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a b s t r a c t

The extensive sequence data generated from SARS-CoV-2 during the 2020 pandemic has facilitated the
study of viral genome evolution over a brief period of time. This has highlighted instances of directional
mutation pressures exerted on the SARS-CoV-2 genome from host antiviral defense systems. In this brief
review we describe three such human defense mechanisms, the apolipoprotein B mRNA editing catalytic
polypeptide-like proteins (APOBEC), adenosine deaminase acting on RNA proteins (ADAR), and reactive
oxygen species (ROS), and discuss their potential implications on SARS-CoV-2 evolution.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the 2020 pandemic, SARS-CoV-2 has so far infectedmore
than 33million people, resulting in over 1 million deaths attributed
to COVID-19 [1,2]. SARS-CoV-2 is a positive sense (þ) single-
stranded (ss) RNA virus belonging to the Coronaviridae family,
and it possesses one of the largest genomes (~30 kb) among RNA
viruses [3]. Unusually for RNA viruses, coronaviruses have proof-
reading machinery, thus possessing only a moderate mutation rate
relative to other RNA viral genomes [4].

Genetic variation arises by replication errors, recombination,
and shuffling of genomic segments providing the raw material
upon which natural selection will act. Yet, certain host antiviral
defense systems edit the viral genome in very specific patterns,
thus creating genetic variation in a highly directed manner, which,
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in turn, restricts the sequence space that the virus may occupy. This
brief review discusses three host factors that can directly edit the
SARS-CoV-2 genome and thereby impact upon the genomic evo-
lution of this pathogen (Fig. 1).
2. APOBEC

The human genome encodes eleven APOBEC (apolipoprotein B
mRNA editing catalytic polypeptide-like) proteins, a family of zinc-
dependent deaminases [5]. These are APOBEC1, APOBEC2, APOBEC3
(with family members A, B, C, D, F, G, and H), APOBEC4, and AID
(activation-induced cytidine deaminase). Most of the APOBEC pro-
teins are shown to catalyze cytosine deamination to uracil (C-to-U) of
foreign single-strandedDNAandRNA[6]. Thishypermutational effect
of APOBEC proteins has been extensively studied in HIV-1 infection
[7e10] but is also reported for other retroviruses as well as DNA vi-
ruses (reviewed in Harris& Dudley 2015&Moris et al., 2014) [11,12].

APOBEC proteins show a preference for deaminating cytosines
following thymine/uracil, 5’-[T/U]C-30, for both DNA and RNA
substrates [5,13e15]. A notable exception is human APOBEC3G,
which preferentially targets a 50eCCe30 motif [7].

CpG dinucleotides are prominent targets for host antiviral de-
fenses such as the zinc finger antiviral protein (ZAP) [16]. ZAP
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Matrix showing the distribution of genomic changes in SARS-CoV-2 sequences
deposited at GISAID (https://www.gisaid.org/; [71]) as of October 2nd, 2020. Changes
are accumulated across 79,887 samples and mapped onto the reference SARS-CoV-2
genome sequence, and the percentages of changes were recorded as previously
described [21]. Changes at individual sites may therefore represent multiple inde-
pendent events, and the most prominent changes are most likely underestimated [21].
The three types of changes resulting from the activity of ROS, APOBEC, and ADAR (G-
to-U, C-to-U, and A-to-G, see main text) are highlighted in red, blue, and green,
respectively. The types of changes that would result of the same host factors acting on
the complement strand on double-stranded RNA are similarly colored but in a
checkered pattern.
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targets CpG dinucleotides, inhibiting a range of viruses (reviewed in
Chemudupati et al., 2019) [17] as well as endogenous retroelements
[18]. Consistently, CpG-creating mutations were found to be
evolutionary costly in a range of viruses [19]. Although APOBEC
proteins do not specifically target CpG motifs, it is noteworthy that
their activity at [T/U]CG sites could result in CpG depletion [20,21].

Interestingly, APOBEC proteins, in particular APOBEC3F and
APOBEC3G, have been shown to restrict HIV replication in a non-
deaminase dependent matter e hence not resulting in hyper-
mutation [8,10,11]. All proteins of the APOBEC3 family inhibit
propagation of the abundant human endogenous retroelement,
LINE-1 [22], with deaminase-dependent and -independent mech-
anisms being deployed by different APOBEC3 proteins [23].
2.1. APOBECs editing the SARS-CoV-2 genome

An excess of C-to-U substitutions was observed early in the
SARS-CoV-2 pandemic [24], and the genomic context of these
substitutions was enriched for APOBEC target sites [25]. Testing
SARS-CoV-2 and six other human coronaviruses, Wei and col-
leagues found that only viruses regularly infecting tissues with high
expression of APOBEC e and other antiviral proteins e exhibited
CpG-depletion and U-rich genomes [26].

A prerequisite for APOBEC-driven hypermutation of SARS-CoV-2
36
is APOBEC gene expression activity during infection. In the alpha-
coronavirus, HCoV-229E, associated with the common cold, an
early up-regulation of APOBEC3B has been observed [27]. Further,
Blanco-Melo et al. (2020) found APOBEC3A to be among the most
abundant mRNAs in COVID-19 patients [28].

Variation in APOBEC genes exists among different human pop-
ulations. Seven human APOBEC3H haplotypes have been reported,
conferring differences in host resistance to HIV infections [29].
Besides APOBEC3H, polymorphisms in APOBEC3D, APOBEC3F, and
APOBEC3G have been reported from a HIV-infected cohort [30].
Seven single-nucleotide polymorphisms affecting the gene
expression of APOBEC3D and APOBEC3G have further been hy-
pothesized to affect SARS-CoV-2 susceptibility [31]. Whether these
haplotypes impact SARS-CoV-2 infection, disease severity and
clinical outcome is unknown and warrants further study in an
analogous manner to prior studies on HIV.

The APOBEC1 complementation factor, A1CF, part of the APO-
BEC1 editing complex [32], was recently experimentally found to
interact with SARS-CoV-2 [33] (see below). Although A3C, A3F, and
A3H were previously shown to inhibit infection of HCoV-NL63,
another alphacoronavirus member inducing bronchiolitis [34],
this was not caused by hypermutation through editing [35].

2.2. SARS-CoV-2 genome evolution driven by host APOBEC proteins

Global samples of SARS-CoV-2 genome sequences reveal
extensive C-to-U mutations, a pattern that can be followed pro-
gressively throughout the pandemic [21]. One study estimated that
52% of the observed non-synonymous mutations in SARS-CoV-2
were the result of C-to-U changes [36], and the progressive loss
of genomic cytosines may result in the depletion of alanine, histi-
dine, glutamine, proline, and threonine codons severely restricting
the evolutionary trajectory of SARS-CoV-2 [37].

3. ROS and SARS-CoV-2 genome

Reactive oxygen species (ROS), which oxidize proteins, lipids,
and nucleic acids can lead to virus inactivation and mutagenesis,
represents another strategy utilized by a host cell to combat viral
infections [38,39]. ROS have been found to play either beneficial or
deleterious roles during different viral infections, enhancing viral
replication during the early stages for certain viral species, while
helping in the immunomodulation and inactivation of other viruses
via oxidative burst [40]. Interestingly, ROS can also cause the
oxidation of guanine to 7,8-dihydro-8-oxo-20-deoxyguanine (oxo-
guanine) that can readily base pair with adenine, yielding G-to-T
transversions [41]. It was recently hypothesized that G-to-U and C-
to-A changese the secondmost common observed substitutions in
SARS-CoV-2 genomes e might be associated with the mutagenic
activity of ROS [42].

4. ADAR

Adenosine deamination in dsRNAs is attributed to adenosine
deaminase acting on RNA (ADAR) enzymes, which are able to
convert A-to-I (inosine), but mainly in Alu sequences (an endoge-
nous retroelement) [43]. There are three ADAR genes encoded in
the human genome; the first two, ADAR1 and ADAR2, are
interferon-inducible and catalytically active for adenosine deami-
nation, while ADAR3, which is expressedmainly in the brain, has no
reported ADAR activity [44,45]. The human ADAR1 gene is
expressed in most tissues [46]. It has two isoforms, ADAR1p110,
constitutively expressed in the majority of cell types, principally
acting in the nucleus, and interferon-stimulated ADAR1p150,
which primarily operates in the cytoplasm [47]. ADAR1 is
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considered a “master regulator” of cytoplasmic innate immunity
regulating multiple sensors, such as Mda5, RIG-I, OAS and PKR,
which detect intracellular dsRNA (which can arise during the
replication-transcription process of (þ)ssRNA viruses including
SARS-CoV-2) and these sensors are essential in fighting viral in-
fections [45].

Mutations at the ADAR1 locus have been linked to human ge-
netic diseases, including the AicardieGouti�eres syndrome, an in-
flammatory disorder that phenocopies congenital viral infection
[48], and the pigmentation disorder, dyschromatosis symmetrica
hereditaria [49].

4.1. ADAR-mediated editing of the viral genome

Di Giorgio et al. (2020) analyzed publicly available RNA-seq data
of bronchoalveolar lavage fluids from COVID-19 patients [25]. They
found that A-to-G changes were distributed equally across the viral
genome, and hypothesized that ADAR could be active against the
SARS-CoV-2 genome. Similarly, Picardi et al. (2020) used RNA-seq
data from infected human cell lines, Vero cells, and clinical sam-
ples from time-series experiments [50]. By analyzing the extent of
editing at Alu sequences (known to be targets of ADAR1), the au-
thors estimated ADAR1 activity and found evidence for this on both
viral and human transcripts. Low levels of editing were observed at
early timepoints (4 h post-infection), where both the activity of
ADAR and interferon activation is low. However, after 24 h post-
infection, higher levels of A-to-I editing were recorded, although
accounting for <1% of sites. Clearly, nucleotide variation due to
sequencing or polymerase errors might also contribute to the
observed substitutions [50].

Besides sequence analysis approaches to show ADAR1 activity,
direct interaction between viral RNA and proteins has been estab-
lished. Using RNA antisense purification and mass spectrometry
(RAP-MS), Schmidt and colleagues identified RNA-protein in-
teractions in SARS-CoV-2-infected human cells [33]. From this,
notably both ADAR and APOBEC were found as frequent interactors
with SARS-CoV-2 RNA.

In contrast to the above findings, a few studies have found no
evidence of ADAR1 activity acting on SARS-CoV-2. DNA nanoball
sequencing from Vero cells infected with SARS-CoV-2 suggested no
ADAR-mediated editing [51]. Further, the same study performed an
independent analysis of the previous dataset presented by Kim
et al. (2020) [51] and did not detect any A-to-G editing [50]. Using
predicted secondary structures of target sites, Klimczak et al. (2020)
found statistically significant ADAR editing in rubella virus ge-
nomes, another (þ)ssRNA virus), but not in SARS-CoV-2 genomes
[52].

4.2. Is there a link between ADAR1 and autoimmune diseases after
COVID recovery?

Double-stranded RNAs are the pathogen-associated molecular
pattern associated with the strong induction of cellular stress and
interferon responses. ADAR1 is one of the major regulators of self-
tolerance and innate immune activation that involves recognition
of dsRNA and its further processing by downstream antiviral
pathways [45,53]. ADAR1 can exert either antiviral or pro-viral ef-
fects dependent upon the infecting virus [54]. For example,
hyperediting of HCV and LCMV viral genomes lead to antiviral ef-
fects, while ADAR1 editing of influenza A RNA enhances viral pro-
tein expression [54].

It was recently shown that COVID-19 leads to suboptimal
interferon responses in comparison to other respiratory viruses
[28], and one might speculate that this may arise if ADAR1 activity
contributes to the low type I interferon response. ADAR marks the
37
dsRNA with the A-to-I deamination, allowing the edited RNA du-
plexes to escape other molecular sensors of dsRNA [45]. There is a
threshold for the tolerable number of dsRNAs present within the
cytosol, which, when exceeded leads to autoimmunity but favors
viral infection [55,56]. ADAR-mediated editing of viral RNAs might
result in levels of edited RNAs above this threshold. It is not un-
common that some viral infections can lead to autoimmune com-
plications after recovery [57]. The high incidence of different
autoimmune conditions has been recorded after the resolution of
COVID-19 in adult and, also, pediatric patients are in line with this
observation [58e62]. Besides a potential contribution of ADAR in
the evasion of type I interferon responses, the virus also has various
proteins that inhibit type I interferon induction and signaling [63].
Previously, knockdown of ADAR1 was shown to lead to viral inhi-
bition, which enhanced interferon stimulation in primary macro-
phages [64]. ADAR1 inhibitors might thus be another strategy to
boost antiviral response in viruses that trigger suboptimal inter-
feron responses as seen during SARS-CoV-2 infection.

5. Strandedness of SARS-CoV-2

Upon entry into the host cell, SARS-CoV-2 exists as a single-
stranded, positive-sense RNA. This strand is then replicated e

during which the virus exists as a double-stranded RNA e and the
resulting negative-strand then acts as a template for both replica-
tion and transcription (both types of products, thus being positive-
sense) [65,66].

From short-read sequences mapped onto the SARS-CoV-2
reference genome, Graudenzi et al. (2020) identified C-to-U
changes [42]. C-to-U change occurring on the negative strand will
result in observed G-to-A changes using this approach. The authors
observed a ratio of 17:1 between C-to-U and G-to-A changes,
consistent with APOBEC predominantly working on the positive
strand RNA. Remarkably, a similar ratio of 17:1 was observed be-
tween C-to-A and G-to-U changes, which would be the result of
ROS-induced mutagenesis on the positive and negative strands,
respectively [42]. This consistency prompted the speculation that
the 17:1 ratio reflects the molar ratio between the two viral strands.

The percentages presented in Fig. 1 are derived from comparing
approximately 80,000 assembled consensus genomes to the SARS-
CoV-2 reference genome (MN908947.1) and registering all detected
changes [21]. This means that a change needs to be present in the
majority of viral transcripts in order to be included in the consensus
genome, and that it will only be counted once regardless if it is
present in one or all of the sample genomes [21]. Therefore, it is not
expected that these percentages will reflect the ratios reported by
Graudenzi et al. (2020) [42]. It is noteworthy, however, that the
percentages in Fig. 1 are similar for A-to-G and U-to-C changes,
potential hallmarks of ADAR activity (that works on double-
stranded RNA), whereas this is not the case for C-to-U and G-to-
A, neither for C-to-A and G-to-U, consistent with APOBEC and ROS,
respectively, predominantly acting on the positive stranded viral
RNA.

6. Summary

Global travel, societal interactions and the interconnected
modern world provide abundant opportunities for the rapid
spreading of viral infections that are becoming severe health and an
economic burden for humanity [67]. A better understanding of viral
genome changes can help design better diagnostics, therapeutics
and prophylactic vaccines [68,69]. Herein, we have discussed how
host innate immune defenses might drive nucleotide substitutions
and genomic evolution in SARS-CoV-2 in a directional manner.
These described hypermutation patterns despite the relatively
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moderate mutation rate is evidence of the adaptation process of a
virus of recent zoonotic origin [70].

Di Giorgio et al. [25] have identified a third class of changes
comprising A-to-T/T-to-A transversions in SARS-CoV-2 genomes,
but the mechanistic basis for this is currently unknown and re-
quires further study.

APOBEC, ROS and ADAR are effective sources of nucleotide
changes and from Fig. 1, it is evident that these editing agents may
potentially account for the vast number of observed changes,
certainly if assuming that they may also act on dsRNAs. The SARS-
CoV-2 pandemic offers a challenge of global dimensions and suc-
cessfully controlling the spread of the virus will heavily depend on
insight into the biology of the virus. In this respect, host-directed
genome editing is likely to play a substantial role and may hypo-
thetically confer susceptibility and potentially a degree of innate
resistance for individuals harboring certain haplotypes. As SARS-
CoV-2 will inevitably become the most closely monitored virus in
terms of real-time sequence data, this concerted effort of the global
scientific community is essential to ameliorate the profound
burden of disease elicited by this zoonotic pathogen.
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