to the PARP inhibitor talazoparib (Figures 6B and S6C). 
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The most significant genomic predictor of response for this NE subgroup is SLFN11 
expression (Figure S6C), consistent with analyses in other tissue types (Barretina et al., 

2012; Rajapakse et al., 2018; Zoppoli et al., 2012). The potential value of SLFN11 
expression as a predictive biomarker is borne out by its highly dynamic and bimodal 

expression pattern (Figure 6F). Approximately 40% of the 116 SCLC cell lines of SCLC-

Global do not express SLFN11 (Figure S6D) and are predicted to be DNA damaging agent 

resistant.

Methylguanine methyltransferase (MGMT) is a predictive biomarker of drug response is for 

temozolomide (TMZ). Cancer cells (typically glioblastomas) with MGMT inactivation are 

selectively sensitive to TMZ. Analyses of SCLC-Global reveals lack of MGMT expression 

in 33% (N = 38) of the cell lines (Figure S6D). Notably, the non-NE SCLC cell lines all 

express MGMT, indicating that the SCLC-P- and -Y cancer cells are predicted to be poor 

candidates for TMZ-based therapies (Farago et al., 2019).

The SCLC-Y cell lines show the greatest resistance to the standard-of-care drugs (etoposide, 

cisplatin, and topotecan) (Figure 6B). This result is not limited to SCLC, as a highly 

significant drug resistance phenotype is observed between YAP1 expression and response to 

etoposide and camptothecin across the whole database of the CCLE-CTRP (Figure S6E).

To determine whether the NAPY classification predicts sensitivity to drugs not commonly 

used as standard of care for SCLC, we analyzed 526 compounds of the NCI database (Polley 

et al., 2016) (Table S7). Eighteen drugs were highly subtype specific (p < 0.01, Kruskal-

Willis test). Although the BCL2 inhibitor ABT-737 was selective of the SCLC-A cells, seven 

PI3K-AKT-mTOR inhibitors showed high activity in the non-NE cell lines (SCLC-Y and 

SCLC-P) (Figures 6D and 6E). The SCLC-P and -Y cell lines are also more sensitive to 

multi-kinase inhibitors, including dasatinib and ponatinib.

Immune Pathways Are Selectively Expressed in the YAP1 Subgroup of SCLC

Although immune checkpoints inhibitors have been approved for SCLC, the benefit in an 

unselected patient population is modest with approximately 2-month improvement in 

median overall survival when immunotherapy is added to first-line platinum and etoposide.

To explore the immune pathways in the 116 cell lines of SCLC-Global and the potential 

value of the NAPY classification for selecting SCLC patients likely to respond to immune 

checkpoint inhibitors, we explored the transcriptome of a subset of established native 

immune response and antigen-presenting genes. Figures 6G and 6H shows that the SCLC-Y 

cell lines are the only subset expressing innate immune response genes. Expression of the 

innate immune effector genes CGAS and STING, HLA-E and interferon-inducible genes 

(IFIT3, IFITM1, IFI44L, IFIT, IFITM8P, and IFITM3) are positively correlated with YAP1 
expression. In contrast, the NE subtype shows negative correlation between NEUROD1 and 

ASCL1 expression for those same immune genes (Figure 6G).

On the basis of the study of Wang et al. (2019) reporting a novel APM transcription 

signature score yielding a high prediction index for tumor response to immune checkpoint 

inhibitors, we tested the APM score in the SCLC cell lines (Figure S6). The APM score 
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showed a high correlation with PD-L1 expression, which is notable as PD-L1 is not included 

among the 13 genes constituting the APM score. Interestingly, the SCLC-Y subtype showed 

the highest APM score (Figure S6K).

Cell Surface Biomarkers for Targeted Therapy in Relation with the NAPY Classification

Antibody-targeted therapies including antibody-drug conjugates (ADC) represent a 

promising approach for specific homing, increased uptake, and drug retention at tumor sites 

while reducing drug exposure to normal tissues and the associated dose-limiting side effects 

(Coats et al., 2019).

A primary criterion for efficient drug delivery is to choose an exclusively or overexpressed 

target for the cancer cells. Figures 6I and S6 show the expression of two receptors of clinical 

ADCs in the SCLC cell lines: DLL3 (used for SCLCs as rovalpituzumab tesirine [Rova-T]; 

Morgensztern et al., 2019; Rudin et al., 2017) and the carcinoembryonic antigen 

CEACAMC5 (used in other clinical indications as labetuzumab govitecan; Das, 2017). 

DLL3 expression is highly correlated with ASCL1 expression (p = 0.62), suggesting that 

targeting DLL3 could be selective toward SCLC-A tumors. CEACAM5 is highly expressed 

in only a subset of SCLC-A cell lines that may be potentially sensitive to labetuzumab 

govitecan (IMMU-130). Both DLL3 and CEACAM5 show highest expression in SCLC 

among all GDSC tissue types (Figure S6). Expression of TACSTD2 (TROP2), which is used 

as target for sacituzumab govitecan (IMMU-132) in patients with triple-negative breast 

cancer (TNBC), exhibits a low expression level in all SCLC cell lines, suggesting that 

TACSTD2 as a targeted receptor may not be efficient in SCLC (Figure S6).

Among potential new targets for the development of ADCs, the specific NE markers 

NCAM1, CD24, CADM1, and ALCAM are highly expressed in non-YAP1 SCLC (Figure 

6J), suggesting the potential of developing ADCs targeting such surface receptors for NE-

SCLC and SCLC-P patients. In contrast, the non-NE surface markers CD151 and EPH2 are 

highly expressed in the YAP1 cell lines (Figure 6K), suggesting their potential for SCLC-Y 

cancers.

DISCUSSION

SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/) provides a unique and 

first-of-its-kind resource of patient-derived SCLC cell lines characterized comprehensively 

using multi-omics and drug sensitivity. It also includes new high-resolution methylome, 

detailed in a complementary publication (Krushkal et al., 2020). SCLC-CellMiner enables 

interrogation of different databases. The data are highly reproducible across databases, 

which allowed us to build an integrated platform (“SCLC-Global”) to examine genomic 

characteristics and drug sensitivities across 116 SCLC cell lines.

Patient-derived cancer cell lines remain the most widely used models and the primary basis 

to study the biology of cancers. They enable high-throughput testing of new drugs and 

determinant-of-response hypotheses. The database of 116 SCLC cell lines reported here 

models the genetic and molecular diversity of SCLC, as exemplified by their stratification 

across the four recently proposed subgroups (NAPY classification) (Rudin et al., 2019).
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Several studies of human cancer cell lines have revealed a drift at the transcriptomic level for 

individual cell lines over multiple passages, or passages in different laboratories. This raised 

the concern that cancer cell lines bear more resemblance to each other, regardless of the 

tissue of origin, than to the clinical samples that they model. However, several other studies 

have come to the opposite conclusion, demonstrating the need for human cancer cell line 

panels (Barretina et al., 2012; Neve et al., 2006; Reinhold et al., 2019; Wang et al., 2006; 

Weinstein, 2012; Zoppoli et al., 2012). For lung cancer cell lines, it has been shown that the 

genomic drift during culture life is not a dominant feature (Wistuba et al., 1999). The recent 

analyses across SCLC cell lines, PDX models, and human tissues reported by Rudin et al. 

(2019) and our present analyses provide strong evidence that the molecular features of 

SCLC are stable.

SCLC is highly proliferative and under replication stress (Thomas and Pommier, 2016). 

SCLC-CellMiner confirms that genes involved in DNA replication such as PCNA and 

MKI67 are highly expressed in SCLC (Figure S7). We also found evidence of chromatin 

adaptation in SCLC. Not only are many core histone gene promoters hypermethylated 

(Figure 3) but also H2AFY, a non-canonical histone encoding macroH2A.1, is highly 

expressed in SCLC cell lines. Two H2AFY splice variants have been identified and SCLC 

cell lines predominantly express the macroH2A1.2 variant, known to promote homologous 

recombination and proliferation (Kim et al., 2018). In the context of chromatin and histone 

genes, ACTL6B, which encodes a subunit of the BAF (BRG1/brm-associated factor) 

complex, is highly expressed in the SCLC cell lines (Figure S7). The BAF complex is 

functionally related to SWI/SNF complexes that facilitate transcriptional activation of 

specific genes by antagonizing chromatin-mediated transcriptional repression. ACTL6B 
expression is specific to SCLC and brain tumor cell lines and highly correlated with the 

expression of other chromatin genes, including HMGN2, KDM4B, and SMARCA4 (Figure 

S7). Only the NE cells express ACTL6B, while the non-NE cells express lowest KDM4B 
and SMARCA4. These results suggest that this specific BAF complex subunit may be 

critical in determining the cell fate of NE cells.

Supporting the importance of epigenetics in SCLC carcinogenesis, SCLC cell lines exhibit 

distinct promoter methylation profile. First, they are globally hypomethylated, suggesting 

their plasticity. Second, they exhibit a distinct epigenetic profile compared with NSCLC 

(Figure 3B). Most genes with low methylation are involved in neuronal pathways, 

suggesting that NE differentiation is driven by promoter methylation. In contrast, Poirier et 

al. (2015) reported that SCLCs tend to have high methylation levels. The apparent 

discrepancy could be due to the inclusion of PDX and tumor samples in their study. Also, 

they did not measure promoter methylation but the proportion of highly variable CpGs, 

leading them to conclude that high methylation instability is consistent with the plasticity of 

SCLC (Poirier et al., 2015).

SCLC-CellMiner validates the NAPY classification (Rudin et al., 2019) and provides 

insights into the coordinated network regulated by each lineage transcription factor. Potential 

upstream regulators (super-enhancers, microRNAs, or non-coding RNAs) may explain the 

co-expression of ASCL1 with NKX2-1 and PROX1 and YAP1 with TAZ and warrants 

further investigations, which can be facilitated by SCLC-CellMiner. Consistent with the 
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results of Rudin et al. (2019), the NAPY classification shows that the cell lines driven by 

ASCL1 and NEUROD1 often overlap and share common features (Figures 4 and 6). Yet 

they differ in their relationship with respect to the NOTCH pathway, with the SCLC-A cells 

showing strong negative correlation with NOTCH genes expression, consistent with NOTCH 

acting as negative regulator of ASCL1 (George et al., 2015) (Figure 5).

Transcriptome and drug response analyses highlight the distinguishing features of the 

SCLC-Y. In contrast to ASCL1, NEUROD1, and POU2F3, YAP1 is expressed widely across 

different tissue types (Figure 4) (Ma et al., 2019), and transcriptome analyses cluster the 

SCLC-Y cell lines with NSCLC (Figure 5F). SCLC-Y cells also express the NOTCH 

pathway, in contrast to SCLC-A. This feature could be related to the direct transcriptional 

activation of the NOTCH pathway by YAP/TAZ (Figure 5C) (Yimlamai et al., 2014). In 

addition, SCLC-Y cells do not express MYCL or MYCN but rather MYC (Figure 4) 

(McColl et al., 2017; Mollaoglu et al., 2017). They tend to be RB1 wild-type (Figure 5H) 

and have lower expression of replication and proliferation genes than the other SCLC 

subtypes (Figures S5 and S7). SCLC-Y cells were also often derived from non-smoking 

patients (Table S1; Figure S5). In total, our data suggest that SCLC-Y cell lines are probably 

derived from a different cell type compared with the NE and SCLC-P subgroups. Our 

findings of differential drug sensitivities on the basis of transcriptional subtypes support this 

notion (Figures 6 and S6) and are consistent with recent studies showing that non-NE and 

MYC-driven SCLC cell lines are sensitive to PI3K-AKT-mTOR, AURKA, and HSP90 

inhibitors (Chalishazar et al., 2019; Wooten et al., 2019).

Overall, our data suggest that targeted therapies in patient subgroups selected on the basis of 

NAPY stratification may be beneficial. Additional therapeutic insights can be derived from 

our study. First, although SCLC is among the cancer types with the lowest expression of 

immune-related genes, the SCLC-Y cells notably demonstrate high presenting and native 

immune predisposition (Figures 6G, 6H, and S6). If verified in clinical cohorts of 

immunotherapy-treated patients, this finding might enable patient selection. Second, we 

highlight potential surface markers that could be targeted on the basis of the NAPY 

subgroups. For example, SCLC-Y cells express neither the therapeutically relevant surface 

epitopes DLL3 or CEACAM5 (Das, 2017; Morgensztern et al., 2019; Rudin et al., 2017), 

which tend to be specific for the SCLC-A (and N). However, SCLC-Y express CD151 and 

EPHA2 (Figure 6K) and might respond to the YAP1 and NOTCH inhibitors in clinical 

development (Crawford et al., 2018; Leonetti et al., 2019).

Our analyses demonstrate the value of cancer cell line databases and imply that updating 

drug testing with new clinical drug candidates shall provide valuable information to guide 

clinical trials. Our results also suggest the potential value of using the NAPY classification 

to select patients for targeted therapies. It is likely that genomic signatures based on 

transcriptome and promoter DNA methylation will have to be developed to build reliable 

tools to assign samples to each of the NAPY subgroups and determine their prognostic and 

therapeutic value.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to and will 

be fulfilled by Lead Contact Yves Pommier (pommier@nih.gov).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The scripts and data used for the analysis can be obtained 

at https://zenodo.org/record/3959142.

All newly generated methylation datasets are available from the Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) under the accession number GEO: GSE145156.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

SCLC-CellMiner is a dedicated CellminerCDB version for SCLC cell lines (Reinhold et al., 

2012, 2014, 2017, 2019) https://discover.nci.nih.gov/cellminercdb/).

The cell line sets included in SCLC-CellMiner Cross-Data-Base (CDB) currently are from 

the National Cancer Institute SCLC cell lines from the Developmental Therapeutics 

Program Small Cell Lung Cancer Project (SCLC NCI-DTP), Cancer Cell Line Encyclopedia 

(CCLE), Genomics and Drug Sensitivity in Cancer (GDSC), Cancer Therapeutics Response 

Portal (CTRP), the University of Texas SouthWestern (UTSW) and a new resource SCLC-

Global. The data source details are described in “Help” section of the SCLC-Cell-Miner 

website.

Most of the data including drug activity and genomics experiments were processed at the 

institute of origin and were downloaded from their website or provided from their principal 

investigator. The genomic data from CTRP and CCLE are common for the overlapping cell 

lines. However, methylation, mutation and copy number data were processed at 

Development Therapeutics Branch (DTB), CCR, NCI to generate a gene level summary as 

described previously (Barretina et al., 2012; Garnett et al., 2012; Krushkal et al., 2020; 

McMillan et al., 2018; Polley et al., 2016). The new Global expression (SCLC-Global) was 

developed at DTB by merging the gene expression of all the data sources.

METHOD DETAILS

DNA methylation data—Gene-level methylation using the 850K Illumina Infinium 

MethylationEPIC BeadChip array was summarized based on (Reinhold et al., 2017). In 

short, methylation data were normalized using the minfi package using default parameters, 

where probe-level beta-values and detection p values were calculated for each probe. This 

provided 866,091 methylation probe measurements. Methylation probe beta-values for 

individual cell lines with detection p values > = 10–3 were set to missing. Also probes with 

median p value > = 10–6 were set to missing for all cells and removed from the analysis. 

Probe locations on the human genome (hg19 version) defined by Illumina was used for the 

analysis, annotating proximal gene transcripts and CpG islands. Probes were designated as 

category “1” or “2,” with category “1” considered to be most informative. Category “1” 
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probes overlapped CpG islands and they overlapped either the TSS region within a 1.5kb 

distance, the first exon or 5′-UTR region. Additionally, probes on the upstream shore of a 

CpG island with a maximal distance of 200bp from the TSS were also included as category 

“1” probes. Category “2” probes were positioned either in the upstream- or downstream 

shore of a CpG island and overlapping the first exon, or on the downstream shore of CpG 

islands overlapping a 200bp region from the TSS, or in 5′-UTR. In case of genes with 

multiple transcript start sites, the transcript methylation with the most negative correlation to 

the gene level expression was used. The analysis resulted in gene-level methylation values 

for 23,202 genes.

Copy number—Genome wide copy number for the cell lines was estimated from the 

methylation array data using the Chip Analysis Methylation Pipeline (ChAMP) (Tian et al., 

2017) package. ChAMP returns lists of genomic segments with putative copy number 

estimates. However, the estimate is not valid for regions with high methylation detection p 

values. For this reason, regions spanning more than 1kb with at least 5 probes with high 

detection p values (p > 0.05) were filtered out. The copy number estimates were set to 

missing for those areas. Gene level copy number (for n = 25,568 genes) was calculated for 

each gene individually, by calculating the average estimate between the transcription start 

sites and transcription end sites.

RNaseq data—The RNA-seq gene expression data from UTSW SCLC were obtained 

from analyses based on McMillan et al. (2018). The raw data have been previously 

submitted to dbGaP (accession phs001823.v1.p1). The paired-end RNA-seq reads from the 

70 UTSW SCLC cell lines were aligned to the human reference genome GRCh38 using 

STAR aligner (version 2.7), FPKM expression values were generated with cufflinks (version 

2.2.1) (Bullard et al., 2010) and log-transformation.

Global expression data—We generate a new Global SCLC dataset (SCLC-Global) using 

all combined cell line resources: NCI SCLC, CCLE, CTRP, GDSC and UTSW. The data 

sources have a mixture of microarray and RNA-seq gene expression. For each experiment, 

genes were scaled across all cell lines to create a z-score normalized dataset. The SCLC-

Global expression was calculated by averaging the z-scored gene expressions from all 

sources. To test for removal of batch effects by gene scaling (z-score normalization), we 

clustered the cell lines based on gene expression using the raw data (Figure S2A) and the 

normalized data (Figure S2B) in R using the hclust() for clustering, and the ape package 

(version 5.3) to create the clustering dendrograms.

QUANTIFICATION AND STATISTICAL ANALYSES

Pathway level correlation of expression and DNA methylation—The correlation 

between methylation and gene expression for multiple functional categories was calculated 

based on genes in Table S4 using R programming language. For each category, the median 

correlation of the related genes was calculated to identify potential categories of interest.

Predictive power of DNA copy number and methylation on transcript 
expression—Testing the predictive power of DNA copy number and methylation on 

Tlemsani et al. Page 16

Cell Rep. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcript expression was performed with linear regression analysis (as seen in Figure 3E. 

For each of the 15,798 genes with all three forms of data available (transcript, methylation, 

and copy number levels) a linear regression model was fit, with both copy number and 

methylation as independent variables and transcript expression as the dependent variable. 

The model provided coefficients for the copy number and methylation that gave the lowest 

squared error between fitted values and true expression. We separated individual 

contributions of these two factors for gene expression prediction using the method of relative 

importance (Gromping, 2006), using the lmg method (Bacher, 1980) from the R package 

relaimpo to compute individual R2 values. Total (or combined) R2 is the summation of these 

two. Square roots of the R2 values were multiplied by the sign of the coefficients of the 

factors in the combined model to get the value of R.

Methylome cluster analysis—The methylation cluster analysis was performed using the 

methylation data from the NCI-SCLC cell lines, GDSC lung cancer (SCLC and NSCLC) 

cell lines and the NCI-60 cell lines. Genes with high standard deviation (> 0.25) in the 

GDSC lung cancer cell lines were selected for the analysis. The number of reported clusters 

was selected based on the cutreeDynamic() function of the dynamicTree-Cut R package 

(v1.63–1), which split genes into 5 main clusters and cells into 3 main clusters (as reported 

in the figure). The methylation heatmap was created with the ComplexHeatmap (Gu et al., 

2016) R package (version 1.20.0).

SCLC subtypes and heatmaps—The SCLC cell lines were classified into the NAPY 

subtypes using the expression of NEUROD1, ASCL1, POU2F3 and YAP1 with the SCLC-

Global expression dataset. Clustering was performed using distance matrix based on 

Euclidean distance and “ward.D” clustering using the hclust() function in R programming 

language.

SCLC neuroendocrine score—Cell line neuroendocrine score was calculated based the 

method reported in Zhang et al. (2018) that uses a gene set of 25 neuroendocrine and 25 

non-neuroendocrine genes for classification. For each cell line, the expression values of 

genes were correlated with the expression averages of neuroendocrine [NE] cells and non-

neuroendocrine [non-NE] cells from Zhang et al. (2018). The NE score was calculated with 

the following formula:

NEscore =
correl Xi , [NE] − correl Xi , [nonNE]

2

where Xi denotes the gene expression values of cell line i, [NE] is the mean expression of 

genes in neuroendocrine cells from Zhang et al. (2018) and [nonNE] is the mean expression 

of genes in non-neuroendocrine cells from Zhang et al. (2018). The R script that calculates 

the NE score from the SCLC-Global expression data is available in the supplementary 

materials.

t-SNE clustering of GDSC lung cell lines using gene expression—SCLC and 

NSCLC cell line grouping was performed with the gene expression data from the GDSC 

microarray dataset using the t-SNE algorithm in R (v3.5.1). The random seed was set to 1, 
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the Euclidean distance of genes was calculated with the dist() function with default settings. 

The t-SNE grouping was calculated using the Rtsne() function from the Rtsne (van der 

Maaten, 2014) package (v0.15) using the calculated distance matrix, with perplexity set to 

10, and 5k maximum iterations.

Clustering drug data of NCI-SCLC cell lines—SCLC cell line expression heatmaps 

for the SCLC markers, NAPY genes and MYC genes were done using the ComplexHeatmap 
(Gu et al., 2016) R package (version 1.20.0).

The NCI SCLC drug activity heatmap was generated using R. First, drugs with coefficient of 

variation less or equal to 0.09 were filtered out. Then the remaining data for the selected 134 

drugs (from originally 527) across the 66 SCLC lines were clustered using the hierarchical 

method based on Euclidean distance and complete linkage.

Gene set enrichment analysis and GSEA analysis—A preranked gene set 

enrichment analysis was run in R using the clusterProfiler (Yu et al., 2012) and ReactomePA 
(Yu and He, 2016) packages. Pathways with an adjusted p value below 0.05 were considered 

as significantly enriched. Single sample gene set enrichment score (APM score) was 

computed using the R package GSVA (version 1.28.0).

A pre-ranked gene set enrichment analysis (GSEA version 4.0.3) was performed for the 

correlation between the gene expression and methylation across all the NCI SCLC cell lines. 

The score was 1/p value if correlation was positive and −1/p value otherwise. The gene sets 

included our DTB 21 gene sets with the Hallmark, C2 (pathways) and C5 (GO) GSEA 

signatures. The analysis was done using the classic enrichment statistic with a minimum 

gene set size of 15 and a maximum of 1000.

Statistical methods—Correlations, heatmaps, and histograms were generated mostly 

using The R Project for Statistical Computing. Some plots and analysis (such as the Kruskal 

Willis test) were generated using Partek Genomics suite v7.17.1222 (https://

www.partek.com/partek-genomics-suite/) or using SCLC-CellMiner and CellMinerCDB 

(https://discover.nci.nih.gov/cellminercdb).

Wilcoxon rank-sum tests were used to test the difference between continuous variables such 

as drug sensitivity and gene expression according NAPY classification. We considered 

changes significant if p values were below 0.05. In the figures, p values below 0.00005 were 

summarized with four asterisks, p values below 0.0005 were summarized with three 

asterisks, p values below 0.005 were summarized with two asterisks and p values below 0.05 

were summarized with one asterisk. The scripts and data used for the analysis can be 

obtained at https://zenodo.org/record/3959142.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SCLC-CellMiner is an extensive cell line genomic and pharmacology 

resource

• SCLC cell lines show a methylome consistent with their plasticity and lineage

• Transcriptome analyses reveal lineage transcriptional networks and drug 

predictions

• SCLC-Y cells differ from other subgroups by transcriptome and potential 

therapeutics
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Figure 1. Summary of the Data Included in SCLC-CellMiner and Resources
(A) Cell line overlap between the data sources. Cell lines in red are from the NCI database 

(n = 68), dark blue from CTRP (n = 39), light blue from CCLE (n = 53),orange from GDSC 

(n = 74), and green from UTSW (n = 73). Cell line details are provided in Table S1.

(B) Summary of the genomic and drug activities data in SCLC-CellMiner (https://

discover.nci.nih.gov/SclcCellMinerCDB/). For microarray, mutations, copy number, and 

promoter methylation data, the numbers indicate the number of genes. For RNA-seq data, 

the numbers indicate the number of transcripts. The bottom row shows the total number of 

cell lines (N = 118) integrated in SCLC-CellMiner. New data analyses are highlighted in 

yellow.

(C) Cell line overlap between data sources (see Table S1 for details).

(D) Drug overlap between data sources.
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Figure 2. Validation and Reproducibility of the SCLC-CellMiner Data and Snapshots of 
Representative Outputs of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/)
(A) Reproducibility between data sources. Pearson’s correlations are indicated above violin 

plots.

(B) Snapshot showing the reproducibility of SLFN11 gene expression across the 41 common 

cell lines (AffyArray for NCI/DTP on the x axis versus RNA-seq for UTSW). Each dot is a 

cell line. The data can also be readily displayed in tabular form and downloaded in tab-

delimited format by clicking on the “View Data” tab to the right of the default “Plot Data” 

tab.

(C) Snapshot showing the reproducibility of SLFN11 promoter methylation across the 43 

common cell lines independently of the methods used (850K Illumina Infinium 

MethylationEPIC BeadChip array for NCI/DTP versus Illumina HumanMethylation 450K 

BeadChip array for GDSC).

(D) Highly significant correlation between MYC copy number (NCI/DTP) and MYC 
expression (CCLE) for the 36 common SCLC cell lines.

(E–G) Examples of drug activity across databases for the common cell lines.

(H) High proliferation signature of SCLC cell lines on the basis of high PCNA and MYC 
expression. Snapshot shows that SCLC (green) overexpress PCNA and fall into two groups 

with respect to MYC.
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Figure 3. Methylation Profile of SCLC Cell Lines
(A) Global hypomethylation in SCLC cell lines. Each point represents the median 

methylation level of individual cell lines for the total set of 17,559 genes. Twenty-one cancer 

subtypes from GDSC are ranked according their global methylation levels. SCLC cell lines 

are in red (NCI) and green (GDSC).

(B) Comparison of promoter methylation profiles for 287 cell lines including SCLC (NCI 

and GDSC), NSCLC (GDSC and NCI-60), and non-lung cancer cell lines from the NCI-60. 

The heatmap displays the levels of methylation of 1,813 genes with high dynamic range. 

Examples of genes are indicated at right and details provided in Table S3. Clusters a, b, and 

c include 68, 117, and 102 cell lines, respectively.

(C) Pathway analysis.

(D) Functional categories with significant correlation between gene expression and promoter 

methylation for the NCI-SCLC cell lines (n = 66). Median values transcript expression 

versus DNA methylation level correlations of 20 functional groups including 17,144 genes 

(Table S5).

(E) Correlations between gene expression and predictive values of DNA copy number. R 

values of −1 and +1 indicate perfect negative and positive predictive power, respectively. 

Each point represents 1 of a total of 14,046 genes analyzed. Oncogenes and tumor 

suppressor genes (highlighted in purple and in blue, respectively) are driven primarily by 

copy number. Histone genes (red) and epithelial genes (green) are driven primarily by DNA 
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methylation (Table S5). SCLC key genes (ASCL1, NEUROD1, POU2F3, and YAP1) are 

also labeled.
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Figure 4. SCLC Genomic Molecular Classifications
(A) NE classification. Cell lines with high and low NE score are in dark brown and gray, 

respectively (n = 116 cell lines; CellMiner-Global). CHGA, SYP, and INSM1 expression 

after Z score normalization.

(B) NAPY classification for the 116 SCLC cell lines. Expression values across the five data 

sources were obtained after normalization by Z score (Table S3).

(C) NEUROD1 and ASCL1 expression are specific for both SCLC and brain tumor cell lines 

(GDSC database; each point is a cell line; n = 986).

(D) POU2F3 is selectively expressed in SCLC but not in brain tumor cell lines (GDSC; n = 

986).

(E) YAP1 shows a high range of expression across different cell line subtypes (GDSC; n = 

986). (C)–(E) are snapshots (https://discover.nci.nih.gov/cellminercdb).

(F) Co-expression of NEUROD1 and ASCL1 in SCLC-Global.

(G) Subtypes of cell lines in GDSC.

(H) EMT signature and NAPY classification in CellMiner-Global.

(I) Classification based on expression of the three MYC genes in 106 SCLC cell lines across 

the five data sources after Z score normalization.
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Figure 5. Integration of the Transcriptional Networks of the SCLC-A and SCLC-Y Cell Lines 
with the NOTCH Pathway for the 116 Cell Lines Derived from SCLC-Global Analyses
(A) Highly significant correlations between ASCL1 expression and NKX2–1 and PROX1 
and downstream transcriptional targets (bayonet arrows). Numbers to the right indicate the 

significantly positive Pearson’s correlations coefficients (red) (https://discover.nci.nih.gov/

SclcCellMinerCDB/) irrespective of chromosome locations (black in parenthesis). The 

NOTCH receptor network with its transcriptional target REST (yellow box) shows 

significant negative Pearson’s correlations (blue).

(B) Correlations between the expression of ASCL1 and the genes shown in (A) (snapshot 

from the multivariate analysis tool of SCLC-CellMiner).

(C and D) Same as (A) and (B) except for YAP1.
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(E) Correlations between the NOTCH receptors and ligands genes and ASCL1 versus YAP1. 

Pearson’s correlation coefficients are indicated in parenthesis.

(F) Correlation between NOTCH1 and NOTCH2 expression. YAP1 cells show significantly 

high expression of both NOTCH1 and NOTCH2.

(G) Correlation between NOTCH1 and NOTCH2 expression across the 1,036 cell lines of 

the CCLE. SCLC-Y cells have highest expression.

(H) SCLC-Y cells have significantly fewer RB1 mutations.

(I) t-Distributed stochastic neighbor embedding clustering plot using gene expression data of 

60 SCLC and 100 NSCLC cell lines (microarray; GDSC data source).
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Figure 6. Predictive Biomarkers for SCLC Responses
(A) Global response of the NCI-SCLC cell lines (NAPY classification to the left).

(B) SCLC-P cells are the most sensitive to etoposide and talazoparib. SCLC-Y cell lines are 

the most resistant.

(C) Selective activity of the BCL2-BCL-XL inhibitor in a subset of the SCLC-A cells and 

highly significant correlation with BCL2 expression (right).

(D) Activity of mTOR/AKT inhibitors in a subset of non-NE cells.

(E) Activity of the PI3K inhibitors in non-NE SCLC cells.

(F) SLFN11 expression across the 116 SCLC cells exhibits bimodal distribution in all four 

SCLC subsets and is predictive of response to DNA damaging chemotherapeutics (Figure 

S6).

(G) Selective expression of native immune pathway genes in SCLC-Y (correlations between 

each of the NAPY genes and the listed native immune response genes. Significantly positive 

and negative correlations are in red and blue, respectively.

(H) Snapshot from SCLC-CellMiner illustrating the correlation between the YAP1 and 

IFITM3 transcripts across the 116 cell lines of SCLC-Global (Figure S6).

(I) Selective expression of the DLL3 and CEACAM5 (Figure S6).
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(J) Potential surface biomarker targets for NE-SCLC and SCLC-P cells.

(K) Potential surface biomarkers for SCLC-Y cells.

Data in (A)–(E) and (I)–(K) are from the 66 cell lines from the NCI-DTP drug and genomic 

database.
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KEY RESOURCES TABLE

RESOURCE SOURCE IDENTIFIER

Deposited Data

NCI-SCLC cell line methylation (850K 
array)

This paper and (Krushkal et al., 2020) GSE145156

UTSW cell line RNA-seq (McMillan et al., 2018) dbDAP phs001823.v1.p1

CellMinerCDB cell line data (Rajapakse et al., 2018) https://discover.nci.nih.gov/cellminercdb/

Software and Algorithms

ChAMP (Tian et al., 2017) https://bioconductor.org/packages/release/bioc/html/
ChAMP.html

STAR aligner (Dobin et al., 2013) https://github.com/alexdobin/STAR

Cufflinks (Trapnell et al., 2012) http://cole-trapnell-lab.github.io/cufflinks/

Ape (Paradis et al., 2004) https://cran.r-project.org/web/packages/ape/index.html

Relaimpo (Gromping, 2006) https://cran.r-project.org/web/packages/relaimpo/
index.html

dynamicTreeCut (Langfelder et al., 2008) https://cran.r-project.org/web/packages/dynamicTreeCut/
index.html

ComplexHeatmap (Gu et al., 2016) https://bioconductor.org/packages/release/bioc/html/
ComplexHeatmap.html

Rtsne (van der Maaten, 2014) https://cran.r-project.org/web/packages/Rtsne/index.html

clusterProfiler (Yu et al., 2012) https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html

ReactomePA (Yu and He, 2016) https://bioconductor.org/packages/release/bioc/html/
ReactomePA.html

Partek Genomics Suite (software for 
analysis of microarray data)

Partek https://www.partek.com/partek-genomics-suite/

GraphPad Prism 7 (software for drawing 
graphs and statistics analysis)

GraphPad

Analysis scripts This paper https://zenodo.org/record/3959142
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