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Abstract

Healthy aging is associated with changes in cognitive performance and functional

brain organization. In fact, cross-sectional studies imply lower modularity and signifi-

cant heterogeneity in modular architecture across older subjects. Here, we used a

longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive

testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic

analysis to investigate the time-evolving modular structure of the whole-brain net-

work, by maximizing the multilayer modularity across four time points. Global flexibil-

ity, which reflects the tendency of brain nodes to switch between modules across

time, was significantly higher in healthy elderly than in a temporal null model. Further,

global flexibility, as well as network-specific flexibility of the default mode,

frontoparietal control, and somatomotor networks, were significantly associated with

age at baseline. These results indicate that older age is related to higher variability in

modular organization. The temporal metrics were not associated with simultaneous

changes in processing speed or learning performance in the context of memory

encoding. Finally, this approach provides global indices for longitudinal change across

a given time span and it may contribute to uncovering patterns of modular variability

in healthy and clinical aging populations.
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1 | INTRODUCTION

It is well-known that during resting state, the human brain is com-

posed of several distinct and distributed functional subnetworks

(i.e., modules) of densely interconnected brain regions sparsely con-

nected to the rest of the network (Wig, 2017). Previous studies have

consistently identified several major modules, such as the default

mode (DMN), executive control, salience, sensorimotor, and visual

(VIS) networks (Heine et al., 2012; Smitha et al., 2017; van den

Heuvel & Hulshoff Pol, 2010). This modular organization affords the

brain a superior resilience to disease or injury as the individual mod-

ules can adapt to the changing environment or pathology without

compromising the rest of the subnetworks (Fornito, Zalesky, &

Breakspear, 2015; Stam, 2014).

Importantly, the architecture of these subnetworks has been

shown to undergo important developmental and aging-related

changes (Baum et al., 2017; Fair et al., 2009; Gu et al., 2015), with pre-

vious studies suggesting reduced functional segregation with advanc-

ing age (Cao et al., 2014; Chan, Park, Savalia, Petersen, & Wig, 2014;

Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Malagurski, Liem,

Received: 18 December 2019 Revised: 12 July 2020 Accepted: 19 July 2020

DOI: 10.1002/hbm.25161

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. ;41:4829–4845. wileyonlinelibrary.com/journal/hbm 4829

https://orcid.org/0000-0002-7510-5187
mailto:brigitta.malagurski@uzh.ch
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


Oschwald, Mérillat, & Jäncke, 2020; Müller, Mérillat, & Jäncke, 2016;

Song et al., 2014), and increased modular variability or heterogeneity

within higher order cortices in healthy elderly (Iordan et al., 2018;

Peraza, O'Brien, Blamire, Kaiser, & Taylor, 2018; Schlesinger, Turner,

Lopez, Miller, & Carlson, 2017).

Based on such studies, we can conclude that functional connec-

tivity within higher order resting state networks (i.e., DMN) decreases

while, between-network connectivity (i.e., DMN and executive control

network) increases, resulting in less modular, “dedifferentiated” brains

in older age (Chan et al., 2014; Ng, Lo, Lim, Chee, & Zhou, 2016).

In addition, these changes have been associated with less effi-

cient cognitive functioning, highlighting the critical importance of this

organizational characteristic of the human brain (Iordan et al., 2018;

Gallen et al., 2017; Geerligs et al., 2015; Chan et al., 2014; Müller

et al., 2016).

Although these studies have provided important insights into

modular reorganization, most of them are, however, based on cross-

sectional data and, thus, fail to describe true longitudinal change in

advanced aging.

Recent work in network neuroscience has given rise to multilayer

network modeling suitable to track the evolution of modular

reconfiguration throughout time (Braun et al., 2018; de

Domenico, 2017). This framework is more powerful in contrast to

more traditional approaches as it can provide an aggregate measure of

change across multiple time points, such as network flexibility, which

characterizes how frequently brain regions switch allegiance from one

module to another over time (Bassett et al., 2011). Although still in its

infancy, this approach has been used to investigate the dynamic

(within-session) modular structure during resting state (Betzel,

Satterthwaite, Gold, & Bassett, 2017; Gerraty et al., 2018; Shine,

Koyejo, & Poldrack, 2016), task performance (Bassett et al., 2011;

Bassett, Yang, Wymbs, & Grafton, 2015; Braun et al., 2015; Schle-

singer et al., 2017; Telesford et al., 2017), development (Betzel

et al., 2015), and brain disorders (Braun et al., 2016), showing interest-

ing patterns of flexible network reconfiguration dependent on the

“task at hand.” Indeed, one study has used multilayer networks to

investigate how the brain's modular organization evolves across the

human lifespan, suggesting that some modules tend to be highly flexi-

ble and exhibit substantial reconfiguration throughout adulthood

(Betzel et al., 2015).

For the present study, we used a longitudinal dataset comprised

of four occasions of resting state functional brain imaging and cogni-

tive testing in healthy older adults. We applied the multilayer modu-

larity model to investigate how the brain's modular structure changes

in healthy aging over a span of 4 years. Further, based on the previous

studies connecting this functional property to cognitive functioning,

we assessed how modular reconfiguration relates to changes in cogni-

tive performance. More specifically, we calculated the functional flexi-

bility, promiscuity, cohesion strength, and disjointedness to study the

degree to which brain regions switch between communities as well as

the pattern of it, and the recruitment coefficient to study the associa-

tion of the obtained community structure to well-known resting state

networks.

Moreover, we explored the relationship between functional

flexibility and (a) processing speed and (b) learning performance in

the context of memory encoding. These two cognitive domains

were chosen as they have been found to be particularly vulnerable

to aging effects (Salthouse, 2010; Schaie, 2005) and have been pre-

viously related to brain modularity in healthy elderly (Gallen

et al., 2017; Geerligs et al., 2015; Iordan et al., 2018; Ng

et al., 2016).

We hypothesized that the functional networks would show high

flexibility across the time span of 4 years and with increasing age,

suggesting longitudinal modular reconfiguration and instable modular

architecture in older adults. Finally, we assumed that greater flexibility

is associated with poorer performance in both cognitive domains.

2 | METHODS

2.1 | Participants

Longitudinal resting-state fMRI (rs-fMRI) data were taken from the

Longitudinal Healthy Aging Brain Database Project (LHAB; Switzer-

land)—an ongoing project conducted at the University of Zurich (Zöllig

et al., 2011). We used data from the first four measurement occasions

(baseline, 1-year follow-up, 2-year follow-up, 4-year follow-up). The

baseline dataset included 232 participants (age at baseline: M = 70.8,

range = 64–87; females: 114). At each measurement occasion, partici-

pants completed an extensive battery of neuropsychological and psy-

chometric cognitive tests and underwent brain imaging. The brain

imaging session was conducted in close temporal proximity to the

behavioral assessments (difference between behavioral and MRI

assessments in days [M ± SD]: baseline: 2.2 ± 5.2, 1-year follow-up:

2.6 ± 5.2, 2-year follow-up: 4.3 ± 13.0, 4-year follow-up: 4.6 ± 9.3).

Inclusion criteria for study participation at baseline were age ≥64,

right-handedness, fluent German language proficiency, a score of ≥26

on the Mini Mental State Examination (Folstein, Folstein, &

McHugh, 1975), no self-reported neurological disease of the central

nervous system and no contraindications to MRI. The study was

approved by theethical committee of the canton of Zurich. Participa-

tion was voluntary and all participants gave written informed consent

in accordance with the declaration of Helsinki.

For the present analysis, we only included participants with com-

plete rs-fMRI data (four measurement occasions). This was necessary

because four temporal windows enable a more reliable maximization

of the multilayer modularity function. At 4-year follow-up, the dataset

still comprised 74.6% of the baseline sample (n = 173), of which

86.7% (n = 150, age at baseline: M = 69.8, range = 64–83; females:

71) had complete data for rs-fMRI.

To estimate whether attrition was selective, we compared the full

sample at baseline with participants that had rs-fMRI data from all

four measurement occasions. The total selectivity was computed by

standardizing the difference between the mean in the baseline sample

and the sample with no missing data, on the SD of the baseline sample

in the variable of interest (Lindenberger, Singer, & Baltes, 2002).
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The size of the selectivity index was interpreted with reference to

an effect size. As it can be seen in Supplementary Table S1, the total

selectivity was negligible for all measures (i.e., none of the measures

exceeded the cutoff of 0.20 for a weak effect according to

Cohen (1988)), indicating that the participants with no missing rs-fMRI

data did not significantly differ from the full baseline sample in terms

of age at baseline, education, initial cognitive ability, or physical and

mental health.

2.2 | Neuropsychological assessment

All participants completed a neuropsychological test battery assessing

multiple cognitive domains at each measurement occasion. For the

present analysis, data from the domains “processing speed” and

“learning/memory encoding” were used. Individual scores were stan-

dardized to T scores (M = 50, SD = 10) with respect to baseline and

averaged across subtests to calculate the domain-average composite

scores.

Processing speed was assessed using four psychometric paper-

pencil tests: (a) the number of correct responses across two test parts

of the Identical Pictures Test (Kit of Factor-Referenced Cognitive

Tests; Ekstrom, French, Harman, & Dermen, 1976); (b) the number of

correct responses (within 2 min) on the Digit Symbol Test (Wechsler

Intelligence Scale for Adults; Von Aster, Neubauer, & Horn, 2006);

(c) time in seconds, including the time, used when an error was made,

needed to finish the Trail-Making-Test A (Reitan & Wolfson, 2004)

(the scores were reversed so that the higher scores equaled better

performance); and (d) number of correct responses (within 2 min) on

the LPS14, a subtest from the Leistungsprüfsystem 50+ (LPS), a Ger-

man intelligence test developed to measure Thurstone's (1938) pri-

mary mental abilities (Horn, 1983).

Learning/Memory encoding was defined using the (a) number of

correctly reproduced abstract designs at first five trials of the DCS fig-

ural memory test (Diagnosticum für Cerebralschädigung; Weidlich &

Lamberti, 2001), and (b) total correct responses over five immediate

free recall trials from the Verbal Learning and Memory Test

(Helmstaedter & Durwen, 1990), a German equivalent of the Rey

Auditory Verbal Learning Test.

2.3 | MRI acquisition

MRI scans were acquired at the University Hospital of Zurich on a

Philips Ingenia 3T scanner (Philips Medical Systems, Best, The Nether-

lands). T1-weighted (T1w) structural images were acquired using a

gradient echo sequence (3D turbo field echo, 160 slices, TR = 8.1 ms,

TE = 3.7 ms, FOV = 240 × 240 × 160 mm, flip angle = 8�, isotropic

voxel size = 1.0 × 1.0 × 1.0 mm3). Two hundred and twenty-five

multislice T2*-weighted volumes were retrieved with a gradient echo-

planar sequence using transverse slice orientation (43 slices; voxel

size: 3.5 × 3.5 × 3.5 mm3; TR = 2,000 ms; TE = 21 ms; flip angle = 76�;

FOV = 220 × 220 × 150 mm).

2.4 | MRI preprocessing

Preprocessing was performed using the fmriprep BIDS app (v.1.0.5)

(Esteban et al., 2019; Gorgolewski et al., 2017), a Nipype (Gorgolewski

et al., 2011) based tool. Each T1w (T1-weighted) volume was corrected

for INU (intensity nonuniformity) using N4 Bias Field Correction v.2.1.0

(Tustison et al., 2010) and skull-stripped using ANTs v.2.1.0 (using the

OASIS template). Spatial normalization to the ICBM 152 Nonlinear

Asymmetrical template version 2009c (Fonov, Almli, Evans, Collins, &

McKinstry, 2009) was performed through nonlinear registration with

the antsRegistration tool of ANTs v.2.1.0 (Avants, Epstein, Grossman, &

Gee, 2008), using brain-extracted versions of both T1w volume and

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white

matter (WM), and gray matter (GM) was performed on the brain-

extracted T1w using FAST (Zhang, Brady, & Smith, 2001) (FSL v5.0.9).

Functional data was slice time corrected using 3dTshift from AFNI

v.16.2.07 (Cox, 1996) and motion corrected using mcflirt (FSL v5.0.9;

Jenkinson, Bannister, Brady, & Smith, 2002). This was followed by co-

registration to the corresponding T1w using boundary-based registra-

tion (Greve & Fischl, 2009) with 9� of freedom, using flirt (FSL). Motion

correcting transformations, BOLD-to-T1w transformation, and T1w-to-

template (MNI) warp were concatenated and applied in a single step

using antsApplyTransforms (ANTs v.2.1.0) using Lanczos interpolation.

Further preprocessing steps were performed using the CONN

toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). The nuisance

regressors were defined according to the 36-parameter model (Ciric

et al., 2017): six motion parameters, signals estimated from CSF and

WM, global signal, their derivatives, quadratic terms, and squares of

derivatives were regressed out from functional data separately for

each run. The rs-fMRI data was temporally bandpass filtered in the

0.01–0.1 Hz frequency range. We applied simultaneous filtering/nui-

sance regression, because it was shown to reduce correlation

between time-series fluctuations and motion (Hallquist, Hwang, &

Luna, 2013). Global signal regression was performed in accordance

with previous studies on aging (Chan et al., 2014; Ng et al., 2016), as

this has been shown to be effective in the reduction of the effects of

physiological signals and head motion (Lydon-Staley, Ciric,

Satterthwaite, & Bassett, 2019).

2.5 | Network definition

The regions of interest (ROIs), used to build the network, were

selected from the atlas of Schaefer and colleagues (Schaefer

et al., 2018), corresponding to 200 cortical regions (i.e., ROIs) classi-

fied into seven well-known resting state networks according to the

Yeo-Krienen atlas (Yeo et al., 2011): frontoparietal control (FPCN),

default mode (DMN), dorsal attention (DAN), salience ventral atten-

tion (SVAN), limbic (LIMB), somatomotor (SM), and visual (VIS)

networks.

The time-series were averaged over the voxels in each ROI and

correlated between each pair of nodes using the Pearson's correlation

analysis. Each correlation coefficient was then Fisher's r-to-z
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transformed. Due to ambiguity regarding the meaning of negative cor-

relations in the context of global signal regression (Murphy &

Fox, 2017), negative z values were excluded from the analysis in

accordance to previous studies (Chan et al., 2014, 2018). This resulted

in subject-specific 200 × 200 correlation matrices with diagonal and

negative values set to zero. Therefore, the main network analysis was

performed on positive weighted networks.

In addition, supplementary analysis has been done on positive

weighted networks containing only statistically significant connec-

tions at an FDR-adjusted significance level of p < .01. This has been

done to ensure that our results are robust in both unthresholded and

thresholded matrices based on the significance level of node

connections.

2.6 | Multilayer modularity

Modular structure in a network indicates that nodes in a module are

more interconnected with one another then with the rest of the net-

work. Modules within complex networks are identified using commu-

nity detection algorithms such as the maximization of the modularity

quality function (i.e., Q; Newman & Girvan, 2004). These algorithms

are applicable to traditional single layer networks (e.g., within-session

static functional connectome) or multilayer networks in which nodes

are connected across layers (Kivelä et al., 2014). These layers may cor-

respond to different modalities (e.g., structural and functional connec-

tions between brain regions) or different temporal instants at which

the network was observed (i.e., brain connectivity across a span of

several years). So, in addition to being able to calculate single window

modularity scores, the multilayer framework is interesting for longitu-

dinal studies because it can produce a “global index” which reflects

the changes in network organization across a defined period

(i.e., 4 years). In the present study, we define multilayer networks

where each layer is the functional connectivity matrix at a given time

point, resulting in a four-layer temporal network for each of the sub-

jects, separately.

Thus, to investigate the changes in network organization across

time, the multilayer modularity was optimized (Blondel, Guillaume,

Lambiotte, & Lefebvre, 2008; Mucha, Richardson, Macon, Porter, &

Onnela, 2010) as follows:

Q=
1
2μ

X

ijlr

Aijl−γlPijl
� �

δlr + δijωjlr

� �
δ gil,gjr
� �

,

where 1 is the number of layers in the multilayer network, Aijl is the

functional connectivity matrix, Pijl is the corresponding null model

matrix (i.e., Newman–Girvan null model) defined as the kil × kjl/2ml,

where m is the average edge weight in the matrix, gil gives the com-

munity assignment of node i in layer l, and gjr gives the community

assignment of node j in layer r. The γ is the structural resolution param-

eter which defines the weight of intralayer connections and thus the

number of obtained modules, while ω is the temporal resolution param-

eter which sets the weight of the interlayer edges that link each node

i to itself across layers. When the value of γ is small, the maximization

of Q produces relatively large communities, while large values result

in more communities with smaller number of nodes. Given that the

value of ω defines the consistency of multilayer modules, large values

relative to intralayer edges result in communities that are more similar

to one another across layers. We set these parameters to frequently

used default values of γ = 1, ω = 1 (Betzel et al., 2017; Telesford

et al., 2017). Additional analyses with varying parameters around

these default values can be found in the supplementary material. As

the multilayer community detection algorithm is stochastic, the modu-

larity index (i.e., Q) was averaged across 100 optimizations of the

modularity quality function. The multilayer modularity analysis was

implemented with code from Jeub et al (Lucas G. S. Jeub, Marya Bazzi,

Inderjit S. Jutla, and Peter J. Mucha, “A generalized Louvain method

for community detection implemented in MATLAB,” http://netwiki.

amath.unc.edu/GenLouvain (2011–2017).

The algorithm was used with the randomization option

“moverandw” instead of the default “move” option, as this has been

shown to mitigate some undesirable behavior for multilayer modular-

ity with ordinal coupling (Bazzi et al., 2016).

2.7 | Multilayer metrics

In order to describe the temporal variability of community

(i.e., modular) structure, we calculated the node flexibility score which

represents the number of times that a node switches communities

over time, normalized by the total possible number of switches

(Bassett et al., 2011). We obtained the global flexibility scores by

averaging over all brain regions included in the analysis.

To better understand the underlying mechanism of the network

flexibility over time, we calculated additional three measures: node

promiscuity (Papadopoulos, Puckett, Daniels, & Bassett, 2016), node

cohesion strength, and node disjointedness (Telesford et al., 2017).

In order to investigate the tendency of brain regions to change

allegiance between limited or multiple (i.e., temporal integration) com-

munities, we calculated the node promiscuity which reflects the frac-

tion of all networks in which the node participates at least once,

across all network layers (Papadopoulos et al., 2016). The global pro-

miscuity was defined as the average promiscuity over all nodes.

Node cohesion strength and node disjointedness quantify the

node changes based on mutual versus independent changes, respec-

tively (Telesford et al., 2017).

Node cohesion strength is defined as a cohesion matrix, where

the edges represent the number of times a pair of nodes change to

the same community together. Cohesion strength of a node is the

sum of its row values in the cohesion matrix, with higher values indic-

ative of frequent changes with other nodes, and lower values implying

infrequent changes with other nodes. Node disjointedness is defined

by the number of times a node switches communities independently

of other nodes, divided by the number of times a node can change

communities. Higher values indicate frequent independent changes,

and lower values imply infrequent switches of communities of a given
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node independently of other nodes. The calculated metrics were aver-

aged over all brain regions in order to obtain the global indices of dis-

joint and cohesive changes of a brain network across time.

To understand, how the present dataset corresponds to known

functional networks, we compared the community partitions obtained

on this data to the seven predefined resting state networks (Schlesinger

et al., 2017): FPCN, DMN, DAN, SVAN, LIMB, SM, and VIS.

First, the cooccurrence of brain regions was summarized with a

module allegiance matrix, where the ijth element present the percent-

age of time points in which both region i and region j belong to the

same community (Mattar, Cole, Thompson-Schill, & Bassett, 2015).

Thus, regions that are consistently grouped together in the same net-

work, across time, have high allegiance values.

Then, using the module allegiance matrix, we computed the

dynamic recruitment of a network, that estimated the probability that

its regions cooccur in predefined networks with regions from the

same network across time points (Mattar et al., 2015). The recruit-

ment coefficient was averaged over all brain regions in order to obtain

the global dynamic recruitment.

In addition, all of the calculated multilayer metrics were summa-

rized across predefined networks (Schlesinger et al., 2017); to further

explore the significance of the obtained results in the context of well-

known resting state networks.

As previously stated, the multilayer community detection algo-

rithm is stochastic and therefore the obtained measures were aver-

aged across 100 optimizations of the modularity quality function.

To provide better intuitive understanding of these metrics, Tel-

esford et al. (2017) gave the following example which relates splitting

versus merging communities to the measures of disjointedness and

cohesion (for VIS representation, please see Telesford et al., 2017). If

a community splits in two, the cohesion is nonzero, as a subgroup of

nodes from an old Community A moves to a new Community B, and a

separate group of nodes moves from the old Community A to a new

Community C. Node disjointedness is in this case zero, as individual

nodes did not switch communities independently of other nodes. The

same is true for merging communities, as we once again have high

cohesion and zero node disjointedness.

The calculation of global flexibility, cohesion strength, and dis-

jointedness was implemented with code from the Network Commu-

nity Toolbox (http://commdetect.weebly.com/).

2.8 | Null models

To determine the statistical significance of the temporal evolution of

functional brain networks and to test against the null hypothesis that

there is no smooth reconfiguration between consecutive time points,

we compared the real functional networks to a temporal null model.

This null model was created by shuffling the time layers in the multi-

layer network uniformly at random across time (Chai, Mattar, Blank,

Fedorenko, & Bassett, 2016; Sizemore & Bassett et al., 2017). Impor-

tantly, the temporal null model constructed in such a way, preserves

connectivity within a network layer but eliminates the dependencies

between layers over time.

Further, we computed a nodal null model to contrast the network

recruitment coefficient obtained on our data against the null hypothe-

sis that roles of the regions in the network are identical (i.e., no func-

tional subnetworks). Hence, we ensure that the community structure

we calculate is not random but instead captures the modular organiza-

tion of functional connectivity. This null model, similar to the configu-

ration model for static graphs, was constructed by randomly rewiring

edges occurring at the same point (Sizemore & Bassett et al., 2018).

Therefore, we computed 50 null models (temporal and nodal) for

each subject's multilayer functional matrix and then optimized the

multilayer modularity quality function 100 times on each of these null

model networks.

The real networks were compared to null networks using Welch's

two-sample t test implemented in R (v. 3.5.2; The R Project for Statis-

tical Computing; http://www.R-project.org/).

The significance level of p-values was adjusted to p < .05/n,

where n represents the number of multilayer measures that were

compared between the observed and null networks.

Further, we calculated the Cohen's d index of effect size using an

R-based package lsr (v. 0.5), and interpreted it as follows: d ≥ 0.2 was

considered a “small” effect size, d ≥ 0.5 represented a “medium” effect

size and d ≥ 0.8 a “large” effect size (Cohen, 1988).

2.9 | Statistical analysis

2.9.1 | Brain modular reconfiguration and age at
baseline

To test the hypothesis that the brain modular reconfiguration is

related to aging, we performed multiple linear regression analysis

(lme4 package [v. 1.1-18-1] in R [v. 3.5.2]), in which the outcome was

a particular multilayer measure and the predictor was age at baseline

(grand-mean-centered variable). Gender (female = 1, male = 0) and

education (on a scale from 1 to 3; 1 = high school with or without

vocational education, 2 = higher education entrance qualification,

business school or university of applied sciences, or 3 = university

degree) were entered as nuisance covariates into the model, as previ-

ous studies have related these variables to brain's functional network

organization (Chan et al., 2018). Further, we included motion as an

additional nuisance covariate, defined as the average framewise dis-

placement (FD) across four measurement occasions, as head motion

has been shown to have an important impact on brain network topol-

ogy (De Vico Fallani, Richiardi, Chavez, & Achard, 2014).

Regression models were calculated for each of the global and

network-specific (i.e., FPCN, DMN, DAN, SVAN, LIMB, SM, VIS) mul-

tilayer measures (global flexibility, promiscuity, cohesion strength, dis-

jointedness, and recruitment).

The effect sizes (i.e., partial η2) were calculated using the

lmSupport package (v. 2.9.13) in R (v. 3.5.2). The significance level of
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p-values was adjusted to p < .05/n, where n represent the number of

models tested.

In addition, to investigate the relationship between the metrics,

Pearson's correlation analysis was used to calculate the association

between the modularity index (Q), global recruitment, and global flexi-

bility. The analysis was performed using an R-based package called

psycho (v. 0.4.0.). In addition, partial correlation analysis was con-

ducted to test the relationship between these metrics while control-

ling for the effects of age at baseline using the ppcor (v. 1.1)

package in R.

The results were visualized using sjPlot (v. 2.6.1) and ggplot

(v. 2-3.0.0) packages in R.

2.9.2 | Longitudinal change in cognitive
performance

We performed linear mixed effects (LME) analysis (lme4 package

(v.1.1-18-1) in R (v. 3.5.2); Bates, Mächler, Bolker, & Walker, 2015) to

assess the longitudinal change in cognitive performance (i.e., processing

speed, learning/memory encoding). As fixed effects, we entered time,

age at baseline (grand-mean-centered variable), and their interaction

term into the model. As random effects, we had intercepts for subjects

as well as by-subject random slopes for the effect of time. Gender and

education were entered as nuisance covariates.

In addition, as it is very likely that the change in cognitive perfor-

mance between the baseline and the 1-year follow-up assessment is

influenced by the increased familiarity with the testing situation

(Hoffman, Hofer, & Sliwinski, 2011), we added a “retest effect” (base-

line = 0, 1-year follow-up = 1, 2-year follow-up = 1, 4-year follow-

up = 1) as a covariate in the LME models.

Linear mixed models were fit by maximum likelihood and the

p-values were obtained from the t-statistic using Satterthwaites's

approximation to the denominator degrees of freedom (lmerTest

package (v. 3.0-1) in R (v. 3.5.2); Kuznetsova, Brockhoff, &

Christensen, 2017). The mixed models were fitted separately for

each of the cognitive domains. The significance level of p-values

was adjusted to .05/n, where n represents the number of cognitive

domains.

The results were visualized using the ggplot (v. 2-3.0.0) pack-

age in R.

2.9.3 | Brain-cognition association

To investigate the “change–change” brain-cognition association, we

performed Pearson's correlation analysis (R-based package psycho

(v. 0.4.0.)) between the individual rate of change in cognition and the

multilayer measures (i.e., global flexibility) which summarize network

properties across time. In addition, partial correlation analysis was

done to test the brain-cognition relationship while controlling for the

effects of age at baseline using the ppcor (v. 1.1) package in R.

The individual rate of change in cognitive performance, defined

as the subject-specific slope of the regression line between time and

the cognitive scores, was derived from the LME models described in

the previous section (Ng et al., 2016, 2018). The results were visual-

ized using the ggplot (v. 2-3.0.0) package in R.

3 | RESULTS

3.1 | Longitudinal reconfiguration of functional
modules

We used the modularity maximization algorithm to define the tempo-

ral communities in the multilayer functional connectivity matrix (distri-

butions of the number of modules are plotted in Supplementary

Figure S1).

First, we calculated the dynamic recruitment coefficient, which

quantifies the probability that nodes of a network are consistently

assigned to the same module across different time layers. Then, we

compared the observed global recruitment to that of a nodal null

model, to ensure that the community structure we obtained is not

random but instead captures the organization of well-known resting

state networks. The module allegiance matrix in Figure 1a provides a

summary representation of how brain regions and networks are

dynamically engaged across four time points.

The observed global recruitment coefficient was significantly

higher than in the nodal null network (t(298) = 71.5, p < .0001,

d = 8.26) (Figure 1b). This result suggests that the regions tend to be

recruited to their own networks and are less integrated with other

networks across time, suggesting that the community structure we

obtained is not random but represents meaningful modular organiza-

tion. Self-recruitment scores for each of the networks can be found in

Supplementary Figure S2.

Further, we calculated several temporal measures in order to

characterize the patterns of modular change across time, which we

then compared to a temporal null model to determine whether the

obtained values were higher or lower than expected.

We investigated the longitudinal network reconfiguration by cal-

culating the flexibility score, which indicates the number of times

nodes switch their community assignment across temporal layers, and

global promiscuity, which is defined as the fraction of all communities

in which the node participates at least once, across all network layers.

The observed global flexibility (t(298) = 59.2, p < .0001, d = 6.84),

and global promiscuity (t(298) = 69.6, p < .0001, d = 8.04), were signif-

icantly higher than in the temporal null model suggesting that the

functional brain displayed more change than expected in a temporal

null network (Figure 2a,b).

Further, to better understand the underlying mechanism of brain

flexibility over time, we calculated another two measures: global cohe-

sion strength and disjointedness.

The observed cohesion strength (t(298) = 52.7, p < .0001,

d = 6.09) was significantly higher than in the temporal null model,

4834 MALAGURSKI ET AL.



suggesting that the observed functional networks had a greater range

of community dynamics in comparison to the null network (Figure 2c).

However, the observed disjointedness (t(298) = −17.7, p < .0001,

d = 2.05) was significantly lower than in the null model, suggesting

that the change in community structure was driven by subgroups of

nodes switching communities (indicated by a higher cohesion

strength) instead of individual nodes switching independently of other

nodes (Figure 2d).

All statistically significant effects survived multiple comparison

corrections (p < .05 corrected for five measures).

Finally, Supplementary Figure S4 shows that our results were

robust in both unthresholded and thresholded matrices.

3.2 | Negative correlation between modularity and
flexibility

Next, we wanted to assess the relationship between flexibility and the

quality of modular decomposition. In order to do so, we used the

modularity index Q, describing the quality of modular structure across

the 4-year interval. Higher values of Q indicate better modular defini-

tion of a given functional network, while lower values suggest lower

segregation between networks and thus worse modular decomposi-

tion. Further, we explored the association between flexibility and

recruitment to test if the consistency to which nodes are assigned to

the same module across time is related to the frequency of nodes

switching between modules.

Pearson's correlation analysis showed strong negative correlation

between modularity and global flexibility (r(148) = −.64, 95% CI

[−0.72, −0.53], p < .0001), implying that more segregated networks

are also more resistant to change, and thus exhibit lower variability

across a given time span (Figure 3a). Also, there was a strong negative

correlation between global recruitment and flexibility (r(148) = −.64,

95% CI [−0.73, −0.54], p < .0001), suggesting that flexibility is related

to nodes not being consistently assigned to the same module across

time (Figure 3b).

In addition, partial correlation analysis was conducted to test the

relationship between modularity, recruitment and flexibility while con-

trolling for the effects of age at baseline. The association between mod-

ularity and flexibility (r(148) = −.62, 95% CI [−0.71, −0.51], p < .0001),

and recruitment and flexibility (r(148) = −.63, 95% CI [−0.71, −0.52],

p < .0001) remained significant after controlling for age at baseline.

3.3 | The role of age at baseline in modular
reconfiguration

We were interested in assessing if multilayer measures were related

to age at baseline in our sample of elderly subjects (Figure 4).

Multiple regression analysis showed higher flexibility in older par-

ticipants, indicating higher variability in network structure (b = .0036,

p = .006, partial η2 = 0.0504; Table 1).

There were no significant age effects on global promiscuity

(b = .0008, p = .277, partial η2 = 0.0081), suggesting that there were

no age differences in the number of networks the nodes switch

between (Table 1).

We did not observe any significant association between the

global cohesion strength (b = .0845, p = .306, partial η2 = 0.0072) or

disjointedness (b = .0001, p = .182, partial η2 = 0.0123) and age at

baseline, implying that the extent of mutual or independent changes

in community structure (over the 4-year time interval), was not linked

to age at baseline.

F IGURE 1 (a) The module allegiance matrix represents the probability that two brain regions are part of the same community across the
4-year interval. The brain regions are ordered according to the predefined network they belong to. Higher values along the diagonal of the matrix
suggest that networks from the Schaefer atlas tend to be recruited together in the same communities across the 4-year interval. (b) Comparison
of global recruitment of real networks to a nodal null model. The center red lines represent the mean, and the light red bars and light blue bars
represent 95% confidence interval and SD, respectively. This figure was generated using notBoxPlot (https://github.com/raacampbell/
notBoxPlot)
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These results suggest that although there are age differences in

the extent of global flexibility, the mechanisms of this change were not

significantly related to age and thus homogeneous across the sample.

Next, the global recruitment was significantly negatively asso-

ciated with age at baseline (b = −.0035, p = .006, partial

η2 = 0.0501), suggesting a lower probability of a given region to be

F IGURE 2 Comparison of global flexibility (a), promiscuity (b), cohesion strength (c), and disjointedness (d) of real networks to a temporal null
model. The center red lines represent the mean, and the light red bars and light blue bars represent 95% confidence interval and SD, respectively.

This figure was generated using notBoxPlot (https://github.com/raacampbell/notBoxPlot)

F IGURE 3 The correlation analysis showed a strong negative association between modularity and flexibility (r(148) = −.64, p < .0001), and
global recruitment and flexibility (r(148) = −.64, p < .0001)
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F IGURE 4 Global flexibility and recruitment in association with age at baseline. The results indicate greater global flexibility and lower global
recruitment across time in older participants

TABLE 1 Association between multilayer measures and age at baseline in multiple regression models. Statistically significant effects (p < .05)
appear in bold

Metric Predictors Estimates SE CI p Partial η2

Flexibility (Intercept) 0.4165 0.0200 0.3773–0.4557 <.001 0.7495

Gender −0.0003 0.0109 −0.0218 to 0.0211 .975 <0.0001

Education 0.0075 0.0068 −0.0059 to 0.0208 .275 0.0082

Age 0.0036 0.0013 0.0010–0.0061 .006a 0.0504

FD −0.0480 0.0509 −0.1478 to 0.0517 .347 0.0061

Promiscuity (Intercept) 0.2964 0.0120 0.2728–0.3201 <.001 0.8084

Gender 0.0099 0.0066 −0.0030 to 0.0229 .132 0.0156

Education 0.0051 0.0041 −0.0030 to 0.0131 .218 0.0104

Age 0.0008 0.0008 −0.0007 to 0.0024 .277 0.0081

FD −0.0111 0.0305 −0.0714 to 0.0492 .716 0.0009

Cohesion strength (Intercept) 18.5624 1.2832 16.0473–21.0774 <.001 0.5907

Gender 1.1675 0.7021 −0.2087 to 2.5436 .099 0.0187

Education 0.3476 0.4379 −0.5106 to 1.2057 .429 0.0043

Age 0.0845 0.0822 −0.0766 to 0.2457 .306 0.0072

FD 0.1038 3.2663 −6.2981 to 6.5057 .975 <0.0001

Disjointedness (Intercept) 0.0068 0.0009 0.0051–0.0085 <.001 0.3037

Gender −0.0010 0.0005 −0.0019 to −0.0001 .034 0.0306

Education 0.0001 0.0003 −0.0005 to 0.0007 .782 0.0005

Age 0.0001 0.0001 −0.0000 to 0.0002 .182 0.0123

FD −0.0014 0.0022 −0.0057 to 0.0028 .512 0.0030

Recruitment (Intercept) 0.5276 0.0196 0.4890–0.5663 <.001 0.8338

Gender 0.0142 0.0107 −0.0069 to 0.0354 .186 0.0120

Education −0.0027 0.0067 −0.0159 to 0.0105 .689 0.0011

Age −0.0035 0.0013 −0.0059to 0.0010 .006a 0.0501

FD 0.0738 0.0498 −0.0246 to 0.1722 .140 0.0149

Note: FD—average framewise displacement across four time points.
aSurvives multiple comparison correction (p < .05 corrected for five measures).
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grouped in the same community as other regions of its own com-

munity across time in older age (Table 1). This result points to

higher instability in modular organization and network

reconfiguration with advancing age.

Motion and education were not significantly related to any of the

metrics.

Importantly, the associations between age at baseline and flexibil-

ity survived multiple comparison correction (p < .05, corrected for five

models).

Results of linear models including flexibility (the only metric signifi-

cantly associated with age) calculated with other values of multilayer

parameters (γ and ω = 0.9–1.5, increments of 0.1) can be found in Sup-

plementary Figure S5. Despite some variability across a range of multi-

layer parameters, supplementary results were largely consistent with

the main findings. The nonsignificant association between flexibility

and age at baseline was situated around high values of ω (interlayer

coupling parameter). Higher values of ω increase the similarity of layers

across time thus reducing variance in temporal modular structure uni-

formly across subjects. However, it is also possible that age-related

flexibility changes manifest scale-specific patterns, as suggested else-

where (Betzel et al., 2015; Betzel et al., 2019), but given that there are

currently no standards regarding the choice of parameter values, this

research question falls outside the scope of this paper.

Next, we computed the flexibility metric for predefined resting

state networks (Schlesinger et al., 2017)—FPCN, DMN, DAN,

SVAN, LIMB, SM, and VIS (Figure 5). The SVAN network had the

highest mean flexibility, while the DMN network had the lowest

mean flexibility across all subjects (Figure 5). All networks had con-

siderable between-subject variability, but the LIMB network

showed the highest SD and the widest range of flexibility values

across all subjects within our sample (Figure 5). This intersubject

variance in LIMB regions possibly reflects the relatively small num-

ber of regions within this network (i.e., 12 brain regions).

As with the global measures, we ran multiple regression models

to assess the relationship between network-specific flexibility and age

at baseline (Table 2). Interestingly, the flexibility of DMN (b = .0076,

p < .001, partial η2 = 0.0824); FPCN (b = .0043, p = .014, partial

η2 = 0.0407); and SM (b = .0038, p = .047, partial η2 = 0.0269) was

higher with older age, suggesting that older subjects have higher flexi-

bility in these networks (Figure 6).

Linear models with remaining networks did not show any signifi-

cant association between age at baseline and network flexibility

(Supplementary Table S2).

Of all of the tested models, only the association between age and

DMN flexibility survived multiple comparison correction (p < .05,

corrected for seven networks).

Finally, we wanted to explore the mechanisms of flexibility for

the networks that had significant effects of age at baseline; therefore,

we computed linear regression models with network-specific promis-

cuity and recruitment for the DMN, FPCN, and SM networks.

The results showed higher DMN promiscuity (b = .0041, p = .002,

partial η2 = 0.0627) with older age (Figure 7a, Supplementary

Table S3). This can be interpreted as a higher tendency of brain

regions belonging to the DMN to segregate from this network and

connect to all other networks across the whole brain.

Not surprisingly, the self-recruitment of the DMN (b = −.0063,

p = .006, partial η2 = 0.0501) and SM (b = −.0085, p < .001, partial

η2 = 0.0851) was lower with higher age (Figure 7b,c, Supplementary

Table S3), suggesting that the network flexibility across the 4-year

interval was related to lower probability of brain regions from these

networks to be categorized into same communities as other regions

from the corresponding networks.

In Supplementary Figure S6, in which the module allegiance

matrix was calculated for the youngest 10% and for the oldest 10% of

the sample, we can see that modules, and especially the DMN, tend

to be more consistently recruited across time points in younger in

comparison to older subjects.

All statistically significant effects survived multiple comparison

corrections (p < .05 corrected for six tests).

3.4 | The role of modular reconfiguration in
cognitive performance

First, we performed LME analysis to investigate longitudinal change in

cognitive functioning (Supplementary Figure S7).We found a statistically

significant decline in processing speed (b = −.5276, p < .001) and learn-

ing/memory encoding (b = −.5001, p = .003). Older age was associated

with lower performance in both domains (Table 3). Finally, there was a

significant interaction between age at baseline and time (b = −.0512,

p = .029), suggesting that older participants had a more significant

decline in processing speed across the 4-year time interval.

Also, participants with better education had higher scores in

learning/memory encoding (b = 2.1896, p = .002). In addition, there

was a significant retest effect on processing speed (b = 1.7722,

p < .001), but not on learning/memory encoding (b = .3933, p = .470).

F IGURE 5 Visualization of summary statistics for network-
specific flexibility across the 4-year interval. The center red lines
represent the mean, and the light red bars and light blue bars
represent 95% confidence interval and SD, respectively. This figure
was generated using notBoxPlot (https://github.com/raacampbell/
notBoxPlot)
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TABLE 2 Association between
network-specific flexibility and age at
baseline in multiple regression models.
Statistically significant effects (p < .05)
appear in bold

Network Predictors Estimates SE CI p Partial η2

FPCN (Intercept) 0.4360 0.0270 0.3831–0.4889 <.001 0.6426

Gender 0.0186 0.0148 −0.0104 to 0.0475 .211 0.0108

Education 0.0130 0.0092 −0.0050 to 0.0311 .160 0.0136

Age 0.0043 0.0017 0.0009–0.0077 .014 0.0407

FD −0.0269 0.0687 −0.1617 to 0.1078 .696 0.0011

DMN (Intercept) 0.3614 0.0329 0.2969–0.4258 <.001 0.4545

Gender −0.0411 0.0180 −0.0764 to −0.0058 .024 0.0348

Education 0.0114 0.0112 −0.0106 to 0.0333 .313 0.0070

Age 0.0076 0.0021 0.0035–0.0117 <.001a 0.0824

FD −0.0765 0.0837 −0.2405 to 0.0875 .362 0.0057

SM (Intercept) 0.3470 0.0293 0.2895–0.4045 <.001 0.4910

Gender 0.0471 0.0161 0.0157–0.0786 .004a 0.0561

Education 0.0019 0.0100 −0.0178 to 0.0215 .852 0.0002

Age 0.0038 0.0019 0.0001–0.0074 .047 0.0269

FD −0.0056 0.0747 −0.1520 to 0.1407 .940 <0.0001

Note: FD—average framewise displacement across four time points.

Abbreviations: DMN, default mode network; FPCN, frontoparietal control network; SM, somatomotor

network.
aSurvives multiple comparison correction (p < .05 corrected for seven networks).

F IGURE 6 Network-specific flexibility in association with age at baseline. The results indicate greater modular flexibility of the frontoparietal
control, default mode, and somatomotor networks across time in older participants
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All statistically significant effects (except the interaction effect on

processing speed) survived multiple comparison corrections (p < .05

corrected for two domains).

Next, we conducted Pearson's correlation analysis to assess the

association between flexibility and change in cognitive performance.

We did not find a significant relationship between change in

F IGURE 7 Network-specific promiscuity and recruitment in association with age at baseline. The results indicate greater modular promiscuity
of the default mode and lower self-recruitment of the default mode and somatomotor networks across time in older participants

TABLE 3 Longitudinal (time) and
cross-sectional effects (age at baseline) in
the LMEs models of cognitive
performance. Statistically significant
effects (p < .05) appear in bold

Predictors Estimates SE CI p

Processing speed Retest 1.7722 0.4029 0.9826–2.5619 <.001a

Gender −0.7603 1.1677 −3.0490 to 1.5284 .516

Education 0.8785 0.7134 −0.5197 to 2.2768 .220

Time −0.5276 0.1271 −0.7766 to −0.2785 <.001a

Age −0.7564 0.1430 −1.0366 to −0.4762 <.001a

Time × age −0.0512 0.0232 −0.0967 to −0.0057 .029

Learning/memory encoding Retest 0.3933 0.5441 −0.6730 to 1.4596 .470

Gender 2.0082 1.1305 −0.2076 to 4.2240 .078

Education 2.1896 0.6893 0.8387–3.5406 .002a

Time −0.5001 0.1648 −0.8231to −0.1771 .003a

Age −0.5589 0.1365 −0.8264 to −0.2914 <.001a

Time × age −0.0306 0.0298 −0.0890 to 0.0277 .304

Abbreviation: LME, linear mixed effect.
aSurvives multiple comparison correction (p < .05 corrected for two measures).
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processing speed and global flexibility (r(148) = −.03, 95% CI [−0.19,

0.13], p = .74). This was also true for the association between learn-

ing/memory encoding and global flexibility (r(146) = −.008, 95% CI

[−0.17, 0.15], p = .92).

Finally, the brain-cognition association was also tested for

network-specific flexibility, however, there were no significant rela-

tionships found between any of the networks (i.e., FPCN, DMN, DAN,

SVAN, LIMB, SM, VIS) and change in processing speed or learning/

memory encoding (see Supplementary material for further details).

4 | DISCUSSION

In the present study, we investigated the temporal change of the

brain's modular structure in healthy aging. We applied the multilayer

model, which resulted in several measures summarizing the character-

istics of longitudinal network reconfiguration in healthy elderly.

We showed significantly higher variability and a greater range of

modular “dynamics” over the course of 4 years in older subjects' func-

tional networks in comparison to temporal null networks. Further,

flexibility was significantly associated with age at baseline, with older

participants having higher global and network-specific flexibility, par-

ticularly evident in the FPCN, DMN, and SVAN.

We also observed a decrease in the global network recruitment

with older age, indicating community structure reorganization in

which some brain regions are inconsistently assigned to their modules

across different time points. This was most evident for the DMN

which had lower time-dependent self-recruitment in older

participants.

Over the same 4-year time interval, we observed a significant

decrease in processing speed and learning/memory encoding

(a finding which is well in line with previous cognitive aging studies

(Ng et al., 2016; Salthouse, 2010; Staffaroni et al., 2018). However,

the decline in cognitive performance was not related to the multilayer

brain dynamics, implying an absence of simultaneous (i.e., change–

change) relations between changes in functional brain network organi-

zation and cognition measures.

The multilayer modularity approach provides several advantages

in comparison to more traditional methods for community detection.

Similar to “single-layer” modularity, it does not require a predefined

set of networks, it is completely data-driven (de Domenico, 2017) and

applicable to an individual level (Shine et al., 2016). However, in con-

trast to “single-layer” modularity, it partitions all temporal layers simul-

taneously, maintaining a consistent set of modules across all layers,

thus ensuring the same definition of networks across all time points

(Mucha et al., 2010).

To our knowledge, this is the first study with the application of

multilayer community detection on longitudinally acquired data in

healthy elderly. Nonetheless, our findings are in line with previous

studies, suggesting unstable network architecture and substantial

functional reconfiguration with aging.

Interestingly, global flexibility was highly negatively correlated

with modularity, suggesting that more segregated networks are also

more resistant to change, and thus exhibit lower variability across a

certain time span (Harlalka, Bapi, Vinod, & Roy, 2019; Meunier, Lamb-

iotte, & Bullmore, 2010; Ramos-Nuñez et al., 2017).

We also found a highly significant negative correlation between

global flexibility and recruitment, which implied that higher network

flexibility is related to a more random nature of brain dynamics in

which functional modules are not persistently recruited across time.

Modular brain networks exhibit a fine balance of dense within-

network connections and sparse connections between regions in net-

works with different processing roles (Meunier et al., 2010).

In our recent study, including the present sample (but also

encompassing participants with missing data at some time points), we

explored changes in the functional segregation of resting state net-

works across time (Malagurski et al., 2020). We showed a decrease

over a 4-year interval in the functional segregation of associative net-

works, including the default mode, FPCN and SVAN networks. Thus, it

is possible that a loss of within-network integrity might have resulted in

nodes grouping in fewer and larger modules, and at the same time los-

ing functional segregation and seeing more nodal movement between

modules across the 4-year time interval (Schlesinger et al., 2017).

These findings are in line with other research that suggested

increased modular variability or heterogeneity within higher order cor-

tices in healthy elderly, indicating that the brain reconfigures during

the aging process and varying cognitive demands (Peraza et al., 2018;

Schlesinger et al., 2017). Furthermore, another study showed less sim-

ilarity of network partitions in older healthy subjects, both as a group

and across time, compared to younger participants, which implied

reduced stability of network organization with aging (Iordan

et al., 2018).

In the present study, we also calculated node promiscuity, cohe-

sion strength, and disjointedness, and compared these metrics to tem-

poral null models in order to better understand the underlying

mechanism of brain flexibility over time. The observed cohesion

strength was significantly higher than in the null network, while the

disjointedness was significantly lower, implying that with aging sub-

groups of nodes cohesively reorganize into new modules instead of

individual brain nodes switching communities independently of other

nodes. Nevertheless, this reconfiguration pattern is related to less

specific modules with more fluid connectivity between them and

could possibly indicate compensatory reconfiguration of functional

networks due to declining cognitive performance or impaired recruit-

ment mechanisms (Sala-Llonch, Bartrés-Faz, & Junqué, 2015). Further,

cohesion strength was not significantly associated with age at base-

line, which means that the mechanism of longitudinal change in func-

tional configuration was more uniform across the sample.

Although global promiscuity was significantly higher than in the

temporal null model it was not significantly associated with age, fur-

ther reinforcing the notion of a more uniform mechanism of global

flexibility across the age span found in our sample.

Importantly, we found a significant relationship between flexibil-

ity and age, more specifically, older subjects tended to have higher

flexibility in several predefined resting state networks, such as the

FPCN, DMN, and SM networks. All networks exhibited significant
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levels of longitudinal flexibility, but these networks seem to present

more variable change across the age range present in our sample.

However, it should be noted that only the DMN flexibility—age asso-

ciation survived multiple comparisons correction, so the overall results

should be interpreted with caution.

Moreover, given that there were some network-specific effects

on functional flexibility, we wanted to explore if the mechanism of

change—promiscuity and recruitment—was diverse across age groups,

despite the absence of age effects on the global average of these

metrics.

Our findings pointed to higher promiscuity coupled with lower

self-recruitment of the DMN in older age, which can be interpreted as

brain regions of this network being inconsistently recruited across

time and less segregated from regions belonging to other communi-

ties. Lower self-recruitment was also found for the SM network,

pointing to a lower functional specialization of these networks across

the 4-year interval in healthy elderly.

The most consistent finding across studies on aging is that older

adults have lower functional integrity in the DMN, compared to youn-

ger adults (Chong et al., 2019; Damoiseaux, 2017). Moreover, this net-

work has been shown to be highly vulnerable to aging-associated

diseases such as Alzheimer's disease or cerebrovascular disease

(Chong et al., 2017; Crossley et al., 2014; Kim et al., 2016).

Importantly, the relationship between aging-related functional

changes within these networks and changes in cognitive performance

is not yet fully understood. In our study, we observed significantly

lower processing speed and learning/memory encoding in older partici-

pants with a decline over the 4-year time interval. However, we did not

find any significant association between this reduction in cognitive per-

formance and the multilayer measures, contrary to our expectation.

Although there are no previous studies investigating longitudinal net-

work flexibility in the context of cognitive performance, some cross-

sectional results did indicate relevant associations between modular

properties and cognition in older adults (Gallen et al., 2017; Geerligs

et al., 2015; Iordan et al., 2018). This lack of simultaneous relation may

have been driven by some compensatory mechanism, where healthy

aging individuals delay the effects of functional reconfiguration for a

certain time and thus maintain cognitive ability (Reuter-Lorenz &

Park, 2014). Our study did not focus on identifying the causal role of

temporal variability in cognitive functioning, but future studies should

investigate lagged coupled changes in order to test if functional

changes precede cognitive changes in healthy aging.

4.1 | Methodological considerations and
limitations

Although the methods applied here provide an interesting framework

for investigating the longitudinal functional reconfiguration in the

elderly, this approach has several methodological considerations that

should be taken into account.

First, it is well-known that the choice of nodes can significantly

influence the calculation of network properties (Fornito, Zalesky, &

Bullmore, 2016). We defined our nodes according to a functional atlas

comprising seven resting state networks (Schaefer et al., 2018; Yeo

et al., 2011), also commonly used in studies on healthy aging. Second,

the number of networks in the original atlas approximated the number

of modules obtained in our analysis (even though there was high

interindividual variability), thus allowing more straightforward compa-

rability between our data-driven modules and predefined networks.

Apart from that, we only included participants with complete data

(all time points) in order to maximize the overall number of temporal

layers. Selective exclusion of subjects with incomplete data might

introduce some bias into this type of analysis, although there was no

selective attrition in our sample. As a consequence, the future

research should explore different strategies for handling missing data

in the context of multilayer modularity.

Finally, although multilayer metrics present a convenient method

for summarizing change information across time points, this “summari-

zation” might also obscure different rates of change existing between

specific time windows, which could be more easily explored within a

different statistical framework.

5 | CONCLUSION

This study, for the first time, illustrates substantial functional network

reconfiguration in healthy aging across a 4-year time interval. In par-

ticular, the whole brain network flexibility, which reflects the ten-

dency of brain nodes to switch between modules was significantly

higher in healthy elderly than in a temporal null model and with

increasing age. The modular temporal variability was not related to

simultaneous changes in cognitive performance, however, further

studies should include more cognitive domains or investigate lagged

changes to better understand the temporal implication of the multi-

layer modular reconfiguration. Finally, this approach provides simple

intuitive indices for overall longitudinal changes across a desired time

span and it can be useful for uncovering patterns of modular variabil-

ity in healthy and clinical aging populations.
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