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Abstract

To facilitate scalable profiling of single cells, we developed Split Pool Ligation-based 

Transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the 

cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells 

or nuclei, allows efficient sample multiplexing and requires no customized equipment. We used 

SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse 

brains and spinal cords. Over 100 cell types were identified, with gene expression patterns 

corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime 

analysis revealed transcriptional programs driving four developmental lineages, providing a 

snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides 

a path towards comprehensive single-cell transcriptomic analysis of other similarly complex 

multicellular systems.

One Sentence Summary:

Here we use SPLiT-seq, a scalable method for single-cell or single-nucleus sequencing, to profile 

156,049 single nuclei from the developing mouse brain and spinal cord.

Introduction

Over three hundred years have passed since Leeuwenhoek first described living cells, yet we 

still do not have a complete catalogue of cell types or their functions. Recently, 
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transcriptomic profiling of individual cells has emerged as an essential tool for 

characterizing cellular diversity (1–3). Single cell RNA-seq (scRNA-seq) methods have 

profiled tens of thousands of individual cells (4–6), revealing new insights about cell types 

within both healthy (7–14) and diseased tissues (15–18). Unfortunately, since these methods 

require cell sorters, custom microfluidics, or microwells, throughput is still limited and 

experiments are costly. We introduce SPLiT-seq, a low-cost, scRNA-seq method that enables 

transcriptional profiling of hundreds of thousands of fixed cells or nuclei in a single 

experiment. SPLiT-seq does not require partitioning single cells into individual 

compartments (droplets, microwells or wells), but relies on the cells themselves as 

compartments. The entire workflow before sequencing consists just of pipetting steps and no 

complex instruments are needed.

In SPLiT-seq, individual transcriptomes are uniquely labeled by passing a suspension of 

formaldehyde fixed cells or nuclei through four rounds of combinatorial barcoding. In the 

first round of barcoding, cells are distributed into a 96-well plate and cDNA is generated 

with an in-cell reverse transcription (RT) reaction using well-specific barcoded primers. 

Each well can contain a different biological sample – thereby enabling multiplexing of up to 

96 samples in a single experiment. After this step, cells from all wells are pooled and 

redistributed into a new 96-well plate, where an in-cell ligation reaction appends a second 

well-specific barcode to the cDNA. The third-round barcode, which also contains a unique 

molecular identifier (UMI), is then appended with another round of pooling, splitting, and 

ligation. After three rounds of barcoding, the cells are pooled, split into sublibraries, and 

sequencing barcodes are introduced by PCR. This final step provides a fourth barcode, while 

also making it possible to sequence different numbers of cells in each sublibrary. After 

sequencing, each transcriptome is assembled by combining reads containing the same four-

barcode combination (Fig. 1A, Fig. S1A).

Four rounds of combinatorial barcoding can yield 21,233,664 barcode combinations (three 

rounds of barcoding in 96-well plates followed by a fourth round with 24 PCR reactions) - 

enough to uniquely label over 1 million cells. Even larger numbers of barcode combinations 

can be achieved by performing experiments in 384-well plates or through additional rounds 

of barcoding (Fig. S1B). In addition, by performing the first step in a 384-well plate, up to 

384 different biological samples could be combined in a single experiment.

SPLiT-seq validation

To test SPLiT-seq’s ability to generate uniquely barcoded cells (UBCs), we performed a 

species-mixing experiment. We mixed cells from one mouse and two human cell lines (NIH/

3T3, HEK293, and Hela-S3), fixed them, and used SPLiT-seq to generate a scRNA-seq 

library with 1,758 UBCs. The library was sequenced and reads were aligned to a combined 

mouse-human genome. 99.9% of the UBCs were unambiguously assigned to a single 

species (>90% of reads aligned to a single genome) with the remaining 0.1% of UBCs 

representing barcode collisions between mouse and human cells (Fig. 1B). At saturating 

read coverage (>500,000 reads per cell), we identified a median of 15,365 UMIs and 5,498 

genes per human cell and 12,243 UMIs and 4,497 genes per mouse cell. The species purity 

in both human and mouse UBCs was high: 99.6% of reads in human UBCs and 99.0% of 
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reads in mouse UBCs aligned to their respective genomes. We repeated SPLiT-seq 

experiments with freshly prepared nuclei as well as nuclei and cells that had been preserved 

at −80°C for two weeks. In all samples, we detected similar numbers of transcripts and 

genes per cell (Fig. 1C, Fig. S2, Table S1). Gene expression was highly correlated between 

preserved and freshly prepared cells (Fig. 1D, Fig. S2, Pearson-r: 0.987) as well as between 

cells and nuclei (Fig. S2, Pearson-r: 0.952). We also examined gene and UMI detection at 

different sequencing depths and found that the sensitivity of SPLiT-seq is comparable to 

droplet-based scRNA-seq methods (Fig. S3).

snRNA-seq of developing mouse brain and spinal cord

We used SPLiT-seq to profile nuclei from the developing brain and spinal cord of postnatal 

day 2 and 11 (P2 and P11) mice. The first round of barcoding assigned identifiers for the P2 

brain, P2 spinal cord, P11 brain, and P11 spinal cord samples (Fig. 2A, Fig. S4). In total, 

four rounds of barcoding (48 × 96 × 96 × 14) generated over 6 million distinct barcode 

combinations, making it possible to process hundreds of thousands of nuclei in a single 

experiment with minimal barcode collisions (2.5% expected collisions for 150,000 nuclei).

To test how many transcripts SPLiT-seq detects within nuclei from the central nervous 

system, we performed deep sequencing on a sublibrary containing only 131 nuclei. We 

detected 4,943 UMIs and 2,055 genes per nucleus (UMI duplication: 95%). We then 

sequenced the rest of the library at lower depth, resulting in a median of 677 genes and 

1,022 UMIs per nucleus (UMI duplication: 58%) (Table S2). Low-quality transcriptomes 

were removed from analysis (19), yielding 156,049 single-nucleus transcriptomes (74,862 

P2 brain; 7,028 P2 spinal cord; 58,573 P11 brain; 15,586 P11 spinal cord).

Unsupervised clustering grouped transcriptomes into 73 distinct clusters (19) (Tables S3–

S5), which were visualized by t-Distributed Stochastic Neighbor Embedding (t-SNE, Fig. 

2A). Each of these 73 clusters was assigned to a cell class on the basis of expression of 

established marker genes (Fig. 2B). Neurons accounted for 79% of the profiled 

transcriptomes (54 clusters), with most clusters expressing Meg3.

The 27,096 non-neuronal transcriptomes spanned 19 different clusters, each assigned to a 

specific cell type. Four astrocyte types (Fig. 2C) accounted for 50% of all non-neuronal 

nuclei (n=13,481). Oligodendrocytes (6 types, n=4,294) and oligodendrocyte precursor cells 

(OPC, 1 type, n=5,793) formed the second most abundant population. We further identified 

two vascular and leptomeningeal cell (VLMC) types (Fig. S5A), endothelial cells, smooth 

muscle cells (Fig. S5B), microglia, macrophages (Fig. S5C) (20, 21), ependymal cells, and 

olfactory ensheathing cells.

Previous work has observed that t-SNE can order cells in 2D space according to stages of 

differentiation (9). Moving through t-SNE space along the path of differentiation can then be 

viewed as moving through “pseudotime”(22). As oligogenesis spans the first two postnatal 

weeks of murine development (23), we asked whether the oligodendrocyte and OPC clusters 

might reflect a continuous developmental trajectory. When we examined the 

oligodendrocyte clusters, we found that they formed an overlapping elongated shape in the t-

SNE visualization. OPCs and oligodendrocytes from the P2 mouse, were enriched at one 
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end of the structure while oligodendrocytes from the P11 mouse were enriched at the 

opposite end (Fig. S6), indicative of a lineage (19, 22).

We then performed a more thorough analysis of this putative lineage. To ensure that our 

ordering of oligodendrocytes was determined exclusively by their relationship to other 

oligodendrocytes, rather than all cells, we re-embedded only transcriptomes within these 

seven clusters with t-SNE (Fig. 2D, Fig. S7A). We calculated the moving average of gene 

expression in the resulting pseudotime ordering (Fig. 2E, Fig. S8). Analysis of these 

expression patterns confirmed that proliferating OPCs segregated to one end of the t-SNE, 

whereas mature oligodendrocytes segregated to the opposite end (Fig. S7B). We also 

detected previously reported intermediate stages of oligodendrocyte development, with the 

order of gene expression across pseudotime nearly identical to the one defined previously (9) 

(Fig. S7C, Spearman-r: 0.94). When analyzing spinal cord and brain derived cells separately, 

we found more mature oligodendrocytes in the spinal cord than in the brain (Fig. S7D), 

indicating that oligodendrocyte maturation occurs earlier in the spinal cord.

Neuronal Cell Types

Using known gene markers, we were able to assign most neuronal clusters to specific cell 

types (19). While some clusters corresponded to abundant cell types, such as cerebellar 

granule cells (CGCs), others mapped to rare and often less characterized cell types, such as 

mitral/tufted cells. Previously characterized regional markers were used to assign the 

majority of clusters to a specific region of the brain (24) (Fig. 3A). Regional assignments 

were validated with RNA in situ hybridization (ISH) from the Allen Institute’s Developing 

Mouse Brain Atlas (Allen DMBA) (25). Specifically, we generated composite ISH maps by 

averaging across the five most highly enriched genes from each of our clusters (Tables S6, 

S7). For clusters primarily containing P2 or P11 nuclei, we used the P4 or P14 atlases, 

respectively. The resulting composite maps confirmed the high regional specificity of most 

types (Figs. 3B, S9 and S10). Cortical pyramidal neuronal types could be further assigned to 

specific layers using marker genes (Fig. 3C) (7, 8).

Granule cell fate in the hippocampus

In the hippocampus, immature granule cells in the dentate gyrus give rise not only to mature 

granule cells, but also to pyramidal neurons (26). This process is one of two instances of 

neurogenesis that continues into adulthood (27), but little is known about the underlying 

transcriptional program. We determined that three neuronal cell types from the hippocampus 

likely constituted a developmental trajectory (19). Analysis of only these transcriptomes 

with t-SNE revealed a clear branching structure (Fig. 3D, Fig. S11A). The transcription 

factor Prox1, suspected to be necessary for granule cell identity (28), was exclusively 

expressed in one branch, whereas genes known to be specific to CA3 pyramidal neurons 

such as Spock1 (29) were expressed exclusively in the other branch. Markers of dividing 

neuronal progenitors were expressed before the branching point and genes in the Slit-Robo 

signaling pathway were differentially expressed between the two lineages (Fig. S11B). We 

used these data to identify specific temporal dynamics of transcription factors across the two 

lineages, with Meis2 as a candidate marker of early pyramidal cell differentiation (Fig. 3E, 

Fig. S12).
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Profiling cells in the developing cerebellum

The cerebellum accounts for only 9% of the brain mass in adult mice, but contains nearly 

85% of all neurons (30). Despite the wide range of functions performed by the cerebellum, 

many of the gene expression programs driving development of cerebellar cell types remain 

unknown. We identified the four main cerebellar neuronal types (Fig. 4A): Purkinje cells, 

Golgi cells, stellate/basket cells, and CGCs. Two types of Purkinje cells (Fig. 4B) were 

segregated primarily by age (P2 vs P11), and did not form a continuous trajectory in t-SNE 

but rather two clearly segregated clusters. The absence of cells at intermediate stages of 

maturation suggests that Purkinje cell development may be more synchronous than other 

processes of neurogenesis captured by our dataset.

CGCs, the most numerous type of neuron in the brain (31), drive the postnatal foliation of 

the cerebellar cortex by migrating from the external granule layer (EGL), through the 

molecular layer (ML) and the Purkinje cell layer (PcL) to the internal granule layer (IGL) 

(32, 33). We created a pseudotime ordering of 15,360 CGCs (Fig. 4C, Fig. S13) and 

measured gene expression across this lineage. We defined genes with specific expression at 

different points in pseudotime (Fig. S14), and then used RNA ISH to map these genes to 

layers of the developing cerebellar cortex. Genes ordered from early-to-late in pseudotime 

were progressively expressed from outer-to-inner layers, consistent with the known direction 

of CGC migration (Fig. 4D). Our analysis revealed previously unknown pseudotime and 

layer specific gene expression patterns within pathways related to axonal development and 

neuronal migration (Fig. S15).

Origins of cerebellar inhibitory interneurons

The question of whether all cerebellar inhibitory interneurons arise from the same progenitor 

population has been a point of contention (34). Early hypotheses proposed that stellate/

basket cells originated from precursors in the EGL, whereas Golgi cell precursors resided in 

the ventricular epithelium (35). Later evidence indicated that these two interneurons shared a 

common precursor in the cerebellar white matter (36, 37). However, the molecular profile of 

the inhibitory neuron lineage in the cerebellum remains largely unknown.

We found a cerebellar inhibitory interneuron lineage (1,517 cells, Fig. 4E, Fig. S16A) with a 

shared progenitor branching into either Golgi or stellate/basket cells (Fig. S17). This lineage 

includes a known precursor cell type expressing Pax2 (36), but also a previously unknown, 

earlier precursor expressing Pax3 (Fig. 4F). RNA ISH analysis suggests that this Pax3+ 

precursor is located deep within the cerebellar white matter. Moreover, we found that 

stellate/basket cells expressed genes specific to the molecular layer, whereas Golgi cells 

expressed genes specific to the granule cell layer (Fig. 4F, Fig. S18). The distribution of P2 

and P11 nuclei within the lineage clearly demonstrated that the maturation of Golgi cells 

was well underway by P2 and complete by P11 (Fig. S16B). In contrast, stellate/basket cells 

had not begun to differentiate at P2 and were still not fully mature by P11. These results 

indicate that the same molecularly defined precursor gives rise to two distinct interneurons at 

different stages of development.
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Cell types in the developing spinal cord

The original clustering was dominated by cells in the brain, and many spinal cord cells did 

not segregate into well-defined clusters (Fig. S19). To resolve more cell types in the spinal 

cord, we selected all the nuclei originating from the spinal cord and re-clustered them (19), 

resulting in 44 clusters: 14 non-neuronal types (12 of which were also found in the brain) 

and 30 neuronal types (Fig. 5A and Tables S8–S10). We identified 11 different types of 

GABAergic neurons, of which several were also glycinergic (Fig. 5B). One GABAergic type 

was identified as cerebrospinal fluid-contacting neurons (CSF-cNs) (38), with the other ten 

types corresponding to inhibitory interneurons. Glutamatergic interneurons accounted for 15 

additional types. We also identified two clusters of cholinergic motor neuron types (alpha 

and gamma) (39). To date, known markers exist only for gamma motor neurons (Esrrg and 

Esrrb) (40), however, we identified specific markers for both alpha and gamma neurons (Fig. 

5C).

To infer the spatial origin of neuronal types in the spinal cord, we identified the ten most 

enriched genes in each type according to our snRNA-seq data and created composite ISH 

maps based on the Allen Mouse Spinal Cord Atlas (41) (Fig. 5D, Fig. S20). Some 

interneuron subtypes appeared to originate primarily from laminae 1–3, with others 

originating from laminae 4–6. We found both inhibitory and excitatory neurons in each 

region. Motor neurons expressed genes found in laminae 9, while CSF-cNs were the only 

neuronal type expressing genes found in the central canal. These data allowed us to create an 

atlas of gene expression in the early spinal cord, providing a rich resource for further 

understanding development of the central nervous system.

Discussion

In this work, we profiled hundreds of thousands of cells using only basic laboratory 

equipment with a library preparation cost of ~$0.01 per cell (Fig. S21, Table S11). In our 

analysis of more than 150,000 single-nucleus transcriptomes from two early postnatal 

stages, we identified 69 types of cells in the brain and 44 types in the spinal cord. We 

defined many new molecular markers for specific cell types, and explored gene expression 

in four different developmental lineages.

SPLiT-seq’s compatibility with fixed cells and fixed nuclei overcomes challenges faced by 

other scRNA-seq methods. Fixation can reduce perturbations to endogenous gene expression 

during cell handling (42) and makes it possible to store cells for future experiments. 

Moreover, the use of nuclei bypasses the need to obtain intact single cells, which can be 

challenging for many complex tissues. SPLiT-seq’s compatibility with formaldehyde-fixed 

nuclei suggests it may be used to profile single nuclei from formalin-fixed, paraffin-

embedded tissue (43).

SPLiT-seq enables flexible and scalable cell and sample multiplexing. The use of the first-

round barcode as a sample identifier makes it possible to profile a large number and variety 

of samples in parallel, thus minimizing batch effects. As the number of unique barcodes 

grows exponentially with the number of barcoding rounds, larger numbers of cells than 

presented here could be processed by adding a fifth barcoding round or by switching to a 
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384-well plate format. Although for such large cell numbers sequencing cost may currently 

be forbidding, it is easy to imagine extended applications, such as targeted sequencing of 

gene panels, which would even now benefit from very large cell numbers and only require 

shallow sequencing depth.

Our hope is that the increased scale and accessibility provided by the low cost and minimal 

equipment requirements of SPLiT-seq will further accelerate the widespread adoption of 

scRNA-seq.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of SPLiT-seq.
(A) Labeling transcriptomes with split-pool barcoding. In each split-pool round, fixed cells 

or nuclei are randomly distributed into wells and transcripts are labeled with well-specific 

barcodes. Barcoded RT primers are used in the first round. Second and third round barcodes 

are appended to cDNA through ligation. A fourth barcode is added to cDNA molecules by 

PCR during sequencing library preparation. The bottom scheme shows the final barcoded 

cDNA molecule. (B) Species mixing experiment with a library prepared from 1,758 whole 

cells. Human UBCs are blue, mouse UBCs are red, and mixed-species UBCs are gray. The 
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estimated barcode collision rate is 0.2%, whereas species purity is >99%. (C) UMI counts 

from mixing experiments performed with fresh and frozen (stored at −80°C for 2 weeks) 

cells and nuclei. Median human UMI counts for fresh cells: 15,365; frozen cells: 15,078; 

nuclei: 12,113; frozen nuclei: 13,636. (D) Measured gene expression by SPLiT-seq is highly 

correlated between frozen cells and cells processed immediately (Pearson-r: 0.987). Frozen 

and fresh cells were processed in two different SPLiT-seq experiments.
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Fig. 2. Single-cell transcriptome landscape of postnatal brain and spinal cord development by 
SPLiT-seq.
(A) Over 150,000 nuclei from P2 and P11 mouse brains and spinal cords were profiled in a 

single experiment employing over six million barcode combinations. Transcriptomes were 

clustered and then visualized using t-SNE. Cells are colored according to cell type. Each 

cluster was downsampled to 1,000 cells for visualization. (B) A total of 73 distinct clusters 

were assigned to nine cell classes based on expression of established markers. The violin 

plots show marker gene expression in each cluster. (C) Astrocyte clusters are highlighted in 

red in the t-SNE. The violin plots show markers that are differentially expressed between 

astrocyte subtypes. (D) Seven OPC and oligodendrocyte clusters (containing 10,087 nuclei) 

colocalized in the original t-SNE (highlighted in red), forming a lineage. Cells from these 

clusters were re-embedded with t-SNE. (E) The heatmap shows genes expressed 

differentially across pseudotime in the oligodendrocyte lineage.
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Fig. 3. Neuronal clusters exhibit regional specificity.
(A) Marker gene expression was used to map neuronal clusters to specific brain regions. (B) 

Sagittal composite RNA ISH maps for nine representative clusters from distinct areas. For 

each cell type, we averaged ISH intensities from the Allen DMBA across the top five 

differentially expressed genes. (C) Types of pyramidal neurons in the cortex display layer-

specific enrichments according to marker genes: cortical pyramidal neurons are highlighted 

in red in the t-SNE. Expression of example marker genes in pyramidal clusters is shown in 

the middle and corresponding available RNA ISH results on the right. (D) Three clusters 
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constitute a developmental trajectory in the hippocampus. Re-embedding these clusters 

highlights the branching of the two differentiation trajectories in pseudotime. (E) Expression 

of differentiation marker genes is overlaid on the t-SNE. RNA ISH maps (Allen DMBA) 

show the regional specificity of granule cell and pyramidal neuron markers.

Rosenberg et al. Page 14

Science. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Neuronal differentiation trajectories in the cerebellum revealed by SPLiT-seq.
(A) Major cell types and their locations in the cerebellum. (B) Two types of Purkinje cells 

with distinct gene expression programs were identified. Early Purkinje cells are primarily 

found in the P2 brain and late Purkinje cells in the P11 brain. (C) t-SNE re-embedding of 

15,360 nuclei suggests a pseudotime ordering from proliferating, to migrating, to mature 

CGCs. (D) Expression of marker genes is overlaid on the t-SNE, and the corresponding 

RNA ISH from Allen DMBA is shown below. Marker genes associated with different layers 

of the cerebellum are expressed at different points in pseudotime. Gene expression order is 

consistent with ordering of the physical layers. RNA ISH maps confirm regional specificity 

of marker genes. (E) t-SNE re-embedding of 1,890 nuclei reveals a branching differentiation 

trajectory. Progenitors can either become Golgi cells or stellate/basket cells. (F) Markers for 

progenitors and mature cell types are expressed at different points in pseudotime and have 

layer specificity.
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Fig. 5. Gene expression patterns and spatial origin of cell types in the spinal cord.
(A) Re-clustering spinal cord nuclei resulted in 30 neuronal and 14 non-neuronal clusters. 

(B) GABAergic neurons were defined by expression of Gad1 and Gad2. A subset of 

GABAergic neurons are also glycinergic, based on expression of Slc6a5. Glutamatergic 

neurons were defined by expression of VGLUT1 (Slc17a6), whereas cholinergic motor 

neurons express Chat. (C) Novel gene markers distinguish gamma motor neurons from alpha 

motor neurons. (D) Inferred spatial origin of neuronal clusters within the spinal cord. We 

analyzed the Allen Spinal Cord Atlas expression patterns of the top ten enriched genes in 

each cluster. Dark purple indicates expression of all ten genes in the given region, while 

white indicates none of the ten genes were expressed in the given region.
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