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Abstract

Metal artifacts are a major confounding factor for image quality in CT, especially in image-

guided surgery scenarios where surgical tools and implants frequently occur in the field-of-view. 

Traditional metal artifact correction methods typically use algorithmic solutions to interpolate 

over the highly attenuated projection measurements where metal is present but cannot recover the 

missing information obstructed by the metal. In this work, we treat metal artifacts as a missing 

data problem and employ noncircular orbits to maximize data completeness in the presence of 

metal. We first implement a local data completeness metric based on Tuy’s condition as the 

percentage of great circles sampled by a particular orbit and accounted for the presence of metal 

by discounting any rays that pass through metal. We then compute the metric over many locations 

and many possible metal locations to reflect data completeness for arbitrary metal placements 

within a volume of interest. We used this metric to evaluate the effectiveness of sinusoidal orbits 

of different magnitudes and frequencies in metal artifact reduction. We also evaluated noncircular 

orbits in two imaging systems for phantoms with different metal objects and metal arrangements. 

Among a circular, tilted circular, and a sinusoidal orbit of two cycles per rotation, the latter is 

shown to most effectively remove metal artifacts. The noncircular orbit not only reduce the extent 

of streaks, but allows better visualization of spatial frequencies that cannot be recovered by metal 

artifact correction algorithms. These results illustrate the potential of relatively simple noncircular 

orbits to be robust against metal implants which ordinarily present significant challenges in 

interventional imaging.
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I. Introduction

Cone-beam computed tomography (CBCT) acquisitions have traditionally followed a 

circular source-detector orbit. Despite well-known cone-beam artifacts as a result of 

insufficient sampling away from the central slice (i.e., the null cone), a circular orbit can be 

achieved with relatively simple mechanical designs and therefore has remained the dominant 

scan geometry on CBCT systems. The advent of modern robotic c-arms has enabled greater 

flexibility in source-detector placements around the patient. This capability has primarily 
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been used for intra-operative fluoroscopy guidance, but it has also provided opportunity to 

realize a host of noncircular orbits designs for CT acquisition. Many designs have been 

proposed to combat cone-beam artifacts - e.g., circle-and-line,[1] saddle orbits,[2] circle-

plus-arc,[3] etc. These designs often aim to improve or satisfy cone-beam data completeness 

conditions first proposed by Tuy.[4] Customized noncircular orbits for particular objects or 

patient anatomy have also been designed for specific image quality objectives, including 

task-based detectability.[5], [6]

In this work, we investigate noncircular orbits for metal artifact minimization. Metal artifacts 

are especially relevant in image-guided surgery scenarios where surgical tools and implants 

frequently appear in the field-of-view. The traditional solution to metal artifacts is to 

apply any number of data correction approaches. Projection measurements where x-rays 

have passed through metal are highly attenuated - often to the point where they can 

be consider “missing data”. Algorithms therefore seek to replace these measurements via 

interpolation schemes based on neighboring projection data, prior information from previous 

or other patient scans, or other in-painting approaches.[7], [8] These methods can reduce 

the apparent severity of the artifacts, but are typically not able to “fill in” the true missing 

information. That is, these algorithms do not improve the completeness of the data, and 

anatomical details not sampled in the acquisition will remain missing in the reconstruction. 

In this work, we aim to address the root cause of metal artifacts by designing orbits that are 

metal-tolerant by maximizing data completeness in the presence of metal.

II. Theoretical Methods

A. Local Completeness Metric

We adapt Tuy’s condition to a local context where data sufficiency is quantified for a single 

point in the object. A specific “probe” point is completely sampled if all planes passing 

through it intersects the orbit. We denote points in the object as l with subscript i and 

discrete source locations on the orbit as S with subscript j. As shown in Fig.1, for each li, we 

define a local spherical coordinate system, (θli, ϕli). Each plane passing through li intersects 

a great circles on the unit sphere. We sample an ensemble of great circles (denoted as c with 

subscript k) at regular intervals of θli and ϕli, which can be equally represented by their unit 

normals, vck.

We then calculate whether a particular source location intersects any great circles by finding 

the angle between vck and the vector connecting the source location to the location of 

interest, vliSj. If the angle falls within 90° ± ϵ, the great circle ck has been sampled by the 

orbit. For example, in Fig.1, S1 intersects c2 and S2 intersects c1 (as well as many others, 

not shown). We repeat the calculation for all source locations Sj and all great circles ck. 

The local completeness metric is defined as the percentage of great circles that have been 

intersected by the orbit.

In the presence of metal, rays intersecting the metal are highly attenuated - often to the point 

they provide no useful information. Therefore, we no longer count great circles sampled by 

such source locations (e.g., S2 and c1) towards the completeness metric. Instead, these great 
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circles need to be sampled by an alternative source location (e.g., S3) that circumvents the 

metal. In other words, the presence of metal results in a range of (θli, ϕli) that represent 

“missing data” due to high attenuation. When the metal can be approximated as a sphere, 

this range of (θli, ϕli) can be computed as the equirectangular projection of the metal sphere 

onto the unit sphere around li based on the size and relative location of the metal to li. 
Fig.1(b) illustrates the range of (θli, ϕli) to avoid for four example li around a metal ball.

B. Noncircular Orbit Design

An orbit that can circumvent metal and achieve a 100% completeness at all probe locations 

within an object can theoretically eliminate metal (and cone-beam) artifact. We therefore 

use the completeness metric to identify orbits that are robust against metal artifacts in 

the presence of metal at arbitrary locations. In this work, we assume the metal object to 

be a sphere of radius 18 mm, and sampled metal locations within a cylindrical field of 

view with radius of 16 cm and height of 20 cm. For each metal location, we evaluated 

the local completeness metric over 50 probe locations distributed over a spherical shell 

that is 10 mm away from the surface of the metal. We only evaluated locations close to 

the metal because they suffer from the most severe metal artifacts, i.e., lowest percentage 

completeness. We can then compute a scalar metric, e.g., the mean, the minimum, etc. to 

quantify data completeness over the volume at arbitrary metal locations. The metal locations 

and probe locations around each metal ball used in this work are illustrated in Fig.2.

In previous work,[9] we performed an orbit optimization using the maximum of the 

minimum local percentages as the objective function. We found that many noncircular orbits 

can achieve similar levels of completeness. Thus, additional constraints need to be used to 

select among similar near-complete orbits. In this work, we focus on simple sinusoidal orbits 

and apply the completeness metric to evaluate the effectiveness of a range of sinusoids of 

different frequencies, f, and magnitude, ϕmax. In the spherical world coordinates, (θw, ϕw), 

the sinusoidal orbits are expressed as:

ϕw = ϕmaxcos(fθw) (1)

where θw is the traditional gantry rotation angle, ranging from 0° to 360°, and ϕw is the 

gantry tilt angle [see Fig.1(a) for world coordinate definitions]. The maximum achievable tilt 

on the imaging system (e.g. due to mechanical constraints, patient positioning, table, etc.) is 

denoted by ϕmax. Special cases of this definition include ϕmax = 0° for a circular orbit and f 
= 1 for a tilted circular orbit.

We computed the completeness metric for sinusoidal orbits of frequencies ranging from 0.25 

to 8 at 0.25 increment, and of ϕmax ranging from 0° to 50°.

III. Experimental Methods

A. Imaging phantoms and Imaging Systems

We illustrated the robustness of the noncircular orbits in two phantoms shown in Fig.3(a). 

Both phantoms are constructed with a cluttered background by mixing plastic balls of 

different sizes and materials. In this first phantom, on the central axial slice, we inserted 

Gang et al. Page 3

Conf Proc Int Conf Image Form Xray Comput Tomogr. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



three stainless steel balls of 18 mm diameter and surrounded by 3D-printed radial line pairs. 

These radial line pairs are designed specifically to challenge CT imaging around metal. 

According to the Fourier slice theorem, the frequencies that will be missed by an in-plane 

circular orbit are those perpendicular to the metal ball. Thus, line pairs directed to the center 

of the metal balls would present a significant challenge for interpolation-based correction 

methods. Two smaller stainless steel balls were also inserted 2.5cm above and below the 

central axial plane. A second phantom was constructed with the same background clutter 

but with a spinal fusion hardware complex. Specifically, three pairs of stainless steel pedicle 

screws were placed in the phantom. Each set of three screws are joined by a stainless steel 

rod.

Noncircular orbits were realized on two physical systems. First, experiments were conducted 

on a CBCT test bench comprised of a Varex 4343CB flat-panel detector, Varex Rad-94 

x-ray tube and an Alio Industries “hybrid hexapod” system capable of six degree-of-freedom 

motion, which served as an object stage. This system can emulate a robotic C-arm system 

with arbitrary orbits. In these studies, source-detector distance was fixed and source, 

detector, and hexapod motion was used to emulate sinusoidal orbits with tilts up to 

approximately 24°. The second system used for investigation was a modified Siemens Zeego 

robotic C-arm system. This research system was adapted to permit specification of largely 

arbitrary orbits in a step-and-shoot fashion.[10] This system in shown in Fig.3(b) and also 

has a maximum tilt limitation of approximately 24°.

B. Geometry calibration using 2D-3D registration

The noncircular orbit was calibrated using a self-calibration routine described in Ref [11]. 

Briefly, a reconstruction of the phantom from a circular geometry was used as a known 

model of the object. Projections of the known model was then registered to each view of 

the noncircular acquisition to identify the projection matrix. The ensemble of projection 

matrices were then used to reconstruct data from the noncircular acquisition.

C. Reconstruction

For reconstruction, we chose a model-based algorithm due to its ability to accommodate 

arbitrary acquisition geometries. We adopted a a penalized weighted least squares objective 

with a Huber penalty and used a separable footprint projector. No metal artifact correction 

methods were applied to highlight the extent of metal artifact as a result of orbit alone.

IV. Results

The results of the completeness metric evaluation is summarized in Fig.4 as the minimum 

over all metal and probe locations. A number of features are important. The percentage 

completeness is the lowest for circular (ϕmax = 0) and tilted circular orbit (f = 1). In general, 

the degree of completeness improves with larger ϕmax and increased frequency.

We observe some periodicity where odd frequencies perform worse than even frequencies. 

This is due to odd frequencies not taking advantage of redundancy in θ to sample different 

ϕ. That is, the rays (lines of response) that are collected at θ and θ + 180° are simlar (for 

small fan angles). Even orbits, on the other hand, leverage inherent redundancy of a 360° 
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orbit to provide rays sampled at different ϕ and are therefore more robust against metal 

artifacts. At high frequencies, the space is densely sampled and therefore the periodicity is 

not as pronounced.

Reconstructions for the two phantoms in Fig.3 are shown in Fig.5 for a circular, tilted 

circular, and a sinusoid acquisition at f = 2. Reconstructions following circular orbits have 

severe streaking as a result of multiple in-plane metal objects. Moreover, the radial line 

pairs cannot be faithfully reproduced in-plane since those frequencies were never sampled. 

The tilted circular orbit improves in-plane visualization but displaces the metal artifacts to 

outof-plane, evident in the saggital slices. The f = 2 sinusoid exhibits the least metal artifacts 

both in-plane, and out-of-plane. The reduction in metal artifact is not only reflected in the 

reduced streak artifacts, but also in the ability to see sphere details between metals which 

would not be visible had a metal artifact reduction algorithm been used.

V. Discussions and Conclusions

This works presents noncircular orbit design and implementation for metal artifact 

minimization. We used a local Tuy completeness metric to quantify the extent of sampling 

in the presence of metal and investigated the robustness of sinusoidal orbits of different 

frequencies and magnitudes. The orbits were realized on an experimental CBCT test bench 

and a Zeego system for two phantoms with metal balls and pedicle screws. We observed 

that a sinusoidal orbit of frequency equals 2 effectively removes metal artifacts by improving 

sampling and reducing the missing data effects as a result of metal implants.

Ongoing work is seeking to extend orbital designs for patients with hip implants and to 

implement such metal-tolerant orbits on other clinical systems including mobile C-arms. 

Similarly, quantitative comparisons with traditional metal artifact correction approaches are 

underway. Future work will include new orbital design that seek solutions within the class of 

complete orbits using additional image quality measures. For example, image quality is also 

driven by patient anatomy (habitus and bone) that can be used to select from metal-tolerant 

complete orbits.

This work has illustrated the basic feasibility for using noncircular orbits to significantly 

reduce metal artifacts by addressing the source of the problem - missing data. Complete 

orbits as simple as sinusoids can provide sufficiently redundant data to eliminate metal 

artifacts - providing a potential clinical solution for interventional CT to a longstanding 

problem for surgical tools and metal implants.
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Fig. 1: 
(a) Local Tuy completeness metric at a specific “probe” point, li, as the percentage of great 

circles intersected by the source trajectory. The presence of metal projects a “missing data” 

(red) space onto the unit sphere around li that no longer contributes to sampling. (b) The 

“missing data” space in dependent on the size of the metal and the relative location of the 

metal and the location of interest, illustrated here for four locations around a metal ball.
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Fig. 2: 
Sampling locations for (a) metal and (b) probe locations around each metal.
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Fig. 3: 
(a) Imaging phantoms consisting of a cluttered background. We inserted two sets of metal 

objects: 1) stainless steel balls surrounded by 3D printed radial line pairs, and 2) spine 

fusion hardware consisting of three pairs of pedicle screws. (b) Noncircular orbits were 

realized on a CBCT test bench and a Zeego C-arm system.
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Fig. 4: 
The minimum percentage complete over all metal and probe locations for sinusoidal orbits 

of different frequencies and magnitudes.
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Fig. 5: 
Reconstructions for the two phantom configurations using a circular orbit, a tilted circular 

orbit, and a sinusoidal orbit of f = 2
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