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ABSTRACT
Background. Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most
destructive pests harming palm trees. However, genomic resources for R. ferrugineus
are still lacking, limiting the ability to discover molecular and genetic means of pest
control.
Methods. In this study, PacBio Iso-Seq and Illumina RNA-seq were used to generate
transcriptome from three developmental stages ofR. ferrugineus (pupa, 7th-instar larva,
adult) to increase the understanding of the life cycle and molecular characteristics of
the pest.
Results. Sequencing generated 625,983,256 clean reads, from which 63,801 full-length
transcripts were assembled with N50 of 3,547 bp. Expression analyses revealed 8,583
differentially expressed genes (DEGs). Moreover, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these
DEGs were mainly related to the peroxisome pathway which associated with metabolic
pathways, material transportation and organ tissue formation. In summary, this work
provides a valuable basis for further research on the growth and development, gene
expression and gene prediction, and pest control of R. ferrugineus.

Subjects Agricultural Science, Entomology, Genomics, Molecular Biology, Zoology
Keywords Single-molecule sequencing, RNA-Seq, Transcriptome, Different developmental stage,
Differentially expressed genes

INTRODUCTION
Red palm weevil, Rhynchophorus ferrugineus Olivier, is one of the most destructive pests
that harm palm trees (Ju et al., 2011; Giblin-Davis et al., 2013; Wang et al., 2015). Since
R. ferrugineus was first reported in 1997 in China, nearly 20,000 coconut palms have
been killed, covering more than 10,000 km2, and damaging coastal ecosystems in China
(Wu et al., 1998; Ju et al., 2011; Shi, Lin & Hou, 2014; Ge et al., 2015). R. ferrugineus larvae
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usually grow in the center of palm trees, feeding on carbohydrate-rich tender tissues and
sap and eventually killing the host plant by damaging its meristem (Abe, Hata & Sone,
2009; Butera et al., 2012). This feeding behavior renders detection of the pest difficult until
it is already too late, and most traditional methods of pest control, including chemical
pesticides, ineffective (Ferry & Gomez, 2002; Faleiro, 2006; Faleiro et al., 2012). Recent
studies showed that gut microbiota influenced the development of red palm weevil by
regulating nutrient metabolism (Habineza et al., 2019), and understanding the immune
stimulating effect of intestinal commensal bacteria on larvae will be beneficial to the
formulation of its control strategy (Muhammad et al., 2019). The use of biological control
methods to prevent the R. ferrugineus (mainly microbes) has achieved certain success, but
the application still needs a long time (Mazza et al., 2014). However, as a edible insect,
R. ferrugineus is rich in nutrients, which makes it has great potential in food industry
(Zielińska et al., 2015; Nongonierma & FitzGerald, 2017; Köhler et al., 2019). For example,
R. ferrugineus larva is a popular edible insect in Papua New Guinea and Thailand (Chung
et al., 2002). Recently, high-throughput sequencing technology has been used to obtain
transcriptome data from non-model species, providing valuable genomic information even
without genome sequences (Morozova, Hirst & Marra, 2009). Transcriptome data provide
a useful perspective for elucidating cellular responses, gene function and evolution, and the
molecular mechanisms of different biological processes (Hittinger et al., 2010). Therefore,
the determination ofR. ferrugineus genomic information is important, whichwill effectively
help to understand the control strategy of the insect and its potential application as food.

The transcriptome represents all the genes expressed in a cell or a population of
cells, and it makes it possible to obtain a biological perspective on cellular processes.
RNA-seq transcriptome analysis can effectively identify the temporal and unique
gene expression patterns in organisms (Ozsolak & Milos, 2011). RNA-seq was widely
used to reveal biological phenomena, gene expression profiles and gene discovery
of insects (Ou et al., 2014; Vogel et al., 2014a). Sequence-database can effectively help
to understand insect feeding mechanism (Yi et al., 2017), defense (Crava, Brütting &
Baldwin, 2016), development process (Ma et al., 2016), and host-pathogen interaction of
herbivorous insects (Vogel, Musser & Celorio-Mancera, 2014b). Additionally, studies using
transcriptomics-based methods report gene expression analysis of coleopteran pests at
different developmental stages (Ma et al., 2016; Li et al., 2017; Yang et al., 2018; Noriega
et al., 2019). Meanwhile, RNA interference (RNAi) mechanisms have shown promising
results in techniques for controlling coleoptera pests (Vogel, Musser & Celorio-Mancera,
2014b). Sequencing technology can help identifying and selecting RNAi target genes, and is
an important tool for insect cellular, genetic and molecular research (Firmino et al., 2013;
Zhang et al., 2017). RNAi was considered to be an effective approach of controlling insects
and can increase host plant resistance to pests (Baum et al., 2007; Zhu et al., 2010;Niu et al.,
2017). Although some researches have been done on the transcriptome of R. ferrugineus,
transcriptome and gene expression analysis of the pest during developmental stages is still
lacking.

Second-generation sequencing is widely used to obtain high transcriptome throughput,
but due to the limitation of short read length, the full-length transcripts generated by its
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assembly are incomplete. Furthermore, the transcripts assembled by second-generation
sequencing may be short, incomplete, and lead to incorrect annotations (Au et al., 2013;
Li et al., 2018). Compared to short-sequence sequencing, long-sequencing sequencing
techniques (such as PacBio) help overcome these limitations without requiring further
assembly to provide sequence information for full-length cDNA molecules (Rhoads & Au,
2015). Currently, as single molecule real-time long read sequencing (SMRT) can capture
the full-length transcript sequence directly and improve the accuracy of transcriptome
characterization and genome annotation, it has been successfully applied to transcriptome
analysis in insects, plants, humans, and other animals (Sharon et al., 2013; Larsen, Campbell
& Yoder, 2014; Abdel-Ghany et al., 2016; Hartley et al., 2016; Wang et al., 2016; Chen et al.,
2017; Zhu et al., 2017; Kawamoto et al., 2019).

In this work,R. ferrugineus transcriptomewas sequenced and analyzed by Illumina RNA-
seq and PacBio Iso-Seq. The transcriptome of pupae, larvae, and adults were compared,
then the differentially expressed genes (DEGs) were identified in different functional
databases, and the results were analyzed to explore their potential functions. This study
will help us to further understand R. ferrugineus transcriptome and provide a valuable basis
for gene expression and prediction.

MATERIALS & METHODS
Samples selection
All R. ferrugineus samples were collected from the Coconut Research Institute, Chinese
Academy of Tropical Agricultural Sciences, Wenchang Hainan, China. R. ferrugineus were
collected from the field and reared in the laboratory for at least 10 generations. The adults
were fed with sugarcane stems in the incubator at 27 ± 1 ◦C, with the photoperiod of 12
h light/12 h dark, and relative humidity (RH) of 75%, while larvae were artificially reared
at 27 ± 1 ◦C, photoperiod was 24 h dark and 75% RH (Pu et al., 2017). According to our
systematic observation of the biological characteristics and morphology, larvae develop in
the center of the palm plant and are not easy to be discovered and controlled. With the
increase of larval instar, the feeding and exuviating behaviors of the larvae spread from
the palm plant center to the periphery. In the development process of larvae, 7th-instar
larvae have a longer duration and are more harmful to host trees. As we all know, the more
larvae are exposed, the easier to control. Therefore, in this work, a total of 12 healthy and
whole individuals were collected from the reared population for sequencing, including
three 7th-instar larvae, three pupae, three female adults, and three male adults. Samples
were flash-frozen in liquid nitrogen and stored at −80 ◦C.

RNA extraction and sequencing
The RNeasy Kit (Qiagen, Valencia, CA, USA) was used to extract total RNA from each
whole individual sample of R. ferrugineus. The integrity and concentration of RNA were
measured using Agilent 2100 (Agilent Technologies, USA) and Qubit R© RNA Assay Kit
in the Qubit R© 2.0 Fluorometer (Life Technologies, CA, USA), respectively. The purity of
RNA (OD 260/280) was tested using Nanodrop (NanoDrop products, USA), while the
contamination and degradation of RNA was analyzed using 1% agarose gels. For PacBio
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Iso-Seq, total RNA from 12 samples were mixed together and 2 µg RNA was added to
per sample. On the Pacbio platform (Pacific Biosciences, CA, USA), 3 µg RNA from total
mixed RNA was sequenced according to the manufacturer’s instructions. Then, according
to the content of Pacific Biosciences (PN 100-092-800-03), the BluePippin size selection
system protocol and the Clontech SMARTer PCR cDNA synthesis kit were used to prepare
the Iso-Seq library. For Illumina RNA-Seq, the library was prepared by NEBNext R© UltraTM

RNA Library Prep Kit. Briefly, the enriched mRNA was purified using Oligo (dT) magnetic
beads. Subsequently, the mRNA was processed into short fragments by fragmentation
buffer, and a strand of cDNA was synthesized by random hexamers using the mRNA as the
template. Then AMPure XP beads were used to purify the two-strand cDNA synthesized
by buffer, DNA polymerase I and dNTPs. Finally, AMPure XP beads were used to select
250∼300 bp fragments, and the final cDNA library was obtained through PCR enrichment.
Qubit R©2.0 Flurometer (Life Technologies,CA, USA) was used to perform preliminary
quantification of the constructed library, and the library was diluted to 1 ng / µL. Then
Agilent 2100 was adopted to detect the insert size length of the library, and the Q-PCR kit
(TaKaRa, Dalian, China) was used to accurately quantify the effective concentration of the
library (effective library concentration>2 nM) to ensure the quality of the library. Twelve
libraries were prepared for Illumina sequencing. The Novaseq 6000 sequencing platform
was used to sequence each sample of R. Ferrugineus with 1.5 µg RNA. The short-read
sequencing data and the full-length transcriptome reference sequence of R. ferrugineus can
be obtained in NCBI under accession ID PRJNA598560.

Data processing
SMRTlink6.0 software was applied to process the sequence data (Chin et al., 2013).
The cyclic consensus sequence (CCS) was generated from the subread BAM files
(parameters: min_length 50, max_drop_fraction 0.8, no_polish TRUE, min_zscore-
9999.0, min_passes2, min_predicted_accuracy 0.8, max_length 15000). CCS.BAM files
were output, which were then classfied into full-length and non-full-length reads using
pbclassify.py, ignorepolyA false, minSeqLength 200. The two ends of the sequence contain
both 3′ primer and 5′ primer, and the sequence containing the poly (A) tail before the
3′ primer is full-length read, otherwise, it is non-full-length read. The generated non-full-
length and full-length fasta data files were processed by isoform-level clustering, and then
Quiver (parameters: hq_quiver_min_accuracy 0.99, bin_by_primer false, bin_size_kb 1,
qv_trim_5p 100, qv_trim_3p 30) was used for arrow polishing (Pacific Biosciences, 2014).
The clean data were collected from Illumina Novaseq 6000 sequencing platform and
processed as usual. In this step, clean reads were obtained by removing reads containing
adapter, low quality reads and reads containing ploy-N from raw data. At the same time,
phred score (Q20, Q30), error rate, GC-content and sequence duplication level of the clean
data were calculated. In order to further improve the accuracy of sequencing, LoRDEC
software was conducted to correct the PacBio Iso-Seq data using the Illumina RNA-seq data
(Salmela & Rivals, 2014). The calibration process was performed as the following steps:
firstly, LoRDEC was adopted to obtain second-generation short-reads and to construct
DBG (DE Bruijn Graph) graphs. Then, each third-generation long-reads were read in
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turn by LoRDEC to determine whether the third-generation data was supported by the
second-generation data in the constructed DBG graphs. Finally, the data that was not
supported by the second-generation data was corrected, and then the corrected sequence
was output. The corrected sequence was removed by CD-HIT (parameters: -c 0.95 -T
6 -G 0 -aL 0.00 -aS 0.99) software for any redundancy, and the transcript sequence for
subsequent analysis was obtained (Fu et al., 2012).

Quantification of gene expression levels
Full-length transcripts from the PacBio data was adopted as a reference sequence (ref), then
using Bowtie2 software to map the clean reads of each sample from Illumina sequencing to
ref (parameters: -end-to-end -no-mixed -no-dis-cordant -gbar 1000 -k 200) (Langmead &
Salzberg, 2012). The expression level of each transcript for each sample was calculated and
normalized into TPM (Transcripts Per Million) values by RSEM software (Li & Dewey,
2011), and classfied into five categories including very low, low, moderate, high and very
high with the TPM values of 0-0.1, 0.1-1, 1-5, 5-15, 15-60, >60, respectively.

Differentially expressed genes
Prior to differential gene expression analysis, for each sequenced library, the read counts
were adjusted by edgeR program package through one scaling normalized factor. Then,
calculate the probability of statistical hypothesis testing according to the negative binomial
distribution model; finally, the multiple hypothesis test correction was performed to
obtain the false discovery rate (FDR). The FDR is a statistical measure used to determine
the threshold for P-values in multiple tests which accounts for the proportion of false
positives (Benjamini & Yekutieli, 2001). The DESeq (Anders & Huber, 2010) R package
(1.10.1) was used to analyze the differential expression between the two groups. DESeq can
provide routine statistics to determine differences in digital gene expression data using a
model based on the negative binomial distribution. The P-value of the result was adjusted
using the method of Benjamini and Hochberg to control the false discovery rate. Genes
with an adjusted P-value <0.05& |log2 (foldchange)|>0 found by DESeq were assigned
as differentially expressed. Transcription factors (TFs) among the DEGs were predicted
using iTAK software (v1.2). In this work, Hierarchical cluster (H-cluster) (Murtagh, 1983),
K-means (Selim & Ismail, 1984) and Self-organizing Map (SOM) (Kohonen, 1988) were
adopted to cluster the relative expression levels of differential genes. H-cluster was used
to calculate the Euclidean distance between samples, and then the most similar variables
were clustered step by step to achieve sample clustering. K-means is a method of cluster
analysis, which groups observations by minimizing the Euclidean distance between them.
The basic self-organizing system is a one- or two- dimensional array of processing units
resembling a network of threshold-logic units, and characterized by short-range lateral
feedback between neighbouring units.

GO and KEGG pathway enrichment analysis
Gene Ontology (GO) functional classification analysis of DEGs were performed by the
GOseq R package (Young et al., 2010). GO terms (http://www.geneontology.org/) with
corrected P-value<0.05 were considered significantly enriched by DEGs. All the DEGs
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Table 1 Summary of quality of RNA-Seq original sequencing data. Raw reads column lists each read in the FASTQ format file by four lines and a
unit, and counts the number of sequences in each file. Clean reads column lists the filtered sequencing data of raw reads, and the subsequent bioin-
formation analysis is based on clean reads. Clean bases column lists the number of clean reads multiply the length, and G represents the data size of
clean reads. Q20 column listed the percentages of bases with phred quality score greater than 20. Q30 column listed the percentages of bases with
phred quality score greater than 20. GC content column lists the total number of bases G and C as a percentage of the total number of bases. Total
mapped column lists sequence count statistics that can be mapped to a reference sequence.

Sample name Raw reads Clean reads Clean bases Q20(%) Q30(%) GC content(%) Total mapped(%)

larva_1 45,921,768 45,216,478 6.78G 97.84 93.51 39.10 89.14%
larva_2 45,488,706 44,719,458 6.71G 98.15 94.41 39.17 87.93%
larva_3 46,968,766 43,815,018 6.57G 98.20 94.52 39.61 87.88%
pupa_1 51,547,360 50,918,894 7.64G 97.82 93.42 40.09 89.11%
pupa_2 49,213,402 48,731,238 7.31G 97.85 93.58 40.66 86.42%
pupa_3 47,589,126 45,987,494 6.9G 97.88 93.68 41.13 87.12%
female_1 65,486,770 64,749,568 9.71G 97.47 92.46 32.48 91.53%
female_2 54,512,618 51,662,048 7.75G 97.20 92.14 34.17 87.69%
female_3 49,813,910 48,435,084 7.27G 97.31 92.31 34.11 88.84%
male_1 62,939,496 60,971,604 9.15G 97.51 92.88 38.99 84.75%
male_2 69,968,690 69,071,824 10.36G 97.53 92.94 38.33 85.44%
male_3 52,728,692 51,704,548 7.76G 97.66 93.00 34.71 90.75%

were mapped to the GO database, and then the significantly enriched terms compared
to the entire genome background were identified. KOBAS software (Xie et al., 2011)
(http://kobas.cbi.pku.edu.cn) was implemented to test the statistical enrichment of DEGs
in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Hypergeometric test
was used for KEGG enrichment analysis to identify pathways in which the DEGs were
significantly enriched relative to all the annotated genes. KEGG pathways with corrected
P-value<0.05 were determined as significantly items.

RESULTS
Summary of Illumina Novaseq 6000 and PacBio SMRT transcriptome
sequencing data
A total of 12 samples (three male adults, three female adults, three pupae and three larvae)
were sequenced using Illumina Novaseq 6000, and each sample generated > 6 GB of
transcriptome data. Illumina Novaseq 6000 platform generated 642,179,304 raw reads
and 625,983,256 clean reads (97.48%, 93.91Gb) with an arithmetic average Q30 value of
93.24%, an arithmetic average Q20 value of 97.70% and an arithmetic average GC content
of 37.71% (Table 1). The PacBio sequencing platform obtained a reference transcript
containing 63,801 full-length transcripts (N50 length of 3,547 bp and N90 length of 1,921
bp) after clustering with CD-HIT-EST, totaling 417,431,883 bp. Subsequently, clean reads
of each Illumina sequenced sample were mapped to full-length transcripts. In terms of the
arithmetic average, 88.32%, 87.55%, 89.35%, and 86.98% of short reads were successfully
mapped for larvae, pupae, female adults, and male adults, respectively (Table 1).
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Figure 1 Boxplot of the log transformed TPM expression values of different developmental stages. The
solid horizontal line represents the median, and the box encompasses the lower and upper quartiles as well
as the maximum and minimum values. TPM was Transcripts Per Million, FAdult was female adults, MAdult

was male adults. The abbreviations TPM, FAdult and MAdult in Figs. 2–6 have the same meaning as here.
Full-size DOI: 10.7717/peerj.10223/fig-1

Analysis of gene expression levels
TPM box plots of gene expression values of different developmental stages indicated that
the overall data volume of each sample gene expression was substantially consistent. The
median value was larger and the overall expression level of genes was relatively high in
pupae andmale adults (Fig. 1). Themain distribution range of TPM value was 0–5 (Fig. S1).
Meanwhile, the overall gene expression levels of R. ferrugineus at different developmental
stages were not significantly different (Fig. 2 and Table S1).

Identification of Differentially Expressed Genes (DEGs)
To identify DEGs during the development of R. ferrugineus, volcano maps were
implemented to show the overall distribution of DEGs at different developmental stages. A
total of 8,583 DEGs were identified, of which 1,581 (1,054 up- and 527 down-regulated),
837 (421 up- and 416 down- regulated), 5,817 (3,328 up- and 2,489 down- regulated),
and 348 (172 up- and 176 down-regulated) were found between larvae and pupae, pupae
and male adults, pupa and female adults, and female adults and male adults, respectively
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Figure 2 Gene expression density map (comparison of gene expression levels). The abscissa is the log10
(TPM) value of the gene, the higher the value, the higher the gene expression; the ordinate is the density
corresponding to log10 (TPM), and different colors represent different samples.

Full-size DOI: 10.7717/peerj.10223/fig-2

(Fig. S2). Meanwhile, differential genes were clustered by log2 (ratios) of relative expression
level by H-cluster, K-means and SOM methods. Different clustering algorithms divided
the DEGs into several clusters. The grey line in the clustering result graph represented
the relative expression of genes in a cluster at different development stages (based on the
expression level of the first sample, as shown in the red line), while the blue line represented
the average of the relative expression of all genes in the cluster at different development
stages (Figs. S3, S4 and S5). The results demonstrated that genes in the same cluster have
similar expression levels at different developmental stages. Then, in order to visually show
the number of common and unique DEGs among the groups, pairwise comparisons were
made among the number of DEGs in the different development stages, and a Venn diagram
was drawn. The results indicated that the number of DEGs between pupa and larva, pupa
and female adults, pupa and male adults, and female adults and male adults were 1,581,
5,817, 837, and 348, respectively (Fig. 3).
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Figure 3 Venn diagram for DEGs at different development stages of R. ferrugineus.
Full-size DOI: 10.7717/peerj.10223/fig-3

GO and KEGG enrichment analysis of DEGs
Based on the DEGs, enrichment analysis of GO and KEGG were performed to associate
DEGs with biological pathways and functional groups. Between larvae and pupa, the
DEGs were mainly enriched in the biological processes and molecular functions of 30
GO terms, several of which were significantly enriched in terms related to metabolic
pathways, including: single-organismmetabolic process, metabolic process, oxidoreductase
activity, catalytic activity and amino acid metabolism (Fig. 4A and Table S2). Meanwhile,
KEGG enrichment analysis showed that 250 pathways were enriched with corrected
P-value < 0.05, the significantly enriched KEGG pathways were primarily related to
energy supply (amino sugar and nucleotide sugar metabolism, fructose and mannose
metabolism, protein digestion and absorption, galactose metabolism), the amino acid
metabolism (phenylalanine metabolism, tyrosine metabolism, nicotinate and nicotinamide
metabolism) (Fig. 5A and Table S3).

Regarding the comparison between pupal and adult stages, among the encoded
functional groups, the significantly enriched KEGG pathways were primarily involved
in amino acid synthesis and metabolism, glucose metabolism, and tissue and organ
development. For example, phenylalanine, tyrosine and tryptophan biosynthesis,
phenylalanine metabolism, amino sugar and nucleotide sugar metabolism, amino
sugar and nucleotide sugar metabolism, other glycan degradation, dorso-ventral axis
formation, protein processing in endoplasmic reticulum, hematopoietic cell lineage (Figs.
5B and 5C, and Table S4). The significantly enriched GO terms were mainly involved
in organ tissue formation (membrane, membrane part and actin cytoskeleton), material
transportation (transmembrane transport, single-organism transport, transporter activity
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Figure 4 GO enrichment analysis of DEGs that compared among the different developmental groups.
(A) GO functional enrichment analysis of DEGs in Larva vs Pupa. (B) GO functional enrichment analy-
sis of DEGs in Male Adults vs Pupa. (C) GO functional enrichment analysis of DEGs in Female Adults vs
Pupa. (D) GO functional enrichment analysis of DEGs in Male Adults vs Female Adults. Blue, downregu-
lated. Red, upregulated. BP, biological process. CC, cellular component. MF, molecular function.

Full-size DOI: 10.7717/peerj.10223/fig-4

and transmembrane transporter activity) and molecular function (iron ion binding, heme
binding, cation binding, metal ion binding and transition metal ion binding) (Figs. 4B and
4C, and Table S5). When differential genes expression was analyzed between the female
adults and male adults, significantly enriched KEGG pathways (AMPK signaling pathway
and oxytocin signaling pathway) and GO terms (carbohydrate binding) were mainly
associated with signal transduction and metabolism (Figs. 4D and 5D, and Table S6).

DEGS analysis of TFs and Long noncoding RNAs (LncRNAs)
TFs play an important regulatory role in animal growth and development as well as in
insect immunity and other aspects. Therefore, this study investigated the dynamics of
TFs expression during R. ferrugineus development. The comparison among these different
development stages found that 50 (12 up- and 38 down-regulated), 180 (55 up- and 125
down-regulated), 39 (10 up- and 29 down-regulated) and 13 (6 up- and 7 down-regulated)
TFs had significantly differential expression in larvae vs pupae, pupae vs female adults,
pupae vs male dults, female adults vs male adults, respectively. Besides, larvae and pupa
up-regulated TFs mainly comprised the following TFs families: zf-C2H2, ZBTB, TF_bZIP.
Down-regulated differential TFs mainly comprised the following TFs families, including
zf-C2H2, ZBTB, TF_bZIP, HTH (Fig. 6A). For female adults vs pupae, male adults vs
pupae, the main families of up-regulated TFs were zf-C2H2, Homeobox and ZBTB, and
the main families of down-regulated TFs were zf-C2H2, ZBTB and TF_bZIP (Figs. 6B
and 6C). Regarding the comparison of the female and male stages, TFs were up-regulated
in the zf-C2H2, ZBTB and CP2 families. Down-regulation of TFs were mainly in the
zf-C2H2 and ZBTB families (Fig. 6D). Meanwhile, transcripts predicted to be LncRNAs
were screened from the DEGs combinations at different developmental stages, and up-
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Figure 5 KEGG enrichment analysis of DEGs that compared among the different developmental
groups. (A) Scatter plots of KEGG enrichment results in Larva vs Pupa. (B) Scatter plots of KEGG
enrichment results in Female Adults vs Pupa. (C) Scatter plots of KEGG enrichment results in Male Adults
vs Pupa. (D) Scatter plots of KEGG enrichment results in Male Adults vs Female Adults. Rich factor
represents the ratio of the number of genes located in the pathway among differential genes to the total
number of genes located in the pathway among all annotated genes. qvalue represents the p-value after
multiple hypothesis testing and correction, and the value range of qvalue is [0,1]. The closer qvalue is to
zero, the more significant the enrichment.

Full-size DOI: 10.7717/peerj.10223/fig-5

and down-regulated LncRNAs in different comparison combinations were obtained. A
total of 81 (including 56 up- and 25 down-regulated DEGs), 477 (including 416 up- and
61 down-regulated DEGs), 44 (including 25 up- and 19 down-regulated DEGs), and 13
probable LncRNAs (including 6 up- and 7 down-regulated DEGs) were identified from
different combinations of larvae vs pupae, pupae vs female adults, pupae vs male adults,
female dults vs male adults, respectively (Fig. S6).

DISCUSSION
Native to Southeast and South Asia, R. ferrugineus invaded the Arab states in the Persian
Gulf in the mid-1980s and is now found all over the world (Bozbuga & Hazir, 2008). The
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Figure 6 Number of genes up-regulated and down-regulated in the TF family in different comparison
groups. (A) TFs analysis between Larva vs Pupa. (B) TFs analysis between Female adults vs Pupa. (C) TFs
analysis between Male adults vs Pupa. (D) TFs analysis between Male adults vs Female adults. Blue, down-
regulated. Red, upregulated.

Full-size DOI: 10.7717/peerj.10223/fig-6

adults are large (body length of about three cm), reddish brown with sturdy wings, and are
adapted for long-distance flight (Salama, Zaki & Abdel-Razek, 2009). The weevil’s trunk-
boring life style makes them hard to control (Salama, Zaki & Abdel-Razek, 2009). Although
multiple researches have been done to find new ways to control R. ferrugineus, including
chemical agents (Pugliese et al., 2017; Wakil et al., 2018), biological agents (Zulkifli, Zakeri
& Azmi, 2018), and intestinal microbes (Habineza et al., 2019; Muhammad et al., 2019),
the results are not effective. There are few studies on the molecular characteristics of
R. ferrugineus, including transcriptome, genome structure and proteome (Muhammad
et al., 2019). Transcriptomics provides complementary data and gene expression data for
available genomes for organisms at specific conditions or at different stages of development.
Transcriptome sequencing has become an important tool for studying gene expression
and regulation. Through the functional description of a large number of genetic data
sets and the analysis of the expression of differential genes, valuable information can be
provided for insects control strategies. Recently, transcriptome of developmental stages of
various coleopteran insects have been sequenced, including Nicrophorus orbicollis (Won
et al., 2018), Hypothenemus hampei (Noriega et al., 2019) and Batocera horsfieldi (Yang et
al., 2018). In addition, due to the lack of reference genomes, transcriptome sequencing
places higher requirements on sequencing tools (Martin & Wang, 2011). Third-generation
sequencing can directly obtain complete transcripts, overcoming the problems of short
transcript assembling and incomplete information of non- reference genome species,
so it reflects the information of transcriptome sequencing species more realistically,
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making it more widely used in transcriptome analysis (Rhoads & Au, 2015). In this work,
transcriptome of R. ferrugineus was reported using RNA-seq and PacBio Iso-Seq, and
625,983,256 clean reads and 63,801 full-length transcripts with an average length of 2,964
bp were obtained respectively. The average length of the acquired transcriptome data in the
R. ferrugineuswas higher than that of othermembers of Curculionidae, such asAnthonomus
grandis (average length 237 bp) (Salvador et al., 2014), Eucryptorrhynchus chinensis (average
length 360 bp) (Liu & Wen, 2016), Tessaratoma papillosa (average length 1,095 bp) (Wu
et al., 2017) and Hypothenemus hampei (average length 1,609.92 bp) (Noriega et al., 2019).
Here, the sequenced full-length transcriptome of R. ferrugineus provided a clearer picture
of molecular changes underlying development.

DEG analysis revealed 8,583 loci involved in metabolic pathways, material
transportation, and organ tissue formation. Many physiological processes change between
the larval and pupa stages. To pupate successfully, the last larval instar needs to reach
a critical weight, which allows it to pupate even if it has not eaten any more food
(Nijhout & Williams, 1974; Mirth, Truman & Riddiford, 2005; Tobler & Nijhout, 2010;
Keshan, Thounaojam & Kh, 2015). In this work, the major differentially expressed genes
in the development of larvae and pupa were enriched in KEGG pathways: phenylalanine
metabolism , tyrosine metabolism , phenylalanine, tyrosine and tryptophan biosynthesis
, ubiquinone and other terpenoid-quinone biosynthesis. Furthermore, studies on Cylas
formicarius showed that the most important KEGG pathways of DEGs during development
were pancreatic secretion, lysosome and metabolic pathways, and these pathways may
play important roles in different stages of insect development (Ma et al., 2016). At the
same time, through the KEGG analysis of Nicrophorus orbicollis and Hypothenemus hampei
at different development stages, the resluts showed that functional pathways are mainly
related to carbohydrate metabolism, immune system, signal transduction (Won et al.,
2018; Noriega et al., 2019). In this work, the data supported the biological differences
between the larval and the pupal development stages of R. ferrugineus, which were mainly
enriched in the synthesis and metabolism of substances. In this process, the larvae acquire
energy through a large amount of food intake, and prepares for pupation by synthesizing,
digesting, and metabolizing the substance. Our data also provided the observation and
research conclusions that larvae bear the common digestive function of the population.
For example, when collecting food, adult workers adjust their harvesting strategy according
to the nutritional needs of the individuals in the colony, and the larvae will consume
the protein of the entire colony to satisfy developmental needs (Dussutour & Simpson,
2009). Moreover, in this work, the DEGs of larvae and pupae were also enriched in serine
hydrolase activity and peptidase activity pathways. Some related studies have shown that
the larval stage belongs to the feeding stage, so the expression of genes related to digestion
and metabolism is higher (Ma et al., 2016; Tang et al., 2017). Insect genes can respond to
targeted digestive enzyme inhibitors in a timely manner and evolve rapidly, which means
that accurate recognition and identification of these genes will facilitate the formulation of
pest control strategies (Zhu-Salzman & Zeng, 2015). However, the function of these genes
in R. ferrugineus needs further studies to verify.
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Expression of storage proteins in the larval stage is a way to store nutrients and energy
(Wheeler & Martinez, 1995). These storage proteins can be degraded during the pupa stage
to provide energy for development (Chen, 2015). The results of R. ferrugineus indicated
that 5,817 and 837 DEGs were expressed in pupae and female adults, male adults and
pupae respectively. GO enrichment analysis showed that the DEGs between the pupal and
adult stages were significantly enriched as cation binding , metal ion binding , membrane
and membrane part terms. At the same time, KEGG enrichment analysis declared that
the main enrichment pathways of DEGs were phenylalanine metabolism amino sugar and
nucleotide sugar metabolism, dorso-ventral axis formation, phenylalanine, tyrosine and
tryptophan biosynthesis, and ECM-receptor interaction. The extracellular matrix (ECM)
consists of complex structural and functional macromolecules that provide structural
support for organs and tissues and provide structural support for cell layers in the form of
cell membranes (Holt & Bullock, 2009). The results of R. ferrugineus demonstrated that GO
enrichment was a significant item of membranes. Specific interactions between cells and
ECM control cellular activities such as proliferation, differentiation, migration, apoptosis
and adhesion (Lanza, Langer & Chick, 1997; Nelson & Bissell, 2006). Thus, this pathway
may play an important role in the development of R. ferrugineus from pupa to adult.
In addition, in the comparison between pupa and adult stage, DEGs was significantly
enriched in the pathway of tissue and organ formation. For example, the enrichment
analysis of GO terms suggests that the DEGs were mainly related to various developmental
processes, including organelle assembly, developmental maturity, cell division and cellular
component biogenesis. Meanwhile, the DEGs were also enriched in GO terms related
to actin filament organization. The rearrangement and stability of the cytoskeleton has
become a relevant topic for insects to adapt to low temperature environments (Kim et al.,
2006; Des Marteaux, Štětina & Koštál, 2018) and cold injury repair (Kayukawa & Ishikawa,
2009; Teets et al., 2012). Especially in the defense of polymeric actin, it is the main research
field. The transcriptome data obtained in this work will provide more information for us in
understanding the molecular mechanisms of R. ferrugineus, especially in the pupa-to-adult
stage.

In this work, arachidonic acid metabolism, glycerophospholipid metabolism, linoleic
acid metabolism and biosynthesis of unsaturated fatty acids, which are related to fatty acid
metabolism, were identified in KEGG enrichment pathways. Many kinds of fatty acid are
contained in R. ferrugineus, including palmitic acid, oleic acid, linoleic acid, α-linolenic
acid, arachidonic acid, lacric acid, myristic acid, etc. Palmitic (49.4–53.3%) and oleic
(42.2–46.9%) acids are the major fatty acids in R. ferrugineus larvae (Khanittha, Manat &
Worawan, 2020). Phospholipid synthesis requires a variety of cofactors and enzymes, which
are important components of life, and some phospholipids are essential nutrients (Borrelli
& Trono, 2015). In general, the level of phospholipids in insects is maintained at 0.4% to
3.3%, which plays an important role in the production of industrial lecithin (phospholipid
mixtures) (Paul et al., 2016). The phospholipids extracted from insects are powerful and
widely used in food additives, cosmetics, medicine and other related industries (Duan,
2005). Related research shows that R. ferrugineus is rich in phospholipids (2.6–9.3 g/100
g lipid) (Khanittha, Manat & Worawan, 2020). Moreover, the average protein content of
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edible insects is 10%–25% of fresh weight or 35%–60% of dry weight (Melo et al., 2011;
Schlüter et al., 2016), even higher than the protein content of grains, lentils and soybeans
(Bukkens, 1997). In fact, the dietary protein derived from insects is close to 50%, which
is more market value than other proteins (Dobermann, Swift & Field, 2017). R. ferrugineus
is also rich in protein (18.0–28.5%, dry weight) (Khanittha, Manat & Worawan, 2020).
Besides, the red palm weevil is rich in macro- (potassium, phosphorus, magnesium,
sodium, and calcium) and micro- (zinc, manganese, iron, and copper) elements. The
explorations of the nutritional composition of R. ferrugineus will be beneficial to the
development of the species as food. More importantly, the genetic variation of different
developmental stages enriches the genetic profiles of R. ferrugineus. This has the potential
to help identify RNAi targets that will contribute to insect control (Upadhyay et al., 2011;
Shukla et al., 2016). However, further validation will be needed in future studies to elucidate
the functions of these DEGs.

The limpet transcription factors are related to insect immune response and affect the
survival of fungus-free insects, such as protecting Triatoma infestans from being infected by
Beauveria bassiana (Jin et al., 2008; Altincicek, Knorr & Vilcinskas, 2008; Mannino, Paixão
& Pedrini, 2019). It is possible that some TFs have evolved to take in different metabolic
processes and to present multiple or divergent functions even having a similar nucleotide
sequence (Chen & Rajewsky, 2007). DEGS analysis of TFs showed that the mainly TFs
families of different development R. ferrugineus combinations were ZBTB, zf-C2H2,
TF_bZIP, etc. Various transcription factors are included in the ZBTB family, and some
ZBTB proteins are key factors in regulating developmental events and lymphoid cell
function (Zhu et al., 2018). Members of the CP2 / Grh (Grainyhead) family are found in
diverse taxa, ranging from fungi to animals, such as Drosophila, the first member of the
CP2/Grh (Nüsslein-Volhard, Wieschaus & Kluding, 1984; Bray & Kafatos, 1991). CP2/ Grh
transcription factor is extremely stable in multicellular organisms and is a key regulator of
organ development and epithelial differentiation (Ming et al., 2018). With the continuous
deepening of the research on the function of lncRNAs, more andmore insect lncRNAs have
been discovered, such as Nasonia vitripennis, Nilaparvata lugens, Plutella xylostella, which
provide a research basis for insect resistance, growth and development (Zhu, Liang & Gao,
2016). In order to clarify the function of TFs and lncRNAs in insects development, it is
necessary to further study many unknown sequences involved in developmental function
and immune response in the future.

CONCLUSIONS
In this work, R. ferrugineus transcriptome data of three different developmental stages were
obtained successfully by mapping short RNA-seq short reads to the full-length transcripts.
The DEGs data will provide information on the identification of genes involved in the
development of R. ferrugineus and supply molecular information on its application as
a potential food resource. The transcriptome data analyses of genes related to insect
development will be helpful for pest control.
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