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Abstract

Wayfinding is a major challenge for visually impaired travelers, who generally lack access to 

visual cues such as landmarks and informational signs that many travelers rely on for navigation. 

Indoor wayfinding is particularly challenging since the most commonly used source of location 

information for wayfinding, GPS, is inaccurate indoors. We describe a computer vision approach 

to indoor localization that runs as a real-time app on a conventional smartphone, which is intended 

to support a full-featured wayfinding app in the future that will include turn-by-turn directions. 

Our approach combines computer vision, existing informational signs such as Exit signs, inertial 

sensors and a 2D map to estimate and track the user’s location in the environment. An important 

feature of our approach is that it requires no new physical infrastructure.

While our approach requires the user to either hold the smartphone or wear it (e.g., on a lanyard) 

with the camera facing forward while walking, it has the advantage of not forcing the user to aim 

the camera towards specific signs, which would be challenging for people with low or no vision. 

We demonstrate the feasibility of our approach with five blind travelers navigating an indoor 

space, with localization accuracy of roughly 1 meter once the localization algorithm has 

converged.
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1 INTRODUCTION AND RELATED WORK

Indoor wayfinding is a major challenge for blind and visually impaired travelers, who 

generally lack access to visual cues such as landmarks and informational signs that many 

travelers rely on for navigation. Outdoor environments, while often more dangerous to 

traverse than indoor environments, have the advantage of access to GPS-based apps. These 

include a number that are either expressly designed for, or accessible to, visually impaired 

users, including Nearby Explorer1, Seeing Eye GPS2, BlindSquare3 and Google Maps4. 
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However, GPS is only accurate outdoors, and the goal of making similar tools for travelers 

of all abilities function in GPS-denied indoor environments is an area of active research, 

with entire conferences dedicated to this subject5, and increasing presence in the 

marketplace.

A range of technologies have been developed for wayfinding applications; see [24] for a 

recent overview. Early work in accessible wayfinding emphasized the use of infrared light 

beacons [2], RFIDs [9] and visual markers [3, 27]. More recently, low-energy Bluetooth 

Beacons have been deployed in a variety of environments to support localization for use by 

apps such as NavCog [1]. All of these systems, however, require additional physical 

infrastructure, with associated installation and maintenance costs that may discourage 

implementation [10].

Alternative approaches for indoor localization are being developed that require no new 

infrastructure. The most popular among these is the use of Wi-Fi access points [8], now used 

by mainstream apps such as Apple Maps6 in a growing number of airports7 and shopping 

malls8. Another approach is to use magnetic signatures [21, 25], e.g., used in the 

IndoorAtlas9 and Microsoft Path10 apps. However, magnetic signatures require prior 

calibration, are unreliable in the absence of metallic structures (such as in buildings 

constructed primarily of wood) and may drift unpredictably over time, e.g., whenever large 

metallic structures such as shelves and tables are moved. Inertial sensing approaches use the 

smartphone inertial measurement unit (IMU) to perform dead reckoning through step 

detection [4, 5], but unless dead reckoning is augmented with other forms of location 

information it drifts over time. Moreover, such inertial-based step counting approaches 

require a stable walking gait for good performance, but visually impaired travelers 

sometimes walk in an irregular gait when exploring unfamiliar surroundings [22]. Such an 

irregular gait may occur when the traveler slows down (and perhaps stops momentarily) or 

steps sideways to explore.

Computer vision is a promising technology that enables indoor localization without the need 

for added infrastructure [11, 15], though it can also be used in conjunction with added 

infrastructure [18]. Some computer vision-based localization systems have relied on special 

hardware such as Google Tango [17], but other approaches such as VizMap [11] use 

standard smartphones. Moreover, the special tracking and positional estimation functions of 

Google Tango are now provided by the ARKit and ARCore Augmented Reality libraries 

available on standard iOS and Android mobile devices; the Google Visual Positioning 

System (VPS)11 uses a standard Android smartphone to provide more precise localization 

1https://www.aph.org/nearby-explorer/
2http://www.senderogroup.com/products/seeingeyegps/index.html
3http://www.blindsquare.com/
4https://maps.google.com/
5https://www.ipin-conference.org/
6https://www.idownloadblog.com/2019/04/25/apple-maps-indoor-maps-airports-malls
7https://www.apple.com/ios/feature-availability/#maps-indoor-maps-airports
8https://www.apple.com/ios/feature-availability/#maps-indoor-maps-malls
9https://www.indooratlas.com/
10https://mspg.azurewebsites.net/
11https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html
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information to augment what is available by other means, including GPS and Wi-Fi. More 

recently, work by [23] addresses the last-few-meters wayfinding problem, which uses 

computer vision to recognize landmarks, read signage and identify places to complement the 

navigation guidance provided by a GPS-based navigation tool, whose noisy localization 

estimates only suffice to guide the user to the vicinity of their destination. Computer vision 

is combined with LiDAR in CaBot [14], which is a suitcase-sized autonomous navigation 

robot that localizes a visually impaired user and provides real-time orientation and mobility 

guidance (towards a desired destination while avoiding obstacles such as other people).

We propose a computer vision-based localization approach, implemented as a stand-alone 

real-time iPhone app. Our approach uses a 2D map (floor plan) that is more lightweight than 

the complex 3D models used by SLAM (simultaneous localization and mapping) technology 

such as [11]. It combines Visual-Inertial Odometry (VIO) (see Sec. 2.1) to estimate the 

user’s relative (ego-) motion in the environment with location information obtained from 

sign recognitions and geometric constraints imposed by walls and other barriers indicated on 

the map. In contrast with the Clew iOS app [28], which uses VIO to record a visually 

impaired traveler’s relative movements (i.e., dead reckoning) and facilitates path retracing, 

our approach estimates and tracks the user’s absolute location in the environment, i.e., their 

location on a map. The only requirements are a 2D floor plan of the environment, which can 

be easily converted into a digital map and annotated, along with a few pictures of highly 

visible signs, used as landmarks, to be logged in the same map. Compared to other 

mechanisms that utilize visual SLAM and use generic visual features for reference and 

localization, the landmarks (signs) selected for our system are arguably more stable over 

time and less susceptible to superficial changes such as lighting conditions, moved furniture, 

new posters or other wall coverings, etc. This is a critical issue to ensure that the spatial 

information encoded in our system remains valid through time, without the need for frequent 

updates.

2 APPROACH

We first review our recent work that this paper builds on before describing the new approach 

in detail.

2.1 Previous approach

The approach we describe in this paper builds on our recent work [6], which is a marker-

based computer vision system in which a collection of unique markers (2D barcodes) are 

posted on the wall every several meters (roughly one such marker for each office door in an 

office building). The basic principle of [6] is that the user’s location can be determined in 

any frame in which a marker is recognized by estimating the camera’s pose relative to the 

marker and using the marker’s known location and orientation on the 2D map. The 

algorithm uses Visual-Inertial Odometry (VIO) [16] to update the absolute location estimate 

from the most recent marker recognition in the great majority of frames in which no marker 

is recognized.

VIO is an algorithm that performs dead reckoning, i.e., estimating the user’s movements in 

the environment, by combining computer vision and the smartphone’s inertial measurement 
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unit (IMU). VIO is now a standard feature on modern smartphones that supports Augmented 

Reality (AR) applications, and is included in ARKit12 for iOS and ARCore13 for Android. It 

estimates movements in 6 degrees of freedom: X, Y, Z translations (in which +Y is aligned 

to the up direction defined by gravity and the XZ plane is the horizontal plane) in physical 

units (i.e., meters) and 3D orientation defined by roll, pitch and yaw. It is straightforward to 

project the 6D VIO motion estimates to the horizontal reference frame of the 2D map; given 

a known starting location and yaw (hereafter yaw refers to the direction of the camera line of 

sight projected on the horizontal plane), we can estimate the user’s trajectory on the map. 

While the resulting VIO trajectory is usually a good approximation of the user’s actual 

trajectory, the location estimate drifts over time, and the overall trajectory scale may be off 

by as much as 10% or more. We will describe our new approach in Sec. 2.2 that overcomes 

the limitations imposed by VIO noise (which could, for instance, erroneously estimate that 

the user is walking through a wall) and by the need for a known initial location and yaw, 

which is not always available.

In [6] we devised a simple app on an iPhone 8 that logs video frames and VIO data at 

several frames per second. The only feedback it provides to users is an audio warning if the 

camera is pointed too far above or below the horizon, to maximize the opportunities for 

capturing usable pictures of markers. The localization algorithm was implemented on a 

laptop computer for offline analysis of the logged data. Our experiments with four blind 

users demonstrated the feasibility of this marker-based localization approach.

2.2 New approach

Our new approach builds on the previous work described above by adding three principal 

elements: (1) Recognition of standard signs, including Exit signs, instead of markers (which 
are no longer used). (2) Using the locations of walls and other impassable barriers in the 

map, as well as the locations of signs, to constrain the location and motion estimates. (3) 

Maintaining and evolving multiple location hypotheses over time using a particle filter, 

instead of the single hypothesis that we updated over time in [6]. Next we describe each 

element in turn.

2.2.1 Sign recognition.—A key element of our approach is the use of informational 

signs as beacons: when a sign is recognized in an image, the apparent location of the sign in 

the image determines the user’s approximate location relative to the sign. (If there are 

multiple signs in the floor plan with identical appearance then a single sign recognition in 

isolation cannot determine which sign was recognized; multiple hypotheses must be 

considered, which is an important motivation for the particle filter described in Sec. 2.2.3.) 

Our current system recognizes just one type of sign: the standard emergency Exit sign, 

which is particularly useful as a beacon because the line-of-sight to an Exit sign is legally 

mandated to be visible throughout any workplace or commercial space [20]. We build on our 

past Exit sign recognition algorithm [7], which we applied in our earlier work on indoor 

localization [22] that used step detection to perform dead reckoning. The Exit sign 

12https://developer.apple.com/arkit/
13https://developers.google.com/ar/
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recognition algorithm is a fast Adaboost cascade-based approach that runs on the 

smartphone in approximately 7ms on a 630 × 360 image, and returns an approximate 

bounding box for each detected Exit sign.

Given an Exit sign bounding box estimate, we use the centroid of the bounding box to 

estimate the direction to the sign and its distance. The direction to the sign is calculated as 

the angular difference between the yaw direction (the direction of the camera line of sight 

projected on the horizontal plane) and the direction of the sign centroid in the image. The 

distance is calculated using 3D orientation information furnished by VIO, assuming 

knowledge of two pieces of information: (a) the physical height of the sign centroid above 

the ground and (b) the height of the camera above the ground (which depends on the user’s 

height and how the smartphone is held or worn). In brief, the distance is estimated using the 

apparent elevation of the detected sign above the horizon in the image: the closer the sign 

appears to the horizon, the farther away it is. (Note that the horizon line in the image is 

specified by the camera’s pitch and roll, furnished by VIO.)

2.2.2 Visibility and traversability constraints.—The map (Fig. 3) specifies the 

locations of walls and other barriers in addition to the location and orientation of each sign 

(not shown in Fig. 3). A simple 2D ray-tracing algorithm is performed to determine where 

on the map each sign is visible, taking into account both the opaqueness of walls and the 

additional constraint that a sign is only recognizable from a limited range of viewing angles. 

(Note that some signs, such as Exit signs, have faces visible on both sides; this necessitates 

two sign annotations sharing the same location but having opposite orientations.) The 

resulting visibility map for each sign is used to determine whether a sign is expected to be 

visible for a specific location and yaw hypothesis; if it is, then when a sign is detected in an 

image, the estimated direction and distance to the sign are compared with the direction and 

distance implied by the location and yaw hypothesis to evaluate the evidence for the 

hypothesis.

A similar ray-tracing algorithm is performed to determine if a hypothetical trajectory should 

be ruled out because it implies that the traveler is walking through a wall or other impassable 

barrier. This calculation allows the particle filter to remove impossible hypotheses.

2.2.3 Particle filter.—We use a standard particle filter algorithm [26] from robotics to 

represent uncertain knowledge of the user’s location (x, y) and yaw θ; the entire state is 

denoted S = (x, y, θ). The particle filter maintains multiple hypotheses for S that evolve over 

time (see Fig. 1), continually accumulating evidence from multiple sources (sign detections, 

motion from VIO and impassable barriers indicated in the map) until it “locks on” to the 

correct location, which is indicated by a tight spatial cluster of hypotheses in the map.

The particle filter contains two main components: (a) A dynamical model expressing how a 

hypothesis St at time t is likely to evolve in the next time step, St+1. VIO measurements at t 
and t + 1 allow us to predict St+1 in terms of St; the dynamical model accounts for the noise 

in this prediction. Note that yaw noise is very low, since the yaw estimate is based heavily 

on the smartphone’s gyroscope, which estimates yaw changes with only minimal drift over 

time. By contrast, the noise in estimating spatial translations is much larger, since VIO 
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estimates egomotion by combining both apparent motion cues in the image with inertial 

data. We compensate for noise in the overall estimated translation scale using a scale 

correction factor that is drawn uniformly randomly from the interval [1, 1.2] for each 

particle when it is created; this factor corrects the scale of all spatial translations estimated 

by VIO for the life of the particle. The dynamical model also rules out invalid state changes 

from St to St+1 that would violate the traversability constraint. (b) A measurement 

(likelihood) model that assesses the consistency of a hypothesis St with an Exit sign 

detection (or non-detection). This model compares the predicted Exit sign detection in the 

image implied by St with an actual detection, taking into account the relative distance, 

relative yaw and visibility implied by the map, and assigns a likelihood score to St.

To interpret the set of particles at each time step, we apply a kernel density estimator (KDE)

[26] to estimate a spatial probability density map, or heat map. Local maxima in this heat 

map above a minimum peak threshold are considered as candidate location estimates; the 

algorithm returns a location estimate if only one substantial candidate peak exists, otherwise 

the algorithm declares uncertainty.

Fig. 1 shows how the uncertainty of the heat map decreases as the user walks and signs are 

detected. The top left image shows the heat map generated by the particle filter soon after 

the system is launched (red means high likelihood of the user standing in that location, green 

means medium likelihood and blue means low likelihood). Next, an Exit sign detection 

generates clusters of likely locations that are compatible with the camera yaw hypothesis 

and estimated distance with respect to all the Exit signs in the floor plan. In the images that 

follow, as the user keeps walking, the uncertainty decreases until most of the particles 

converge around a single location in the map, yielding a strong peak in the heat map that is 

interpreted by the system as a likely user location. The white cross at the center of the 

cluster shows the estimated user location.

2.3 Implementation details

We initially implemented the new localization algorithm on a laptop that analyzed data 

offline saved by the logging app we developed in [6]. Then we ported the entire app to the 

iPhone 8, where it runs in real time using Swift for the user interface and C++ for the 

localization and computer vision algorithms; the app uses the main rear-facing camera to 

acquire the video imagery needed for VIO. The real-time app uses 50, 000 particles in the 

particle filter and uses a particle filter time step of 100ms (reflecting the computational 

limitations imposed by real-time performance); the logging app records data roughly every 6 

– 7ms, including the bounding boxes of any Exit sign detections.

Both apps provide several forms of audio feedback. The first audio feedback is to help the 

user keep the camera line of sight roughly horizontal, issuing a warning whenever the 

camera is pointed too far above or below the horizon. Second, both apps monitor the status 

of the VIO tracking, which must be initialized when the app is first launched by panning the 

camera for a few seconds, and issue a text-to-speech (TTS) announcement after VIO has 

been initialized. A “too fast” TTS announcement is issued if the VIO tracker deems that the 

camera is moving too fast, in which case the user has to slow down, or stop momentarily, 

until the warning stops.
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The real-time app provides three additional forms of audio feedback. First, every few 

seconds an audio tone is issued to indicate whether the system declares a localization result 

(single beep) or it declares uncertainty (double beep). Second, we defined a total of 31 

regions of interest (ROIs) on the map (see Fig. 3), one for nearly every office door and 

landmark (e.g., elevator, stairwell) on the floor; any time the algorithm estimates that the 

smartphone is located inside an ROI, the app issues a brief TTS announcement. The TTS 

announcement is repeated continously as long the location remains in the ROI. We note that 

this user interface was designed for the convenience of the experimenter, and is not intended 

to guide the user (who often found the repeating TTS announcements distracting and 

annoying); in the future we will devise a UI that provides accessible wayfinding guidance. In 

addition, the app issues an audio warning if the camera lens is covered.

Finally, the real-time app allows the experimenter to set the height of the smartphone camera 

above the floor, since the Exit sign range estimates used by the particle filter depend on this 

number.

We note that the real-time app uses substantial computational resources. In one participant 

experiment we measured the battery consumption from the app: the battery charge decreased 

from 100% to 87% after more than 16 minutes of continuous use of the app. We conclude 

that the battery consumption is significant but comparable to other resource-intensive 

smartphone apps such as video games, and is therefore not likely to prohibit real-world 

usage.

The app software will be open sourced upon publication of this manuscript.

3 USER STUDIES

We conducted two user studies. The first study assessed localization performance conducted 

using the logging app and offline analysis of the data saved by it. The second study focused 

on the performance of the real-time localization app. Together these studies included a total 

of six blind participants (ages 27 – 72, four female/two male). The studies were done in an 

iterative fashion, using our experiences with the first few participants in each study to debug 

both the software and our experimental protocol and to refine our UI; the results from these 

participants are excluded from our analysis. Results are reported from two participants in the 

first study (P1 and P4) and five participants in the second study (P1, P3, P4, P5 and P6).

Three participants used a white cane and the other three used a guide dog. For each 

participant, we described the purpose of the experiment and obtained IRB consent. Before 

participants used our app, we explained how it worked, including the app’s audio feedback 

and the need to avoid sudden camera movements (which causes motion blur and thereby 

degrades the image quality) or covering the camera lens with the hands. Participants were 

instructed to walk with whatever travel aid they wished to use (white cane or guide dog). If 

the participant held the smartphone by hand (see Fig. 2), they were instructed to aim the 

camera straight ahead; any orientation (e.g., portrait or landscape) consistent with this 

camera direction was permitted. Then we had each participant practice using the app under 

the same conditions that would apply to the formal experiment.

Fusco and Coughlan Page 7

Proc 17th Int Web All Conf (2020). Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All experiments were performed on a floor of the main Smith-Kettlewell building, with 

dimensions 39 m × 21 m (see Fig. 3).

3.1 User Study 1: Localization performance using the logging app

This study assesses offline localization performance as a function of two conditions. The 

first condition is the modality, i.e., how the user holds or wears the smartphone, which has 

four possible values: handheld, lanyard (which we note is a modality that is supported by the 

Google Lookout app14), pocket (the smartphone is placed in a shirt pocket with the lens 

facing out) and strap (the smartphone is attached to the strap of a satchel or shoulder bag; in 

[6] this is referred to as the satchel condition).

The second condition is the starting condition, which is the information that the localization 

algorithm has when it’s initialized. The two possible starting condition values are unknown 
and known. Unknown means that both the location and yaw are unknown, and so the 

particles are randomly initialized with a uniform distribution over the floor plan (including 

all allowed locations but not inside walls or other barriers) and uniform yaw – this is a 

worst-case assumption that would apply to the case in which a traveler knows which floor of 

a building they are on but nothing else. Known means that the starting location is known to 

within a meter accuracy but the yaw is unknown, which would apply to the case in which a 

traveler knows their approximate starting location (e.g., near an elevator) but not the 

direction they are facing. (We have experimented with using the magnetometer to estimate 

the user’s initial yaw, but these yaw estimates are unreliable, sometimes deviating more than 

90° degrees from the true yaw.) Note that, while the modality is fixed for each experimental 

trial that we conducted, we are free to vary the starting condition when analyzing the data 

offline.

Each participant completed a total of 16 trials. The experimenter gave turn-by-turn 

directions (such as “turn left in 3… 2… 1”) in a Wizard-of-Oz paradigm [12] simulating the 

way a full-featured wayfinding app would function. In each trial, the participant was asked 

to use a specific modality and to complete either of two routes, R1 (77 m long) or R2 (58 m 

long), in either a clockwise or counterclockwise direction (Fig. 3). The trials were 

randomized so that each block of 4 trials contained all four modalities in random order (to 

minimize learning effects that could otherwise result). For each participant we recorded the 

height of the smartphone camera above the ground for all four modalities.

3.1.1 User Study 1 ground truth procedure.—We devised a simple procedure to 

evaluate the localization accuracy. The procedure establishes an approximate ground truth 

location at selected reference points in the path taken by the user. This is accomplished by 

having an experimenter follow a few meters behind the traveler and take a video of their 

footsteps. This video is reviewed offline, with the experimenter noting each frame when the 

traveler passes by a reference point (such as a door) and using visual context (e.g., nearby 

doors and other features) to determine the corresponding ground truth location on the map. 

The ground truth location for each reference point is then entered by clicking on the 

14https://www.engadget.com/2018/05/08/google-lookout-app/
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corresponding location on the map. We estimate that the ground truth location is accurate to 

about 1 m, which implies that errors can be estimated to approximately 1 m accuracy.

In our experiments we used a pre-selected set of reference points (11 for the short circuit and 

15 for the long one) to evaluate each route, depending on the length of the route and the 

visibility of landmarks. The data logged by the traveler’s app is time-synched with the video 

so that any reference point in the video is associated with the corresponding logging data. In 

this way, the ground truth location of each reference point may be directly compared with 

the corresponding location estimated from the logging data.

3.1.2 User Study 1 results.—We show the localization error for the unknown starting 

location condition in Fig. 4. Each plot shows the cumulative distribution function (CDF) of 

the localization error for a specific modality and aggregates over all trials with that modality 

for both participants. Within each trial all available localization results are included; no data 

is available for times when the algorithm declares uncertainty. The median localization 

errors are under 1 m for all modalities, which is roughly the same as the accuracy of our 

ground truth location estimates; 95% of the localization estimates have an error of 1.5m or 

better.

We also show the localization error for the known starting location condition in Fig. 5, 

displayed in the same way as the previous figure. Again the median localization errors are 

under 1 m for all modalities; 95% of the localization estimates have an error of 1.4m or 

better.

These results demonstrate that our algorithm provides accurate localization estimates once it 

converges (“locks on”). They also suggest that all of the four modalities are about equal in 

effectiveness, and so the choice of which modality to use should be based mostly on 

individual preferences and circumstances.

Next we analyze how long it takes (both in terms of distance and time) for the algorithm to 

converge, i.e., to arrive at a single localization estimate. Fig. 6 shows the CDF of the 

distance to convergence, both for the known starting location and unknown starting location 

conditions. Each condition aggregates over all trials from both participants. As expected, the 

distance to convergence is usually very short (a few meters) for the known starting location 

condition. For the unknown starting location condition, the median distance is 

approximately 12 meters. Empirically we have observed that convergence often occurs after 

the participant has walked around at least one corner of a path. Corners provide a powerful 

constraint for the particle filter, since false trajectories that turn by 90° (as directed by VIO) 

are likely to collide with a wall and are thus immediately removed from consideration.

Fig. 7 shows the corresponding CDFs expressed for time to convergence instead of distance. 

As before, the time to convergence is usually very short (just a few to several seconds) for 

the known starting location condition. For the unknown starting location condition, the 

median time is approximately 19 sec. We note that, though these plots aggregate over both 

participants, convergence times depend strongly on walking speed, which varies among 

participants (see Sec. 3.2.2).
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Finally, we report the fraction of data samples (logged by the app) for which the algorithm 

supplied a localization estimate, as opposed to samples for which the algorithm reports 

uncertainty. For the unknown starting location condition this fraction ranges from 0.65 to 

0.69 (depending on modality), and for the known starting location condition it ranges from 

0.87 to 0.89. If we ignore samples that occur before the initial convergence, then the 

fractions range from 0.78 to 0.84 for unknown starting location and 0.88 to 0.89 for known 

starting location. These results show that the incidence of uncertainty is low after the initial 

convergence. However, as we discuss in Sec. 3.2.2, the peak location represented by the 

initial convergence is often at the incorrect location, and is only corrected later after 

additional evidence has accumulated.

3.2 User Study 2: Localization performance using the real-time app

This study assesses localization performance of the real-time app. Based on the earlier 

finding that the other modalities (lanyard, pocket and strap) are roughly as effective as 

handheld, we test in the handheld condition only. We focus on two different scenarios, each 

tested with five participants.

1. Convergence scenario (four trials per participant): In each trial, the participant is 

told to start exploring the floor from a specified initial location and walking 

direction. No directions or guidance are given to the participant. The participant 

is asked to continue walking until the app converges (“locks on”) to the correct 

location. The app is launched with the unknown starting location condition, 

reflecting the possibility that the participant only knows what floor they are on 

but not their location or yaw. This scenario simulates the conditions under which 

a traveler might launch a full-featured wayfinding app and explore the 

environment until the app converges and offers guidance.

2. Tracking scenario (one trial per participant): The experimenter has arranged for 

the app to have already converged to the correct location before this trial begins. 

The participant is told to follow a lengthy route specified by the experimenter, 

who gives turn-by-turn directions (as in User Study 1). This scenario simulates 

the conditions under which a traveler might use a full-featured wayfinding app 

after it has converged.

Note that the tracking scenario begins with complete knowledge of the participant’s initial 

location and yaw; by contrast, the “known” starting location condition from User Study 1 is 

incomplete in that it assumes a known initial location but unknown yaw.

3.2.1 User Study 2 ground truth procedure.—We devised a procedure similar to 

that used in User Study 1 to evaluate the localization accuracy. Again the experimenter 

walked a few steps behind the participant and acquired video of their footsteps and of the 

nearby scene; however, since the real-time app performed no data logging, we relied on the 

audio track of the video to record the audible feedback issued by the app. By reviewing this 

video offline, the experimenter was able to estimate the participant’s ground truth location 

relative to the ROIs (see Fig. 3) and compare it with the app’s audio feedback. Instead of 

evaluating localization accuracy in physical units (e.g., meters), we evaluated how often the 
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correct feedback was obtained when the participant entered a ROI. The offline video also 

allowed the experimenter to determine the timing of any events in the trial.

3.2.2 User Study 2 results.—In the convergence trials our goal is to assess the 

distribution of walking distances required to attain convergence. (There are four convergence 

trials per participant; however, the data for one trial was accidentally deleted for one 

participant.) We distinguish between first convergence and correct convergence. First 

convergence refers to the first time in which the algorithm reports a location estimate, as in 

User Study 1. However, empirically we find that the first such location estimate is often 

incorrect, but that after a short period of additional walking the location estimate locks on to 

the correct location, which we refer to as the correct convergence. In the future we will 

explore an automatic method for estimating whether a convergence is likely to be correct or 

not, to reduce the confusion associated with incorrect (but mostly transient) location 

estimates.

In User Study 2 a location estimate is indicated by a TTS utterance reporting an ROI; 

unfortunately, if the algorithm’s estimate of the user’s location doesn’t fall within an ROI 

then we are forced to ignore this location estimate (since the audio feedback doesn’t convey 

specific location information in this case). In other words, convergence (first or correct) 

can’t be inferred until the participant enters an ROI, which artificially inflates the 

convergence distances we measured. Fortunately the ROIs cover the walkable space quite 

densely (Fig. 3) so this effect should be minimal.

We show the distribution of first and correct convergences as CDFs (shown in red and blue, 

respectively) in Fig. 8. The two CDF curves have a similar shape except that the correct 

convergence distance CDF is shifted by roughly 10 m relative to the first convergence 

distance CDF.

Next we discuss the tracking trials. Here we assess performance in terms of the false positive 

rate (FPR) and false negative rate (FNR), which together form a suitable proxy for a metric 

localization error in a physical unit such as meters. We define FPR as FPR = FP/(FP + TN) 

where FP is the number of false positives (a FP is defined as a TTS utterance that is reported 

either in the wrong ROI, or in a location that is not inside an ROI) and TN is the number of 

true negatives (occasions when the participant was not inside a ROI and the app uttered no 

TTS). Similarly, FNR is defined as FNR = FN/(TP + FN), where TP is the number of true 

positives (occasions when the participant entered a ROI and the app uttered the correct TTS 

for it) and FN is the number of false negatives (times the user was inside an ROI but no TTS 

was announced).

Empirically we found that FPR = 0 for all trials of all five participants. The FNR rates for 

each participant (P1, P3, P4, P5 and P6) are as follows: FNR = (0.02, 0.009, 0.009, 0.09, 

0.02). The FNR rates are very low (0.02 or lower) for every participant except for P5. In the 

tracking trial for each participant, the route covered a total of roughly 100 ROIs (counting 

each ROI multiple times if it was visited in multiple passes along the trial).
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Finally, we report the average walking speed for each participant. For simplicity we 

estimated this speed for a representative long straight-line path that each participant walked 

in their tracking trial. The average walking speeds, in units of m/s, for each participant (P1, 

P3, P4, P5 and P6) are as follows: speed = (0.9, 1.2, 0.6, 0.9, 1.6). This highlights the high 

variability in walking speed that we encountered.

Overall, the results of User Study 2 demonstrate that the real-time app performs localization 

reliably once the algorithm locks on to the correct location. We note that the real-time app 

works well despite a slower sampling rate compared with the offline algorithm.

4 CONCLUSIONS AND FUTURE WORK

We have demonstrated the feasibility of a real-time app that combines computer vision, a 2D 
map and the smartphone’s IMU to estimate and track the user’s location in an indoor 

environment. While the app requires the user to either hold the smartphone or wear it with 

the camera facing forward while walking, it has the advantage of not forcing the user to aim 

the camera towards specific signs, which would be challenging for people with low or no 

vision. Once the localization algorithm locks on to the correct location, it continues to track 

with a typical localization accuracy of roughly 1 meter or better.

Future work will focus on testing our approach on other indoor environments, including 

buildings with multiple floors. The smartphone barometer can be used to automatically 

detect and estimate relative floor transitions [19], though additional information is still 

required to estimate the absolute floor location (such as the initial floor that the user begins 

on when the app is launched).

A long-term priority will be to increase the speed of the convergence (locking on) process. 

The simplest way to accomplish this is to expand the set of signs that are recognized and 

distinguished in an environment; even Exit signs often contain left or right arrows (which 

our Exit sign recognition algorithm currently ignores) that can be used to distinguish them 

from other Exit signs in the same environment. Ideally a sign recognition algorithm could be 

trained with a single clear image of a (planar) sign, which would make it easy to train the 

system to recognize and distinguish multiple signs. We will also investigate an alternative 

method of estimating the distance to a sign directly from the physical size and shape of the 

sign and its appearance in the image, instead of our current approach that requires 

knowledge of the height difference between the camera and the sign.

The app we have implemented performs localization only, but we will transform it into a 

full-featured wayfinding app with an accessible UI that offers turn-by-turn directions to a 

desired destination as well as optional announcements of nearby points of interest. We 

recently conducted focus groups on the indoor wayfinding needs of blind and visually 

impaired travelers and will use the feedback from these groups to drive the development of 

our UI. Some visually impaired travelers might prefer navigation directions presented using 

spatialized (3D) sound, as implemented in the Microsoft Soundscape app15, and we will 

15https://www.microsoft.com/en-us/research/product/soundscape/
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experiment with this type of interface as a possible alternative (or supplement) to verbal 

directions. We note that travelers with residual vision may prefer a visual UI (e.g., an 

Augmented Reality interface that superimposes high-contrast arrows on the smartphone 

screen to guide the user) over an audio one.

We acknowledge that our current approach is best suited to indoor environments dominated 

by corridors, which provide powerful geometric constraints that rule out many false location 

hypotheses; wide open indoor spaces such as airports are challenging for visually impaired 

travelers [13] and may also be problematic for our localization algorithm. The persistent 

Augmented Reality capabilities that have recently been added to ARKit and ARCore (e.g., 
16), which allow an app to create and save a 3D model of an environment and use it later as 

a reference for localizing the camera (effectively a SLAM-based approach), may be useful 

for handling wide open spaces.
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CCS CONCEPTS

• Human-centered computing → Accessibility technologies; Mobile devices; • 

Computing methodologies → Computer vision.
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Figure 1: 
Evolution of spatial probability density map over time shows how localization algorithm 

begins with high uncertainty and converges to a single well-localized peak. See text for 

details.
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Figure 2: 
Participant shown (with face obscured) holding smartphone in experiment.
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Figure 3: 
Map of indoor environment, with dimensions 39 m × 21 m. Walls and other impassable 

barriers are shown in black. A total of 31 rectangular regions of interest (ROIs), used in User 

Study 2, are indicated in green. Route R1 (77 m) is shown in blue and route R2 (58 m) in 

red.
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Figure 4: 
Offline analysis: localization error given unknown starting condition, for each of the four 

modalities (handheld, lanyard, strap, pocket). Error in meters is shown as a cumulative 

distribution function (CDF) plot. The median localization errors are under 1 meter for all 

four modalities (but note that the accuracy of the ground truth location estimates is roughly 1 

meter). Each line aggregates four trials per participant times two participants.
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Figure 5: 
Same as previous figure but for known starting condition. The median localization errors are 

under 1 meter for all four modalities (but note that the accuracy of the ground truth location 

estimates is roughly 1 meter).
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Figure 6: 
Distance to convergence.
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Figure 7: 
Time to convergence.
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Figure 8: 
First distance to convergence (red) and correct distance to convergence (blue), in meters, 

shown as CDFs.
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