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Progressing from Recurring Tissue
Injury to Genomic Instability:

A New Mechanism of Neutrophil Pathogenesis

Triet M. Bui and Ronen Sumagin

Aberrant neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of inflammatory bowel diseases,
including Crohn’s disease and ulcerative colitis. While the genotoxic function of PMNs and its implications in
carcinogenesis have been primarily associated with oxidative stress, recent work by Butin-Israeli and colleagues
has defined a novel mechanism where PMN-derived microparticles through the delivery and activity of specific
miRNAs promoted formation of double-strand breaks (DSBs), and in parallel, suppressed DSB repair through
the downregulation of lamin B1 and Rad51. Respective downregulation of these two proteins compromised the
nuclear envelope and high-fidelity repair by homologous recombination, increasing DSB accumulation and
aneuploidy. This discovery defined a novel mode of action where PMN-mediated suppression of DSB repair
leading to genomic instability in the injured mucosa may facilitate progression toward colorectal cancer.
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Introduction

Inflammatory bowel diseases (IBDs), encompassing
ulcerative colitis and Crohn’s disease, are characterized

by recurring episodes of inflammation and tissue injury
(Rieder et al., 2007; Matricon et al., 2010). Such relapsing
inflammation is associated with dysregulated neutrophil
(PMN) infiltration of the intestinal mucosa, and is regarded
as a pathological feature and a hallmark of IBDs (Cho,
2008; Wera et al., 2016). Aberrant immune response trig-
gered by PMN accumulation in gut mucosa can adversely
affect epithelial barrier integrity, enable translocation of
microbes into the interstitium, perpetuate inflammatory re-
sponse, and promote tissue damage which compromise gut
function (Cho, 2008; Sekirov et al., 2010; Weber et al.,
2014; Butin-Israeli et al., 2016; Slater et al., 2017). As such,
high PMN blood count (Torun et al., 2012; Nishida et al.,
2017) and accumulation of PMNs in stool of IBD patients
(Silberer et al., 2005; Langhorst et al., 2008) are correlated
with active flares and disease severity.

In addition, intestinal inflammation and recurring tissue
injury have been shown to predispose IBD patients to gas-
trointestinal malignancies (Canavan et al., 2006). Supporting
this, many correlative studies have documented the increased
risk of IBD patients to develop small bowel adenocarcinoma
(Bojesen et al., 2017), cholangiocarcinoma (Huai et al., 2014),
gastric cancer (Nissen et al., 2016), intestine-associated non-

Hodgkin’s lymphoma (Farrell et al., 2000), and colorectal
cancer (CRC) (Ekbom et al., 1990; Lakatos et al., 2006;
Choi et al., 2016). Comparative analyses of different patient
cohorts also reveal that the risk of CRC development is
increased by sixfold in IBD patients (Herrinton et al., 2012;
Ording et al., 2013). Indeed, CRC metastasis accounts for
10–15% of all IBD-related mortalities ( Jensen et al., 2006;
Ording et al., 2013; Althumairi et al., 2016).

A particular subset of CRC arising on the background of
IBD, known as colitis-associated cancer (CAC) (Grivenni-
kov, 2013; Francescone et al., 2015), is strictly associated
with PMN accumulation in the gut and is likely driven by
PMN-mediated exacerbated inflammation (Shang et al.,
2012). A high neutrophil-to-lymphocyte ratio in the sys-
temic circulation of CRC or CAC patients is predictive of
poor clinical outcomes and shorter progression-free survival
(Shibutani et al., 2013; Ozdemir et al., 2014; Haram et al.,
2017; Kim et al., 2019). As a result, there have been tre-
mendous efforts to control aberrant immune activation
through immunosuppression and the use of TNFa and in-
terleukin monoclonal antibodies (Zenlea and Peppercorn,
2014; Feagan et al., 2016; Adegbola et al., 2018). Nonetheless,
these treatments exert severe side-effects and suppress sys-
temic immune response necessary for the elimination of in-
vading pathogens (Stallmach et al., 2010). To develop
effective targeted therapy for IBDs and prevent CRC, it is
important to gain a better understanding of mechanisms
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underlying PMN-driven tissue injury as well as the benefi-
cial functions of PMNs in intestinal homeostasis.

In this review, we summarize our recent discovery of the
novel mechanism that links neutrophil infiltration and ge-
nomic instability, and will discuss the long-term implica-
tions of this biological process in tissue homeostasis and
carcinogenesis. Insights into how neutrophil infiltration and
genomic instability are mechanistically connected in the
context of intestinal inflammation will pave the way for new
therapeutic options to alleviate IBD symptoms and prevent
progression toward CRC/CAC.

Neutrophils, Reactive Oxygen Species Production,
and Induction of Oxidative Stress: A Classical View

PMN-induced exacerbated inflammation is a hallmark of
many inflammatory conditions (Wright et al., 2010; Delgado-
Rizo et al., 2017), including but not limited to acute lung
injury (Zhou et al., 2012), atherosclerosis (Baetta and Cor-
sini, 2010), chronic obstructive pulmonary disease (COPD)
(Hoenderdos and Condliffe, 2013), and IBD (Rieder et al.,
2007; Cho, 2008; Matricon et al., 2010; Wera et al., 2016).
Upon tissue transmigration and detection of invading path-
ogens, PMNs undergo oxidative burst and degranulation
(Nguyen et al., 2017). The tissue-damaging effects of PMNs
are primarily attributed to their capacity to generate high
levels of reactive oxygen species (ROS). Accumulation of
ROS in tissues gradually increases intracellular levels of
hydrogen peroxide and superoxides, which oxidize and
generate modified DNA bases (Cadet and Wagner, 2013).
For example, activated PMNs have been shown to induce
ROS-mediated DNA damage in lung and respiratory tract
tissue in the context of acute lung injury (Kellner et al.,
2017) and COPD (Boukhenouna et al., 2018).

One of the nucleotides that is primarily oxidized and
modified by ROS is 8-oxoguanine (8-oxoG), whose pres-
ence markedly contributes to G/A nucleotide mismatch and
DNA replication errors (Cadet and Wagner, 2013; Cadet
et al., 2017). In addition, ROS-mediated base modification
or direct alkylation of the DNA sugar backbone generate
DNA lesions that stall replication fork and form single-
strand breaks (SSBs) (Eccles et al., 2011; Cadet et al.,
2017), which are gradually converted to double-strand breaks
(DSBs) if not repaired in a timely manner (Mehta and Haber,
2014; Cannan and Pederson, 2016). On this basis, these ROS-
dependent genotoxic stressors can contribute to mutagenesis
and malignancy transformation.

There is a long-standing doctrine that neutrophils con-
tribute to DNA damage solely through ROS-dependent
mechanisms. However, we recently expanded this dogma by
identifying a novel, ROS-independent mechanism, whereby
PMNs deliver microparticles (MPs) that transport regulatory
miRNAs to promote the formation of DSBs in inflamed
epithelial cells (Butin-Israeli et al., 2019). We found that
coculture of PMNs with cultured colon epithelial cells,
HCT116 and Caco2, or with primary patient-derived colo-
noids induced the formation of gH2AX foci, indicating
DSBs, as well as led to activation of downstream DNA
damage response. Intriguingly, PMN-MPs did not increase 8-
oxoG levels in epithelial cells and were proved to be non-
responsive to ROS inhibition by several well-characterized
ROS scavengers. These findings implicate PMNs in causing

DSBs through mechanisms distinct from the known induc-
tion of ROS-mediated oxidative stress.

PMN-MP-Derived miRNAs Are Novel Mediators
of Biological Activities

In addition to releasing soluble mediators, including cy-
tokines and various metalloproteinases, activated PMNs
have been recently shown to secrete microvesicles or mi-
croparticles (PMN-MPs) as an additional way to exert their
effector functions (Dalli et al., 2013; Butin-Israeli et al.,
2016; Bui et al., 2018). PMN-MPs are vesicles that include
exosomes and larger particles, ranging from 50 to 1000 nm
that are generated during PMN activation and migration
across endothelial and epithelial barriers (Bui et al., 2018;
Finkielsztein et al., 2018). The PMN-MP cargo include
proteins, miRNAs, and lipid mediators, all of which are
encapsulated and protected by the vesicle lipid bilayer and
are efficiently shuttled to surrounding target cells. As such,
the exchange of extracellular vesicles or MPs has recently
emerged as a novel way of intercellular communication
(Hwang, 2013; Pitt et al., 2016). Following uptake, PMN-
MP cargo is discharged and functions to modulate many
biological activities in recipient cells. A simplified list of
PMN effector molecules and their respective biological
functions is summarized in Table 1. Importantly, the bio-
logical content of PMN-MPs is stimulus dependent and is
reflective of the condition, whereby the PMNs were acti-
vated. As such, the heterogeneity of MP composition has
been shown to drastically change depending on the envi-
ronmental milieu and tissue condition (Distler et al., 2005;
Shai et al., 2012; Alexy et al., 2014). The fact that we and
other groups have confirmed rapid induction of miRNAs in
activated PMNs, followed by their packaging into PMN-
MPs, has redefined the notion that PMNs have low tran-
scriptional activity and operate only through the release of
granular stores.

The Synergistic Action of miR-23a and miR-155
Promotes DSB Accumulation and Paves the Road
to Genomic Instability

By examining IBD patient biopsies, we observed that
lamin B1 (LB1), a critical nuclear lamin that constitutes the
nuclear envelope and protects replication forks (Butin-
Israeli et al., 2012, 2015), was significantly reduced. We
further found that treatment of cultured colon epithelial cells
or patient-derived colonoids with PMN-MPs downregulated
LB1 through the action of miRNAs transported by these
MPs. We then identified that miR-23a, which has been
previously shown to regulate LB1 expression (Lin and Fu,
2009; Dreesen et al., 2013), was highly upregulated in ac-
tivated PMNs and was enriched in PMN-MPs. The lack of
miR-23a primary and precursor transcripts (pri-/pre-miR-
23a) in IBD colonic tissues or epithelial cells indicated that
the increased level of miR-23a and its inhibitory effect on
LB1 was due to PMN-MP deposition, and was not due to
endogenous induction during inflammation. LB1 inhibition
through miRNA activity compromised nuclear envelope
integrity, resulting in replication fork stalling and S-phase
arrest (Butin-Israeli et al., 2015). Failure to restart replica-
tion precedes replication fork collapse and DSB induction at
replication sites, perpetuating cell cycle arrest and affecting
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cellular fitness (Lopes et al., 2001; Tercero and Diffley,
2001; Zeman and Cimprich, 2014).

Intriguingly, inhibition of miR-23a activity by antagomir,
although rescued LB1 expression, only partially reversed
DSB accumulation, suggesting contribution of an additional
DSB-inducing mechanism. We thus investigated two major
DSB repair pathways, including homologous recombination
(HR) and nonhomologous end joining (NHEJ) (Mao et al.,
2008; Brandsma and Gent, 2012), in the epithelial cells
treated with PMN-MPs. While NHEJ activity was not af-
fected by PMN-MP treatment during this short-term cocul-
ture experiment (24–48 h), HR was rapidly downregulated.
Mechanistically, Rad51, a key HR regulator (Baumann and
West, 1998), was found to be significantly downregulated
by the specific action of miR-155 (Gasparini et al., 2014), an
additional miRNA that was found to be enriched in PMN-
MPs (Butin-Israeli et al., 2019). By suppressing Rad51 ex-
pression, miR-155 inhibits strand invasion and exchange
between the homologous DNA strands on the sister chro-
matids, a rate-determining step of HR-mediated repair
(Baumann and West, 1998; Anand et al., 2017). Disruption
of HR machinery and loss of HR activity result in ineffec-
tive resolution of DSBs incurred due to replication fork
collapse (Costes and Lambert, 2012; Mijic et al., 2017).

Although DSBs are formed at much lower frequency than
SSBs, they are the most lethal DNA lesions and can rapidly
induce cell death (Ceccaldi et al., 2016). Moreover, DSBs
are repaired at a significantly lower rate compared with
SSBs, and as a result, impairment of any one of the DSB
repair pathways have severe implications to cellular survival
and tissue homeostasis (Ceccaldi et al., 2016). In the context
of mucosal injury as seen in IBD, DSB accumulation in the
inflamed epithelium due to synergistic activity of PMN-MP-
derived miRNAs resulted in cell cycle arrest and apoptosis,
thus delaying wound resolution. In the mouse model of
acute colonic injury, using endoscopy-guided, biopsy-based
injury, we showed that administration of antisense oligo-
nucleotides (ASOs) that specifically target miR-23a and
miR-155 successfully rescued the expression of LB1 and
Rad51, reduced DSB levels, and substantially improved wound
healing. These observations affirm the therapeutic potential

of miRNA therapy in IBD treatment. Indeed, active flare
regions of IBD patients, which are characterized by high
PMN infiltration, also have elevated levels of miR-23/miR-
155 (Butin-Israeli et al., 2019). Further studies with human
cell lines by our group mechanistically showed that enriched
miR-23a/miR-155 in epithelial cells can induce DSB accu-
mulation, delay wound healing, and increase aneuploidy, an
established marker for onset of carcinoma. Thus, increased
miR-23a/miR-155 level coupled with reduced LB1/Rad51
expression have a powerful diagnostic value and can serve as
early markers for IBD progression toward CRC/CAC. Patient
biopsies can be easily obtained during routine endoscopy, and
evaluation of miR-23a/miR-155 enrichment can be effec-
tively performed using commercially available qPCR kits.

Therapeutic Outlook: An Immediate Response
for IBD Management and a Long-Term Approach
to Prevent Progression Toward CRC/CAC

Although wound healing and durable clinical remission are
considered as important clinical endpoints for IBD therapy
(Rogler et al., 2013), most current treatments rely on general
immunosuppression and provide only temporary respite
from the symptomatic disease. Standard therapies include
systemic corticosteroids, immunosuppressives (mesalamine,
azathioprine, 6-mercaptopurine), or biologics such as TNFa
blockers (infliximab, adalimumab, golimumab), and in se-
vere cases, surgical intervention (Hvas et al., 2018). These
therapies, although effective in inducing initial remission,
have harsh side effects and lose efficacy with disease pro-
gression. As has been seen with TNFa blockers, while 30%
of patients do not respond to such treatment (Kopylov and
Seidman, 2016), others develop antibodies to the biologics
and overtime fail to achieve remission (Yanai et al., 2015).
Similarly, prolonged use of corticosteroid-based immuno-
suppression or leukocyte adhesion inhibitors (natalizumab,
vedolizumab) leads to leukopenia, bacterial infections, and
the life-threatening condition of progressive multifocal
leukoencephalopathy (Yousry et al., 2006).

For these reasons, more selective treatments for IBD that
specifically target detrimental functions of immune cells need

Table 1. Neutrophil Effector Function in Inflammatory Bowel Disease

PMN effector
function Contribution to IBD pathology

Association
with MPs References

ROS Contribute to oxidative stress, base
damage/modification, replication
errors, and single-strand breaks.

No Nguyen et al. (2017), Cadet
and Wagner (2013), Kellner et al.
(2017), Cadet et al. (2017)

Myeloperoxidase Generate ROS, promote cells death,
and impede wound healing.

Yes Slater et al. (2017)

Metalloproteinases Disrupt tissue integrity, increase epithelial
and vascular permeability,
and immune cell recruitment.

Yes Butin-Israeli et al. (2016)

Cytokines Immune cells recruitment and inflammatory
polarization, impede wound healing.

TBD Wera et al. (2016), Wright et al. (2010),
Wang et al. (2018)

miRNAs (miR-23a/
-155, miR-9)

Posttranscriptionally regulate signaling
pathways.

Yes Butin-Israeli et al. (2019), Distler et al.
(2005)

The table summarizes the pathological effector functions of PMNs and their association with MPs as it relates to IBD.
IBD, inflammatory bowel disease; MP, microparticles; PMN, neutrophil; ROS, reactive oxygen species; TBD, to be determined.
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to be developed. Our findings identified one such potential
therapeutic approach. As per our observations, targeting
miRNAs transported by PMN-MPs can reduce tissue-
damaging effects of PMNs without altering their recruitment
or antibacterial/proresolving effector functions, highlighting
the potential of miR-23a/miR-155 as novel molecular targets
for miRNA-based therapy for IBD. In fact, multiple miRNA-
targeted therapeutics have reached clinical development
(Soroosh et al., 2018), including an RNA mimic of the tumor
suppressor miRNA, miR-34, which has reached phase I
clinical trials for cancer treatment (Beg et al., 2017), and an
antagonist for miR-122, which has reached phase II trials for
treating hepatitis (Zeisel and Baumert, 2017). The major
challenges of miRNA-based therapy involve the multitude of
targets for each miRNA as well as the delivery route of
miRNA biologics (Chen et al., 2015). Oral or intravenous
delivery will increase off-target effects of therapeutic miRNA
mimics/antagonists ( Jackson and Linsley, 2010). In an at-
tempt to minimize these issues, a number of studies have
attempted to couple drug delivery with routine colonoscopic
screening in IBD patients (Philip and Philip, 2010). In fact,
colon-targeted drug delivery offers a number of desirable
features. Intrarectal administration of ASOs can avoid un-
necessary degradation of the biologics in the stomach, in-
testine, or liver (Philip and Philip, 2010; Ramalingam et al.,
2015). In addition, a combination of ASO delivery and co-
lonoscopic screening can facilitate the localized distribution
of ASOs at injured tissues and the specific inhibition of PMN-
MP-derived miR-23a/miR-155 in these regions. As a result,
this strategy enables the efficient combination of routine IBD
surveillance and drug administration to increase wound
healing and maintain a durable remission.

Genomic instability is an emerging hallmark of cancer that
increases mutagenesis and chromosomal abnormalities (Ne-
grini et al., 2010). Both features serve as the driving forces for
tumorigenesis and tumor progression (Campbell et al., 2017;
Levine and Holland, 2018). Genomic instability can be induced
due to cell-intrinsic abnormalities (Levine and Holland, 2018)
or extrinsically due to inflammatory activity, as seen in CRC
(Colotta et al., 2009; Kidane et al., 2014; Li and Chen, 2018).
Based on our findings, infiltrating PMNs in IBD patients may
promote genomic instability through the induction of DSBs and
suppression of HR repair. Genomic instability increases the
rate of genetic mutations, accelerates adaptation of precan-
cerous cells, and ensues carcinogenesis (Moon et al., 2019;
Raynes and Weinreich, 2019). A diagram schematic of how
PMNs contribute to the progression of IBD to CAC/CRC is
shown in Figure 1. On this basis, preventing DSB accumulation
in the inflamed mucosa of IBD patients by therapeutically
targeting miR-23a/miR-155 can preserve the genomic integrity
of colon tissues.

Finally, PMNs have been shown to mediate both benefi-
cial and detrimental effects in wound healing and cancer
(Galdiero et al., 2018; Wang et al., 2018). Although we are
still far from completely understanding the mechanisms that
underlie these seemingly opposing functions of PMNs, re-
cent insights into the temporal changes of PMN phenotypes
and increased survival during disease progression may explain
the ‘‘good’’ and the ‘‘bad’’ actions of tissue PMNs (Ng et al.,
2019; Yang et al., 2019). As such, one may speculate that
during recurring, inflammatory episodes with subsequent
waves of recruited PMNs, distinct PMN subsets with spe-

cializing activity/function may evolve at injury sites or
precancerous lesions. As per our observations, one impor-
tant feature that may differ in PMN subsets, probably dic-
tating detrimental versus beneficial PMN function, is the
content and the ability to generate MPs. This of course has
to be investigated in the future. Thus, continued exploration
of the PMN biology can offer new therapeutic avenues for
IBD therapy and CRC/CAC prevention.
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FIG. 1. Schematic diagram showing contribution of PMNs
to genomic instability and progression toward CAC/CRC. (1)
Recurring disease episodes in IBD patients elicit inflam-
matory cues and barrier dysfunction that facilitate PMN
recruitment to the injured tissues. (2) PMN infiltration pre-
cedes deposition of PMN-MPs and delivery of miR-23a/
miR-155 onto the intestinal mucosa. miR-23a and miR-155
downregulate LB1 and Rad51, respectively, leading to
replication fork collapse and HR inhibition. (3) The syner-
gistic compromise of nuclear envelope integrity and HR-
mediated DSB repair results in DSB accumulation, which in
turn increases apoptosis, impairs wound healing, and exac-
erbates inflammation. (4) Recurring cycles of tissue injury
further perpetuate unresolved DSB accumulation and likely
promote the induction of genomic instability. Genomic in-
stability encompasses a multitude of genotoxic events, in-
cluding replication stress, mutagenesis, and aneuploidy. (5)
As an emerging hallmark of cancer, genomic instability,
driven by PMN-mediated inflammation, thereby can drive
the progression from IBD to CRC. CAC, colitis-associated
cancer; CRC, colorectal cancer; DSB, double-strand break;
HR, homologous recombination; IBD, inflammatory bowel
disease; LB1, lamin B1; MP, microparticles; PMN, neutrophil.
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