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Abstract

Polyamines are aliphatic compounds with more than two amino groups that play various important roles in human
cells. In cancer, polyamine metabolism dysfunction often occurs, and regulatory mechanisms of polyamine. This
review summarizes the existing research on the metabolism and transport of polyamines to study the association of
oncogenes and related signaling pathways with polyamines in tumor cells. Drugs that regulate enzymes have been
developed for cancer treatment, and in the future, more attention should be paid to treatment strategies that simulta-
neously modulate polyamine metabolism and carcinogenic signaling pathways. In addition, the polyamine pathway
is a potential target for cancer chemoprevention. As an irreversible suicide inhibitor of the ornithine decarboxylase (a
vital enzyme of polyamine synthesis), Difluoro-methylornithine had been shown to have the chemoprevention effect
on cancer. Therefore, we summarized and analyzed the chemoprophylaxis effect of the difluoromethylornithine in this

systematic review.
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Background

Polyamines are polycationic alkylamines commonly
found in all living cells, of which the most common are
putrescine, spermine, and spermine (in millimolar con-
centrations) [1, 2]. The flexibility in their charge dis-
tribution allows polyamines to combine with various
negatively charged macromolecules, including DNA,
RNA, proteins, and acidic phospholipids [3, 4]. Therefore,
they play an important role in cell growth, proliferation,
differentiation, migration, gene regulation, and the syn-
thesis of proteins and nucleic acids, in addition to main-
taining chromatin structure, regulating ion channels,
maintaining membrane stability, and scavenging free
radicals [5-7]. It has been shown that increased intra-
cellular polyamine concentrations are associated with
cell proliferation and tumorigenesis [8—14]. Polyamine
metabolism is often dysregulated in cancers. In addition,
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the polyamine pathway is a downstream target for many
oncogenes [15—17]. In normal physiological conditions,
polyamines are regulated by a complex network of bio-
synthesis, catabolism, and transport systems (Fig. 1).

Polyamine synthesis and metabolism

Polyamine biosynthesis

Excess nitrogen and ammonia produced by protein
breakdown or nitrogen compound synthesis in vivo can
be eliminated by the urea cycle. During this process, argi-
nine is catalyzed by arginase to produce ornithine, the
substrate for the synthesis of urea and polyamines. The
main pathway of polyamine biosynthesis is the decarbox-
ylation of ornithine catalyzed by ornithine decarboxylase
(ODC) to generate putrescine. After that, spermidine and
spermine are produced by the enzymatic transfer reac-
tion of spermidine synthetase (encoded by SRM) and
spermidine synthetase (encoded by SMS). The decarbox-
ylation of s-adenosine methionine (dcAdoMet) catalyzed
by S-adenosine methionine decarboxylase (AdoMetDC;
encoded by AMDI) provides the aminopropyl donor for
the above reactions [19-21]. 5’-methyl thio-adenosine
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Fig. 1 Polyamine biosynthesis and metabolic transport pathways. (1) Polyamine synthesis: arginine is converted into ornithine and agmatine,
which is then catalyzed and decomposed into putrescine and urea by ornithine decarboxylase (ODC) and agmatine (AGMAT). Next, putrescine

is converted to spermidine and spermine. (2) Methionine salvage: S-adenosylmethionine (dcAdoMet) decarboxylation provides aminopropy!

for the formation of spermidine and spermine, and its product 5’-methylthioadenosine (MTA) is recovered to methionine through a series

of enzymatic reactions. Subsequently, methionine is catalyzed by methionine adenosine transferase 2 (MAT2) and S-adenosylmethionine
decarboxylase (AdoMetDC) to generate dcAdoMet. (3) ODC-AZ axis: the activity of ornithine decarboxylase is regulated by antizyme (AZ) and
antizyme inhibitor (AZl). (4) Polyamine catabolism: spermidine and spermine are decomposed by spermidine/sperm-N-acetyltransferase (SSAT) to
produce N-acetylspermidine and N-acetylspermine, respectively. (5) PTS (adapted from [18]): there are several different theories for the polyamine
transport system: a Spermine combines with the heparan sulfate group in GPC1 on the cell surface and enters into the cell. b Polyamine transport
is mediated by endocytosis and solute carrier transport mechanisms. ¢ Polyamine is transported into the cell by a currently unknown transporter

driven by membrane potential.

(MTA) is produced during spermine and spermine syn-
thesis following the loss of dcAdoMet aminopropyl,
which requires methionine recovery to methionine.
MTA is converted to adenine and 5-methylthioribose-
1-phosphate by 5’-methylthioadenosine phosphorylase
(MTAP). Methionine is extracted from 5-methylthiori-
bose-1-phosphate to form a substrate that binds to ATP.
It then interacts with methionine adenosyltransferase
2 (MAT2) to form S-adenosylmethionine (AdoMet).
S-adenosylmethionine provides aminopropyl for the pro-
duction of spermidine and spermine [1, 22]. Recently, it
was shown that arginine could be decarboxylated to pro-
duce agmatine in mammals, generating urea and putres-
cine under the action of agmatinase (AGMAT) [23].
Ornithine decarboxylase, a pyridoxal phosphate-
dependent enzyme, is the rate-limiting enzyme for pol-
yamine synthesis. The activity of ODC in cancer cells is
reported to be consistently increased, demonstrating
its close relationship to the occurrence and develop-
ment of tumors. ODC protein levels are regulated by a
variety of stimuli, including hormones, growth factors,
oncogenes, and free polyamines [19]. Anti enzyme (AZ)

combines with ODC monomers to prevent it from form-
ing an active homodimer, thereby promoting its ubiqui-
tin-dependent degradation by the 26S proteasome. AZ
synthesis is influenced by antizyme inhibitor (AZI), a
protein encoded by the AZIN1 gene. The structure of this
protein is similar to ODC, but it binds AZ more closely
than ODC, thereby blocking the ability of AZ to inhibit
ODC [24, 25].

Polyamine catabolism

The level of polyamine is also regulated by its catabo-
lism, which can prevent the excessive levels of polyamine
in cells [26]. Spermidine/spermine-N-acetyltransferase
(SSAT) respectively acetylates spermidine and spermine
to produce N-acetylspermidine and N-acetylspermine
[27]. These acetylated polyamines can form putrescine
via oxidative deamination reactions catalyzed by poly-
amine oxidase (PAOX). Spermine oxidase (SMOX) cata-
lyzes the oxidation of spermine to spermidine [1]. SSAT
regulates the cellular polyamine content. SSAT is highly
regulated according to changes in the polyamine content
to maintain the steady state of polyamines. SSAT levels
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are usually very low but easily enhanced by increasing
free polyamines. SSAT activity can also be induced by
a variety of other stimuli, including toxins, hormones,
cytokines, non-steroidal anti-inflammatory agents,
natural products and stress, and ischemia-reperfusion
injury [27]. SMOX and PAOX are likely to produce large
amounts of reactive oxides (ROS), leading to oxidative
damage [28].

Polyamine transport system

Polyamines are protonated at a physiological pH, which
hinders their passive transport through the plasma mem-
brane. Instead, the active transportation of polyamines
through the polyamine transport system has the charac-
teristics of energy and temperature dependence and satu-
ration at low concentrations [22]. At present, there are
several theories regarding polyamine transport.

One theory suggests that heparan sulfate and glypican
1 (GPC1) coordinately transport spermine. Spermine
interacts with the heparan sulfate group in GPC1 on the
cell surface and enters into the cell. Spermine is then
released through NO-mediated oxidation to act on cells
[29].

Another view is that polyamine transport is medi-
ated by endocytosis and solute carrier transport mecha-
nisms. Polyamines bind to polyamine binding proteins
and are internalized by endocytosis. Caveolin-1 knock-
out promotes endocytosis and increases the frequency
or amount of polyamine internalization but does not
change the affinity of the polyamine to bind to the cell
surface [30]. According to this theory, SLC3A2 exports
putrescine and acetylated polyamines via diamine/argi-
nine exchange activity [31]. In the case of high extracel-
lular putrescine and low intracellular putrescine, the
concentration gradient can drive SLC3A2 to become a
carrier of putrescine [30]. Subsequently, it was discovered
that caveolin-1 negatively regulates polyamine uptake by
inhibiting GST[] secretion by stimulating actin remod-
eling and endocytosis [32].

Alternatively, it is thought that polyamines are trans-
ported into cells through an unrecognized transporter
driven by membrane potential. Polyamine penetrates
the cell through the plasma membrane. The accumulated
polyamines are subsequently localized in polyamine iso-
lation vesicles, which relies on the vacuolar ATPase pH
gradient and proton exchange, illustrating the two-step
mechanism of polyamine transport and vesicle chelation
[33].

Research on polyamine transporters has been pro-
gressing. There is evidence that Membrane transporters
may mediate the transport of polyamines. For example,
the transport proteins encoded by SLC22A1, SLC3A2,
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SLC22A16, and SLCI2A8A can transfer putrescine or
spermidine and spermine into cells. SLCI8BI is a recently
identified gene in the family of vesicle amine transport-
ers. This protein is responsible for the storage and release
of polyamine vesicles and functions as a vesicle polyam-
ine transporter [34].

Recent studies have shown that deficiency in ATP13A2,
a late endolysosomal transport protein, can interfere with
lysosomal polyamine transfer. ATP13A2 promotes the
uptake of polyamines by cells through endocytosis and
transports them to the cytoplasm, highlighting the role
of endolysosomes in the uptake of polyamines into cells
[35].

Polyamines and cancers

As mentioned earlier, polyamine dysregulation has been
found in a variety of cancers. For example, polyam-
ine metabolism plays a key role in cell death and pro-
liferation in breast cancer. And there is evidence that
polyamines facilitate the interactions of transcription
factors, such as estrogen receptors and nuclear factor
kB, with their specific response element and are also
involved in the proliferation of ER-negative and highly
invasive models of tumor cells [11, 36]. Polyamines are
polycationic compounds that play a key role in almost
all the steps of colorectal tumorigenesis. In the tissue of
colorectal cancer, the polyamine content as well as the
activities of two important enzymes in their biosynthe-
sis such as ornithine decarboxylase and S-adenosylme-
thionine decarboxylase, are increased 3 ~ fourfold over
that found in the equivalent normal colonic tissue. The
researchers found that polyamines could be a target for
chemoprevention. Therefore, it can be deduced that
influencing polyamine metabolism by drugs and diet
is able to reduce cancer risk [14, 37, 38]. The polyam-
ine content in prostate cancer was significantly higher
than that in benign prostatic hyperplasia. Prostate can-
cer cells maintain the secretion of polyamines while
proliferating, so they need a high level of polyamine
metabolic flux. Polyamine metabolic pathway may be
a target of prostate cancers [12, 38]. Some researchers
have proved that polyamines play an important role
in the early promotion stage of skin tumor by build-
ing transgenic mouse model. Polyamines can stimulate
epidermal proliferation, change the differentiation of
keratinocytes, increase neovascularization, and increase
the synthesis of proteins in extracellular matrix in a
manner similar to wound healing. The increase of pol-
yamine level can not only activate epidermal cells, but
also subcutaneous stromal cells, thus promoting the
development and progression of skin tumors. Targeted
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ornithine decarboxylase has been shown to prevent
non-melanoma skin cancer in human [10, 13].

Therefore, polyamines and their metabolites are often
regarded as cancer biomarkers. In recent years, meta-
bonomics technology can more sensitively observe the
changes of polyamine synthesis and metabolism in can-
cer. Polyamines and their metabolites in urine and plasma
can be used as biomarkers of occurrence and progression
in a variety of tumors, such as breast cancer, lung can-
cer, colorectal cancer, ovarian cancer, prostate cancer and
pancreatic cancer [22]. In addition, it has been observed
that polyamines improve the malignancy of tumors and
the invasion and metastasis of cancer cells, and reduce
the anti-tumor immune function of immune cells [39,
40].

Polyamine-associated oncogenes and related
signaling pathways

The mechanism by which polyamines affect the occur-
rence and development of cancer has been the focus of
many researchers. This review summarizes the onco-
genes that interact with polyamine pathway, as shown in
Table 1.

MYC

The MYC transcription factor family is one of the central
and most studied groups in cancer. In 1992, the Cleve-
land team first reported that c-myc could regulate ODC
expression at the transcription level [41]. The ODCI gene
contains a MYC binding site in its promoter, which con-
tains a conserved E-box motif. A single nucleotide poly-
morphism in the E-box region of the ODCI gene affects
the binding of MYC and MAD to ODCI and is related to
the recurrence of colon cancer [42].

There are frequent mutations of one or more MYC
genes in various cancers, and the overexpression of
ODC1 is regulated by MYC activation. For example, in
neuroblastoma, bioinformatics analysis of a large num-
ber of human neuroblastoma samples showed that genes
associated with polyamine biosynthesis, including ODC1,
AMDI, ARGI, AZIN1, DHPS, EIF5A, MATIB, SMS,
SMOX, and SRM, were upregulated in MYCN-amplified/
upregulated neuroblastoma. In contrast, OAZ2, PAOX,
and SATI genes involved in polyamine catabolism were
downregulated in tumors. MYCN also regulated the key
polyamine transport protein SLC3A2, and their expres-
sion levels were positively correlated [43—46]. A recent
study had demonstrated that downregulation of both
SMS and MYC synergistically induces apoptin Bim
expression in colorectal cancer cells, indicating that com-
bined inhibition of SMS and MYC signaling may be an
effective therapy for colorectal cancer [47].
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Other studies found that polyamine negative feedback
regulates the expression of MYC. For example, it has
been demonstrated that putrescine triggers the tran-
scription of c-myc mRNA in renal cells of Kirsten sar-
coma virus-infected rats, while difluoromethylornithine
(DFMO) inhibits ODC activity and blocks the transcrip-
tion of c-myc [48]. Polyamines in rat intestinal epithe-
lial cells enhance the association between HuR and the
3’-untranslated region of c-myc mRNA by increasing
the HuR-mediated phosphorylation of CHK2, thereby
promoting c-myc translation [49]. In addition, polyam-
ines drive the expression of c-myc by inducing the four-
chain structure of c-myc to form a transcriptionally
active motif with unique molecular recognition proper-
ties [50].

p53

The combination of p53 with CPS, OTC, and ARG, the
key enzymes of the urea cycle, downregulates the tran-
scription of these enzymes. It inhibits urea production
and ammonia elimination in vitro and in vivo, thereby
inhibiting tumor growth. In contrast, the downregulation
of these genes activates p53 through a mechanism medi-
ated by MDM2.The accumulation of ammonia leads to a
significant decrease in the mRNA translation of the poly-
amine biosynthesis rate-limiting enzyme ODC, which
inhibits polyamine biosynthesis and cell proliferation.
However, ammonia does not affect the ubiquitination
state of ODC proteins or the interaction between ODC
monomers. Similarly, p53 deletion increases the overall
level of ODC monomers and dimers, and thus p53 reg-
ulates ammonia metabolism through the urea cycle to
control polyamine biosynthesis [51].

There are two p53 binding sites in the promoter region
of SAT1, indicating that the SATI gene is a transcrip-
tional target of p53. P53 mediates the activation of SAT1
expression, which induces lipid peroxidation and causes
iron death under ROS-induced stress [52].

It has been found that spermine can induce
autophagy, which is related to the activation of p53
transcription [53]. AdoMetDC is an essential enzyme
for polyamine biosynthesis. Its inhibitor SAM486A
leads to the rapid accumulation of the pro-apoptotic
proteins p53 and MDM2 [54]. The inhibition of ODC
increases the phosphorylation of p53 and MDM2, and
the resistance to apoptosis [55]. Polyamines play an
important role in maintaining the integrity of the nor-
mal intestinal epithelium. The depletion of polyamines
can significantly enhance the cytoplasmic abundance
of HuR, which specifically binds to the untranslated
region of p53 mRNA. Therefore, polyamines can
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control the stability of p53 mRNA and affect the level of
p53 protein [56].

RAS/RAF/MEK pathway

RAS

The transcription and translation of ODC is controlled by
RAF/MEK/ERK pathways [57]. Ras activation enhances
IRES-mediated ODC translation activity independent of
cap. This regulation is dependent on the phosphorylation
state of eIF4E. Dephosphorylation of eIF4E by inhibition
of MEK or MNK1/2 inhibitor the activity of ODC-IRES
[58].

The activated K-RAS significantly increases the uptake
of polyamines by colon cancer cells. Activated K-RAS
changes the subcellular distribution of the uPAR ligand
uPA, which activates Src. Activation of Src increases the
phosphorylation of caveolin-1, which is a negative regu-
lator of caveolin-1 endocytosis [59].

It has been shown that K-RAS mutations can inhibit
SSAT expression through the peroxisome proliferator
activated receptor-y (PPARYy) response element, which is
located at + 48 bp relative to the transcription start site of
the SSAT, to maintain a high level of polyamine in trans-
formed cells [17].

In H-RAS transformed cells, the regulation of multiple
cytokines could affect the expression of key enzymes in
polyamine anabolism. For example, ODC is regulated
by basic fibroblast growth factor (bFGEF), transforming
growth factor B (TGEF-p), platelet-derived growth factor
(PDGF), and cAMP [60-63]. Similarly, S-adenosylme-
thionine decarboxylase expression is regulated by epider-
mal growth factor (EGF) and bFGF [64].

RAF

Missense mutations in the BRAF oncogene occur in
more than 50% of malignant melanomas [65]. BRAF
inhibitors against BRAF-mutated tumors are susceptible
to drug resistance [66]. An in vitro study demonstrated
that compared with wild-type BRAF melanoma cells,
mutant BRAF melanoma cells showed stronger PTS
activity and were more sensitive to PTS-targeted cyto-
toxic drugs [67].

Polyamines can change the phosphorylation of Raf
through casein kinase 2, thus acting as inhibitors (sper-
mine) or activators (spermidine or putrescine combined
with spermine) of Raf [5]. Some experiments indicate
that under the condition of satisfying the selective sus-
ceptibility, an increase in ODC results in an increase
in polyamines, which in combination with the activa-
tion of the RAF/MAPK pathway, can transform normal
keratinocytes into invasive malignant cells [68].
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MEK

MEK-1 is a key effector in HuR-induced anti-apoptotic
programs in intestinal epithelial cells (IECs). Cellular
polyamines regulate the expression of MEK-1 at the post-
transcriptional level through the RNA binding protein
HuR in IECs. MEK-1 mRNA can be stabilized by inhibit-
ing the decrease in cell polyamine levels caused by ODC,
and its translation can be promoted by enhancing the
interaction between HuR and the 3’-untranslated region
of MEK-1 mRNA [69].

AKT

AKT is involved in several cell processes, such as cell sur-
vival, growth, and migration. It is known that the inhibi-
tion of ODC expression can block the activation of the
AKT pathway in acidosis microenvironments. ODC is
co-expressed with B-catenin in liver cancer. The expres-
sion and nuclear localization of B-catenin decreases after
ODC inhibition. Blocking the metabolism of polyam-
ines by treatment with polyamine conjugates inhibits the
activity of AKT and apoptosis-related proteins [70].

In addition, high levels of polyamines activate AKT.
According to previous reports, exogenous polyam-
ines can induce cancer cell proliferation and migra-
tion through AKT-mediated pathways [71]. Polyamines
regulate hypoxia-induced apoptosis of endothelial cells
through the PI3K/AKT pathway, which is of great sig-
nificance to the regulation of hypoxia driven neovascu-
larization [72]. It has also been shown in several human
hepatocarcinoma and colon cancer cell models that
SSAT expression mediated polyamine depletion can
significantly inhibit the expression of p-Akt, p-GSK3p,
and B-catenin nuclear translocation, thus inhibiting the
growth, migration, and invasion of cancer cells [73].

mTOR

mTOR forms two different complexes named mTOR
complex 1 (mTORC1) and complex 2 (mTORC2). Poly-
amines are necessary for the synthesis of AZ. In the
absence of amino acids, the activity of mTORC?2 is neces-
sary for the synthesis of AZ. Because mTORCI is inhib-
ited, and mTORC2 is activated, the synthesis of total
protein is inhibited, and the synthesis of AZ1 is increased
through a cap-independent mechanism. In addition, it
was subsequently demonstrated that putrescine, sper-
midine, and spermine all increased mTORC2 activity,
whereas spermidine and spermine increased mTORC1
activity [74, 75]. mTORCI inhibition reduces the associa-
tion of the mRNA binding protein HuR with ODC tran-
scripts, thereby destabilizing ODC mRNA [76]. In glioma
cells, the activation of polyamine catabolism alters the
location of mTOR, negatively affecting mTOR-mediated
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protein synthesis and leading to apoptosis [77]. It has
been shown that spermidine can reduce apoptosis by
promoting AMPK/mTOR-mediated autophagy flux [78].

Using comprehensive metabolomics methods in mouse
and human prostate tumors, it was found that the protein
level of AdoMetDC is increased in PTEN-deficient pros-
tate cancer cells. PTEN is a tumor suppressor that is fre-
quently mutated or lost in prostate cancer. Loss of PTEN
function causes an abnormal response to growth factor
(GF) stimulation through the PI3K signaling pathway,
thereby activating mTORC1. mTORCI inhibitors induce
AdoMetDC downregulation, and at the same time,
dcSAM production and polyamine synthesis are reduced.
Mechanistically, activated mTORCI1 indirectly blocks the
proteasome degradation of pro-AdoMetDC and leads to
phosphorylation at the S298 site, further stabilizing it.
Then, the proenzyme self-processes into an active holo-
enzyme containing pyruvate, promoting an increase in
the production of polyamines necessary for neoplastic
growth [79].

Others
Rac and RhoA
Studies have shown that inhibition of RhoA activity and
depletion of polyamines inhibit cell migration, causing
changes in the actin cytoskeleton. Polyamine depletion
leads to Racl and RhoA localization in the nucleus and
perinuclear region, which reduces the levels of Racl and
RhoA protein in the cytoplasm and at the plasma mem-
brane, significantly reducing their activity. These findings
provide novel insights into the mechanisms by which
ODC and polyamines regulate cytoskeletal dynamics
during cell proliferation and transformation [80-82].
Polyamines increase intracellular free Ca>" concentra-
tions by controlling voltage-gated K+ channel expression
and membrane potential (E (m)) during intestinal epithe-
lial repair. This increases the binding of GTP to RhoA,
which can interact with and activate Rho kinase during
intestinal epithelial repair [83].

JUN and FOS

It has been reported that Helicobacter pylori activate pol-
yamine-dependent mechanisms through specific MAPK
pathways to induce macrophage apoptosis. H. pylori acti-
vate ERK, and the translocation of p-ERK to the nucleus
can lead to activation of activator protein 1 (AP-1).
AP-1 consists of a phosphorylated c-Fos/c-Jun heterodi-
mer that binds to the c-myc promoter in macrophages,
thereby inducing the expression of c-myc and ODC and
increasing polyamine production. Subsequently, the
oxidation of spermine by spermine oxidase to produce
hydrogen peroxide causes mitochondrial membrane
polarization, which eventually leads to cell apoptosis [84,
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85]. Similarly, in colon cancer, the expression of ODC,
MAT?2, FOS, and JUN in tumor tissues is higher than that
in adjacent normal mucosa to provide polyamines for
tumor cell proliferation [86].

LIN28/let-7 pathway

The Lin28/let-7 pathway is involved in the metabolism
of polyamines and plays a key role in the regulation of
normal and cancer stem cell self-renewal. Lin28 and Wnt
signaling pathways cooperate to promote the develop-
ment of invasive intestinal and colon cancers [87]. The
let-7 family is negatively regulated by the pluripotent fac-
tor Lin28. Polyamines can regulate LIN28 via the tyros-
ine-modified eukaryotic translation initiation factor 5A
(eIF-5A), which uses spermidine as substrate, thus affect-
ing specific aspects of tumorigenesis [88].

Hedgehog pathway

In Hedgehog pathway, signal transmission is controlled
by patched (PTCH) and smoothed (SMO) receptors on
the target cell membrane. At the post-receptor level,
cytoplasmic regulators suppressor of fused (SUFU) and
glioma-associated oncogene transcription factors are key
mediators of the Hedgehog transcription [89]. In medul-
loblastoma, tumors in the sonic hedgehog subgroup
show abnormal activation of Hedgehog signaling. SMO
activation triggers the non-classical hedgehog signal-
ing pathway associated with the energy sensor AMPK.
Cell nucleic acid-binding protein (CNBP), a type of
RNA binding protein, is the key factor for this reaction.
Through phosphorylation modifications, CNBP increases
its stability and close interactions with SUFU. The SUFU-
CNBP complex binds to the 5’ untranslated region of
ODC mRNA and promotes its translation, thereby
increasing polyamine metabolism [90].

DFMO in polyamine chemoprevention

Inhibition of ODC activity and polyamine synthesis is
theoretically beneficial to cancer prevention. Based on
preclinical and early clinical studies, DEMO is expected
to be a promising chemical prophylactic. Some clinical
trials have studied the chemopreventive effect of the pol-
yamine inhibitor DEMO on cancer.

This review used keywords to search the literature
from several English databases (Pubmed, Embase,
Cochrane library, Scopus, Web of Science) and selected
the collected literature through the following inclu-
sion criteria: (1) clinical randomized controlled tri-
als, (2) studies set up groups that used and did not use
DEMO, (3) the participants in the trial were treated
cancer patients or high-risk groups prone to cancer,
and (4) observation indicators related to the outcome
may indicate remission or deterioration of the patient’s
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condition. The literature screening process is shown
in Fig. 2. In this process, two researchers screened the
literature back-to-back at the same time, and after two
checks, the results were confirmed to be consistent, the
following documents were finally included. The details
of the final included literature are shown in Table 2.

Some researchers have applied DFMO to cancer
patients who have regained function after treatment.
Recently, a study had demonstrated the evaluation of
DFMO as a maintenance treatment regimen for high-
risk neuroblastoma. The results showed that the sur-
vival status of subjects receiving DFMO for 2 years
was maintained well. Therefore, further research on
this drug as a maintenance therapy is warranted [91]. It
has been evaluated the ability of DFMO to prevent the
recurrence of low-risk superficial bladder cancer. The
results showed that the tumor recurrence could not
be delayed or prevented in low-grade (Grade 1 and 2),
superficial (Ta or T1), newly diagnosed or occasionally
recurrent bladder urothelial cancer, by using one-year
DFMO after the operation of complete resection [92].
211 participants with a history of non-melanoma skin
cancer were randomly assigned to oral DFMO (500 mg/
m?/day) or placebo for 4-5 years. The primary endpoint
was the production of new Non-melanoma skin cancer,
with fewer new cancers in the DFMO group than in the
placebo group, but there was no statistical difference
[93].

Others have used DFMO to treat high-risk groups
prone to cancer. For example, a study of familial adeno-
matous polyposis (FAP) showed moderate synergistic
effects of DFMO in combination with celecoxib com-
pared with the use of the non-steroidal anti-inflam-
matory drug celecoxib alone [94]. In a double-blind
randomized trial, DFMO (0.125, 0.5 gm/m?) and placebo
were used to treat cervical intraepithelial neoplasia (CIN)
grade 2-3 patients. There was no significant difference in
histopathological responses among the groups [95].

For actinic keratosis (AK), a precancerous lesion that is
easy to develop into skin cancer, preclinical studies have
shown that the level of skin polyamine is related to the
use of DFMO [96], in individuals with signs of actinic
keratosis, but the impact of DFMO on the disease is still
controversial in clinical trials. It has shown that the com-
bination of DFMO and other drugs can not enhance the
activity of treating skin sunburn. The reason may be that
the baseline population has mild sun damage [97, 98].

Conclusions

Over the past decades, polyamine research has continu-
ously progressed. We now have a better understand-
ing of the anabolic pathways and transport processes of
polyamines. Moreover, the effects of polyamines on can-
cer cells have also been explored. This review describes
polyamine-related oncogenes and the signaling path-
ways involved. We found that oncogenes can affect the
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metabolism and function of polyamines by interfer-
ing with the translation and expression of key enzymes.
Polyamines can also affect the expression of oncogenes
in various ways, thus regulating the physiological func-
tion of cancer cells. However, the mechanism of polyam-
ine effect on cancer needs further study, and the types of
cancer that have been studied on polyamine metabolism
are limited. But the existing research has provided us
with new ideas for the treatment of cancer. In fact, some
enzyme inhibitors and polyamine analogs have been used
as drug interventions in clinical trials and achieved some
promising results. This review summarizes the current
research on DFMO, a promising drug for cancer chemo-
prevention. We found that DFMO could slow down the
development of cancer in high-risk groups. Nevertheless,
DFMO has no significant effect on preventing cancer
recurrence for people who have received cancer treat-
ment and recovered their functions, but it is beneficial
to maintain their survival status. In summary, we need
to further explore the role of polyamines in tumor cells
and develop new interventions for cancer treatment and
chemoprevention. It is also important to combine drugs
targeting the polyamine pathway with other therapies to
achieve better outcomes than monotherapies.
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