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Abstract

Model-based material decomposition (MBMD) directly estimates the material densities from the 

spectral CT data and has found opportunities for dose reduction via physical and statistical 

modeling and advanced regularization. However, image properties such as spatial resolution, 

noise, and cross-basis response in the context of material decomposition are dependent on 

regularization, and high-dimensional exhaustive sweeping of regularization parameters is 

suboptimal. In this work, we proposed a set of prediction tools for generalized local impulse 

response (LIR) that characterizes both in-basis spatial resolution and cross-basis response, and 

noise correlation prospectively. The accuracy of noise predictor was validated in a simulation 

study, comparing predicted and measured in- and cross-basis noise correlations. Employing these 

predictors, we composed a specialized regularization for cross-talk reduction and showed that such 

prediction tools are promising for task-based optimization in spectral CT applications.

1 INTRODUCTION

Spectral CT is finding increasing application in a number of areas due to its ability to 

estimate material density distributions using energy-dependent measurements. Traditionally, 

material decomposition and reconstruction are sequentially processed. In image domain 
decomposition, spectral channels are reconstructed separately, followed by a decomposition 

of the image volumes. This often requires additional correction for beam-hardening effects 

since the reconstruction uses a monoenergetic model. In projection-domain decomposition, 

spectral measurements are decomposed into material line integral estimates followed by 

reconstruction. Projection-domain methods require matched system geometry between 

channels, which is not always available (e.g., in kVp-switching or split-filter approaches). 

More recently, model-based material decomposition (MBMD) permits estimation of 

material density directly from spectral measurements without an intermediate step. MBMD 

merges a polychromatic forward model and statistical model into a nonlinear objective 

function that can be solved iteratively like “standard” model-based iterative reconstruction 

(MBIR). Such direct MBMD has does not require matched geometries between spectral 

channels, can handle arbitrary sampling patterns, and explicitly models (and eliminates) 

beam-hardening effects. Moreover, like MBIR, direct estimation results benefits from 

statistical weighting and flexible regularization design. However, (also like MBIR) the 

relationship between image properties and regularization and object-dependence can be 

Corresponding author: J. Webster Stayman, web.stayman@jhu.edu. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 November 05.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2020 February ; 11312: . doi:10.1117/12.2549777.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complicated. Improper regularization parameters may result in over blurry or noisy images; 

and, specific to spectral CT, artifacts due to cross-talk between material bases. Traditional 

parameter tuning that uses exhaustive evaluation is particularly time-consuming and may not 

generalize due to the inherent object- and data-dependence of MBMD.

In recent work 1, we presented a mathematical framework for prediction of a generalized 

local impulse response (LIR) in MBMD. This generalized LIR specifies both the local 

resolution properties but also the cross-talk between material channels due to coupling in the 

objective function. We extend this prediction tool to noise analysis with a closed-form 

expression for local covariance (or, equivalently noise power spectrum), which also include 

the noise cross-talk. The combined performance prediction framework permits prospective 

regularization design for specific imaging goals. We show an example use of the prediction 

framework to minimize cross-talk between reconstructed material bases using generalized 

LIR predictions.

2 METHODS

2.1 Model-based material decomposition

The polychromatic forward model that relates material density volumes ρ to mean spectral 

CT measurements y is:

y = GS exp −QAρ . (1)

The CT system is characterized by the system matrix A, a material mass attenuation 

coefficient matrix Q (containing discretized energy bins and over each material basis), a 

spectral combination matrix S (quantifying the system spectral response including incident 

photon spectrum, detector energy sensitivity, etc.) and a diagonal gain matrix G (overall 

fluence, detector gains, etc.). Note that this forward model is general and S (and A) can 

model various Spectral CT approaches including kV-switching, photon counting detectors, 

dual-layer detectors, dual-source systems, etc.

Presuming the measurements follow a multivariate Gaussian distribution with covariance 

Ky, we can estimate ρ by minimizing the following objective function, which includes a data 

fidelity term L(ρ, y) and a penalty term R(ρ). In this work, we focus on a quadratic penalty 

of pairwise difference in 4 nearest neighborhood.

Φ ρ; y = Ky + R ρ = 1
2 y − y TKy

−1 y − y + R ρ , R ρ

= 1
4 ∑

j
βk∑

j
∑

l ∈ Nj
ρk

j − ρk
l 2 (2)

2.2 Mathematical Derivations of MBMD Image Properties

2.1.1. Derivation of generalized local impulse response—To quantify the mean 

imaging properties, we will consider a generalized local impulse response – defined as the 
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relative change of density estimates to a small local perturbation. This can be represented 

using a derivative of the estimates with respect to truth. Applying the chain rule, the 

response to a local impulse at the jth voxel in the kth material basis is

lk
j = ∂ρ y

∂ρk
j = ∇yρ y ∂y

∂ρk
j . (3)

We decompose the system response into two steps, the measurements acquisition step 

ρ y ∇yρ y  and the decomposition step y ρ :

∂y
∂ρk

j = − GSD exp −QAρ QAek
j = − WQAek

j, (4)

∇yρ y = − ATQTWTKy
−1WQA + R −1ATQTWTKy

−1 (5)

where ek
j is a Kronecker delta vector that has the same shape as ρ with unity at the jth voxel 

in the kth material basis, R is the Hessian of the penalty term R(ρ), and 

W = GSD exp −QAρ  is the spectral channel-wise weights which can be estimated without 

a complete decomposition. Substituting (4) and (5) into (3), the closed-form expression of 

LIR is

lk
j = ATQTWTKy

−1WQA + R −1ATQTWTKy
−1WQAek

j (6)

Note that the LIR carries all the dependencies one would expect from an MBIR approach 

including location-dependence (j), object/data-dependence (via W, and regularization-

dependence (R).

2.2.2. Derivation of covariance—The covariance of the estimator ρ is approximated 

as:

Cov ρ ≈ ∇yρ y Cov y ∇yρ y T
(7)

Substituting Ky and (5) into (7), the closed-form expression of covariance is

Cov ρ
= ATQTWTKy

−1WQA + R −1ATQTWTKy
−1WQA ATQTWTKy

−1WQA + R −1

.
(8)

2.2.3. Fast Fourier approximation—The closed-form expressions (6) and (8) involve 

matrix inversion, which can be solved using iterative methods (e.g. conjugate gradients) but 

with significant computation time. We propose a fast circulant approximation in a local 

region of interest (ROI) around the impulse and solve the matrix inversion using Fourier 
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methods. For compactness, we denote the 2D Fourier transform of the ROI of 

ATQTWTKy
−1WQAek

j in the k′th material basis with ℱk′, k
j . Similarly, we denote the 2D 

Fourier transform of the ROI of ATQTWTKy
−1WQA + R ek

j in the k′th material basis as 

ℛk′, k
j . Thus, for a dual-material decomposition, the circulant approximation of LIR and 

noise power spectrum (NPS, Fourier transform of covariance) are

l1, 1
j = ℱ−1 ℱ1, 1

j ⊙ ℛ2, 2
j − ℱ2, 1

j ⊙ ℛ1, 2
j

ℛ1, 1
j ⊙ ℛ2, 2

j − ℛ2, 1
j ⊙ ℛ1, 2

j ; l2, 1
j

= ℱ−1 ℱ2, 1
j ⊙ ℛ1, 1

j − ℱ1, 1
j ⊙ ℛ2, 1

j

ℛ1, 1
j ⊙ ℛ2, 2

j − ℛ2, 1
j ⊙ ℛ1, 2

j

(9)

NPS1, 1
j =

ℱ1, 1
j ⊙ ℛ2, 2

j − ℱ1, 2
j ⊙ ℛ1, 2

j ⊙ ℛ2, 2
j − ℱ2, 1

j ⊙ ℛ2, 2
j − ℱ2, 2

j ⊙ ℛ1, 2
j ⊙ ℛ2, 1

j

ℛ1, 1
j ⊙ ℛ2, 2

j − ℛ2, 1
j ⊙ ℛ1, 2

j 2

NPS2, 1
j

=
− ℱ1, 1

j ⊙ ℛ2, 2
j − ℱ1, 2

j ⊙ ℛ1, 2
j ⊙ ℛ1, 2

j + ℱ2, 1
j ⊙ ℛ2, 2

j − ℱ2, 2
j ⊙ ℛ1, 2

j ⊙ ℛ1, 1
j

ℛ1, 1
j ⊙ ℛ2, 2

j − ℛ2, 1
j ⊙ ℛ1, 2

j 2
(10)

where ℱ−1 denotes the discrete Fourier transform. Here ⊙, /, and ⋅ 2 denote the element-

wise multiplication, division, and squaring respectively. The predictor provides prospective 

quantification of both the in-basis response and noise correlations (l1, 1
j , NPS1, 1

j – quantifying 

in-basis resolution and noise) as well as cross-basis properties (l1, 1
j ,NPS1, 1

j  – quantifying 

cross-talk and noise correlations between material bases).

2.3 Validation of noise predictors in simulation experiments

For numerical validation of prediction accuracy, a water/iodine material phantom (Figure 1) 

was emulated for spectral measurements in an 80/120 kVp switching dual-energy CT 

system. The source-to-axis distance was 600 mm with a magnification of 2. We emulated 

360 angles × 512 bins and reconstructed 2 material bases, each consisting of 128 × 256 0.5 

mm cubic voxels. 4000 iterations of an MBMD algorithm (Tilley et al 2019 2) were applied 

to guarantee convergence. We added Poisson noise to the mean measurements with a bare-

beam fluence level at 5 × 105 photons/pixel and generated 10 realizations. A 1D sweep over 

regularization strengths was performed in the soft tissue and water basis, (βs and βI), 

between (3 × 107,1 × 1010) and (3 × 109,1 × 1012). 9 noise-only image volumes were 

computed as the difference of the consecutive realizations. The in-basis and cross-basis NPS 

were computed as follows:
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NPSk = axay
2nxny

〈 DFT Δ ROII
2〉; NPSk, k′

= axay
2nxny

DFT Δ ROIk
2 ⊙ DFT Δ ROIk′ 〉

(11)

where DFT ΔROIk  denotes the discrete Fourier transform of a 2D ROI (16 × 16 voxels) at 

the center, ax/ay and nx/ny are voxel size and number of voxels in ROI in x/y directions, 

respectively. ⋅  and ⋅  are averaging and absolute value calculation. The predictions were 

computed using the Fourier method of Equation (10).

2.4 Regularization design for cross-talk reduction

The cross terms such as l2, 1
j  in (9) describe the influence, for example, of a perturbation of 

material 1 on the material 2 estimate permitting prediction (as a function of regularization, 

data, etc.) and control. That is, theoretically, one can design cross-basis penalties to 

eliminate the cross-talk: specifically when R21 = ℱ−1 ℛ11 − ℱ11 ⊙ ℱ21/ℱ11 . Cross-basis 

penalty design is promising for cross-talk elimination; however, theoretical penalty design 

solutions are not necessarily local. To maintain a reasonable computational cost, we 

designed a 4-neighborhood mask that captures the principle components of the theoretical 

solution. Specifically, we adopt the following penalty form (shown in Fig. 1b):

R ρ = 1
4 ∑

j
∑

l ∈ Nj
∑

k = 1, 2
βk ρk

j − ρk
l 2 + 1

4 ∑
j

∑
l ∈ Nj

2γj β1β2 ρ1
j − ρ1

l ρ2
j − ρ2

l , γj

≤ 1
(12)

We may then find the coefficients of this cross penalty (γj) via an optimization than 

minimizes the cross LIR terms (e.g., minimizing the cross-talk). Specifically, the cost 

function for cross-talk reduction is simply the ℓ2 norm of the combined cross-talk:

l1, 2
j γj

2
2

+ ω l2, 1
j γj

2
2
. We adopted the Nelder-Mead simplex direct search algorithm to 

find the optimized γj locally. A constant γ was estimated at the central location for a shift-

invariant cross-basis penalty, while a γj map was estimated as interpolation of optimized γj 

on a coarse grid for shift-variant cross-basis penalty. These cross-basis penalized MBMD 

images were compared with in-basis penalized MBMD results. The same overall 

regularization strengths were applied for a fair comparison.

3 RESULTS

3.1 Noise predictor accuracy validation

Figure 2 shows the predicted NPS on the left half of each subplot and measured NPS on the 

right with 3 different in-basis regularization strengths. NPSs, NPSI, and NPSIs denote the 

noise properties in the soft tissue basis, the iodine basis, and between the two material bases, 

respectively. Due to small number of samples, the measured NPS is somewhat noisy, 

especially for low regularization cases. However, we see good agreement of magnitude and 
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extent between the prediction and the estimation. With higher regularization strength, the 

high-frequency noise and overall noise magnitude is reduced. This trend is observed in 

simulation experiments, and revealed with predictors.

3.2 Regularization design for cross-talk reduction

Figure 3 shows the optimized γ map used in shift-variant cross-basis regularization design. 

The constant γ is 0.485 in shift-invariant cross-basis regularization design. Figure 4 shows 

the material density maps decomposed with different penalty design. Due to the coupling 

between two material bases, the cross-talk leads to artifacts at the soft tissue edges in the 

iodine basis indicated with the yellow arrows, with the in-basis penalty. Such artifacts are 

mostly reduced with the shift-invariant cross-basis penalty, and nearly perfectly eliminated 

with the shift-invariant cross-basis penalty design.

4 CONCLUSIONS

Following previous work of LIR analysis 1, we presented a closed-form expression of both 

LIR and noise correlation in MBMD. The predictors provide prospective quantification of 

in-basis resolution, cross-talk between material bases, and noise correlations in- and cross-

basis. Such predictors account for all the expected dependencies on spectral system 

configuration (geometry, spectrum separation between channels, and fluence modulation), 

patient anatomy, and the decomposition processing including regularization. Thus, these 

prediction tools are potentially important for system optimization and regularization control 

in MBMD for specific imaging task. In this work, we proposed a cross-basis regularization 

scheme for cross-talk reduction. This is just one simple example of the control of imaging 

properties in MBMD and spectral imaging using the prediction tools. In ongoing work, we 

will investigate more sophisticated image quality criteria with task-based metrics that 

balance the importance of noise and resolution for specific goals.
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Figure 1: 
(a) Dual-material digital phantom with cylindrical soft tissue and iodine on top of a water 

ellipse. (b) Illustration of the 4-nearest neighborhood cross-basis regularization.
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Figure 2: 
Predicted and estimated NPS in soft tissue basis, iodine basis, and between two material 

bases. The unit is mg2 m2 L−2.
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Figure 3: 
Cross-basis regularization γ map for cross-talk reduction.
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Figure 4: 
From left to right: MBMD results using in-basis penalty, shift-invariant cross-basis penalty, 

and shift-variant penalty.
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