
EDUCATION

Using interactive digital notebooks for

bioscience and informatics education

Alan DaviesID*, Frances HooleyID, Peter Causey-FreemanID, Iliada EleftheriouID,

Georgina Moulton

School of Health Sciences, University of Manchester, Manchester, United Kingdom

* alan.davies-2@manchester.ac.uk

Abstract

Interactive digital notebooks provide an opportunity for researchers and educators to carry

out data analysis and report the results in a single digital format. Further to just being digital,

the format allows for rich content to be created in order to interact with the code and data

contained in such a notebook to form an educational narrative. This primer introduces some

of the fundamental aspects involved in using Jupyter notebooks in an educational setting for

teaching in the bio/health informatics disciplines. We also provide 2 case studies that detail

how we used Jupyter notebooks to teach non-coders programming skills on a blended Mas-

ter’s degree module for a Health Informatics programme and a fully online distance learning

unit on Programming for a postgraduate certificate (PG Cert) in Clinical Bioinformatics with

a more technical audience.

Introduction

Universities and other higher education (HE) institutions are now under increasing pressure

to provide more online and distance learning courses and to deliver them cost effectively and

rapidly [1]. This increase in demand is partly based on students wanting more flexible study

options in comparison to traditional HE course delivery to aid in study around employment

and family commitments. This is also driven by financial considerations that allow HE institu-

tions to scale course delivery while managing infrastructural provision (e.g., access to rooms

for teaching and limited capacity for face-to-face delivery) [2]. To meet this challenge, we

require tools that cater for students with varying levels of digital literacy and reduce the burden

of them having to download and install software, all of which requires support, which is more

difficult to provide at a distance. This can be further complicated when students use managed

equipment (e.g., National Health Service (NHS) employees) and may not have administrator

rights to install software.

Digital notebooks provided us with a way of meeting these needs as they are easy to set up,

straightforward to use, and can support rich and interactive content. Here, we present a primer

on how to use digital notebooks (specifically Jupyter notebooks) for teaching and assessment

along with details of 2 case studies where we used notebooks to teach Python programming

and database skills for Clinical Bioinformatics and Health Informatics students of varying lev-

els of technical experience. The case studies and methods presented can be applied to both dis-

tance learning and face-to-face teaching scenarios.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Davies A, Hooley F, Causey-Freeman P,

Eleftheriou I, Moulton G (2020) Using interactive

digital notebooks for bioscience and informatics

education. PLoS Comput Biol 16(11): e1008326.

https://doi.org/10.1371/journal.pcbi.1008326

Editor: Francis Ouellette, University of Toronto,

CANADA

Published: November 5, 2020

Copyright: © 2020 Davies et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: There was no funding for this project.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5737-5629
https://orcid.org/0000-0003-1048-4558
https://orcid.org/0000-0002-5838-5404
https://orcid.org/0000-0001-8474-4303
https://doi.org/10.1371/journal.pcbi.1008326
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008326&domain=pdf&date_stamp=2020-11-05
https://doi.org/10.1371/journal.pcbi.1008326
http://creativecommons.org/licenses/by/4.0/

We will start by covering what a Jupyter notebook is along with the different “cell” types

available. We then look at how they can be run and enhanced with extensions to add items like

exercise tasks and other interactivity before looking at how they can be used in assessment.

Next, we present 2 case studies where we have applied notebooks to teach different groups of

students to give some examples of the different contexts they can be used in. Finally, we end

with a discussion to synthesise our experiences of using notebooks to educate students and

their further potential with considerations for education.

What is a Jupyter notebook?

Jupyter notebooks are an open-source web application that run in an internet browser. They

allow the sharing of code, data analysis, visualisations (which can be interactive), math formu-

las, and other embedded media (e.g., YouTube videos, images, and web links), all in a single

document combining interactive and narrative components. This takes the form of a docu-

ment that is composed of multiple cells that encapsulate the content of the notebook (Fig 1).

Jupyter notebooks were created by Project Jupyter, which, according to their website, states

that “Project Jupyter exists to develop open-source software, open-standards, and services for

interactive computing across dozens of programming languages.” [3] This includes various

standards for interactive computing, including the notebook document format that is based

on JavaScript Object Notation (JSON). The name Jupyter is composed of the initial 3 lan-

guages supported: Python, Julia, and R [4].

Anatomy of a notebook

Jupyter notebooks are available in various programming languages with current support for

over 40 different programming languages [3]. These include the popular languages used for

data science, such as Python, R, and Julia (Fig 2).

The notebooks are made up of units called “cells” that can be executed (run) in order to

render their contents in different ways.

Cell types

There are 2 principle cell types. The first cell type is the “Markdown” cell, which is used to

present text, images, equations, and other resources. The second cell type is the “code” cell

that allows the user to enter code written in a chosen programming language that will execute

Fig 1. A new Python 3 notebook with 3 empty cells denoted by the grey rectangles. The currently selected cell is highlighted in green.

https://doi.org/10.1371/journal.pcbi.1008326.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 2 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g001
https://doi.org/10.1371/journal.pcbi.1008326

in the notebook. To execute the contents of any cell, the user can press the SHIFT and

ENTER keys together or alternatively click on the “Run” button in the main menu bar across

the top of the screen. If the cell being run is a code cell, it will cause the code in the cell to be

executed and any output displayed immediately below it. This is indicated by the “In” and

“Out” words located to the left of the cells as seen in Fig 2.

Styling cells

Markdown cells can be styled with Markdown, which is a lightweight mark-up language for

styling text [5]. This works by turning Markdown text into HTML (Fig 3).

These cells can also display plain text as output with no styling. Another useful feature for

teaching math-based courses or sharing formulas, etc. is the integration of LaTeX support.

LaTeX is a popular typesetting document preparation system [6] that was built on the Tex

typesetting language originally developed by the American computer scientist Donald Knuth

[6]. LaTeX is widely used by the scientific community (e.g., computer scientists) to write aca-

demic publications (journal and conference papers). LaTeX math notation can be added to

markdown cells to display formulas using common math notation. For example, the code here

produces the output seen in Fig 4.
$ $
\sigma = \sqrt{\frac{1}{N}\sum_{i = 1}^{N} (x_i-\mu)^2}
$ $

The LaTeX wikibook math section [7] is a useful resource for learning about the math

notation options available in LaTeX. Table 1 provides an overview of some of useful Python

libraries for numerical and scientific computing that can be incorporated into the notebook

environment.

Fig 2. A simple function that returns the value of the sum of 2 numbers showing different kernels (programming languages) in the notebooks. (Left) Python,

(middle) Julia, and (right) R.

https://doi.org/10.1371/journal.pcbi.1008326.g002

Fig 3. Example of a markdown cell (left) and the output of the styled cell when the cell is run (right).

https://doi.org/10.1371/journal.pcbi.1008326.g003

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 3 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g002
https://doi.org/10.1371/journal.pcbi.1008326.g003
https://doi.org/10.1371/journal.pcbi.1008326

Running Jupyter notebooks

There are different ways of accessing Jupyter notebooks. The Anaconda distribution [8], a

Data Science platform for Python and R, provides a free Python distribution, which includes

Jupyter notebooks. Other options include JupyterHub [9], which is designed for groups of

users to access notebooks on the cloud or locally hosted and maintained on their own devices.

Once run, the user is greeted with a page showing the various files and folders available (Fig 5).

Selecting the “new” option from the menu allows the user to create a new notebook in the

selected language; alternatively, an existing notebook (ipynb) file can be loaded by selecting

the required file from the list of files in the main list to the left of the screen.

Jupyter Notebooks, JupyterLab, and JupyterHub?

Project Jupyter has created several resources and services surrounding the initial notebooks.

This can sometimes cause some confusion among beginners. A brief description includes the

following:

• Jupyter Notebooks: an interactive computational web application that combines code, text,

data analysis, and other media in a single document;

• JupyterLab: builds on the original notebooks to provide an online interactive development

environment that allows users to access notebooks with data and file viewers, text editors,

and terminals all in the same environment. This helps to better integrate notebooks with

other documents and resources in a single environment; and

• JupyterHub: let multiple users (groups) access notebooks and other resources. This can be

useful for students and companies that want a group(s) to access and use a computational

Fig 4. Output of LaTeX math notation producing the formula for the population standard deviation.

https://doi.org/10.1371/journal.pcbi.1008326.g004

Table 1. Some useful Python libraries for numerical and scientific computing.

Module

name

Description Link

Pandas For data analysis; supports objects like dataframes https://pandas.pydata.org/

NumPy For scientific computing; supports matrices and arrays https://numpy.org/

SymPy For symbolic maths; can also convert Python code into math

notation

https://www.sympy.org/en/index.

html

matplotlib Produces publication-quality plots/graphs https://matplotlib.org/

scikit-learn A machine learning algorithm library https://scikit-learn.org/stable/

https://doi.org/10.1371/journal.pcbi.1008326.t001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 4 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g004
https://pandas.pydata.org/
https://numpy.org/
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html
https://matplotlib.org/
https://scikit-learn.org/stable/
https://doi.org/10.1371/journal.pcbi.1008326.t001
https://doi.org/10.1371/journal.pcbi.1008326

environment and resources without having to install and set things up. The management of

which can be carried out by system administrators. Individual notebooks and the JupyterLab

can be accessed via the Hub. The Hub can be run in the cloud or on a groups own hardware.

As these offerings build on the initial notebook and have notebooks at their core, this article

describes the notebooks for beginners, rather than the additional platforms and services that

incorporate them. Notebooks themselves work in a similar way regardless of being accessed

alone or via JupyterLab or JupyterHub. It is worth being aware of these options, however, for

building and sharing resources around the notebooks that you may develop.

Notebook extensions

A number of different “bolt on” extensions exist for the notebooks. These can be extremely

useful for including additional features into a notebook. Some examples include the ability to

split a cell into 2 different cells horizontally, a spellchecker, auto numbering of equations, and

an extension for making exercise tasks (discussed later). To utilise the additional features that

are available with the notebooks, the following commands (Box 1) should be entered into the

command prompt (e.g., the Anaconda prompt or Powershell):

Fig 5. The files and folders tab seen when launching Jupyter notebooks locally. A new notebook is created by selecting the new dropdown option and choosing the

required language.

https://doi.org/10.1371/journal.pcbi.1008326.g005

Box 1. Commands to enable notebook extensions

pip install jupyter_contrib_nbextensions

jupyter contrib nbextension install—user

pip install jupyter_nbextensions_configurator

jupyter nbextensions_configurator enable–user

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 5 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g005
https://doi.org/10.1371/journal.pcbi.1008326

This enables the “NBextensions” tab (Fig 6). When clicked on, the user is presented with a

series of checkboxes for the various extensions. There is also a description, often with associ-

ated screenshots and/or animations previewing what the extension does.

When a new notebook is opened, the selected extensions appear as small icon buttons

under the main menu (Fig 7).

Magic commands

IPython (the “Interactive Python” kernel used in Jupyter notebooks) also supports what are

known as magic commands or functions, which are used to change the standard behaviour of

IPython. Magic commands come in 2 different types: “line” and “cell” magic’s (Box 2).

Line magic works on the line of code that it precedes only, whereas cell magic applies the

function to the entire cell. Line magic is prefixed with a single percentage character (%), cell

magic with 2 percent characters (%%). Fig 8 shows an example of this, where we use the magic

functions to load a Structured Query Language (SQL) extension and specify the database

engine such as SQLite. The second code cell employs cell magic to allow us to write and exe-

cute SQL commands in the notebook environment to create a database table.

Fig 6. The NBextensions tab for selecting the various notebook extensions.

https://doi.org/10.1371/journal.pcbi.1008326.g006

Fig 7. Enabled notebook extension icons shown in red box.

https://doi.org/10.1371/journal.pcbi.1008326.g007

Box 2. The first line is magic to list all the available line magic’s. The
second line displays a help window with information about magic
functions

%lsmagic

%magic

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 6 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g006
https://doi.org/10.1371/journal.pcbi.1008326.g007
https://doi.org/10.1371/journal.pcbi.1008326

Widgets

Widgets can be used for interactive elements in notebooks [10]. Fig 9 shows an example of this

where the “interact” function runs the “get_val” function displaying a slider with the default

value (5 in this case) selected. The user can then change the value by moving the slider to the

left or right. Fig 10 shows another example, this time using a drop-down list of options created

from a Python list.

Fig 8. Line and cell magic’s used to add SQL functionality to a Python notebook. SQL, Structured Query Language.

https://doi.org/10.1371/journal.pcbi.1008326.g008

Fig 9. Example of notebook interaction.

https://doi.org/10.1371/journal.pcbi.1008326.g009

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 7 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g008
https://doi.org/10.1371/journal.pcbi.1008326.g009
https://doi.org/10.1371/journal.pcbi.1008326

A more substantive example of using interactive widgets is highlighted by Richardson and

Behrang who use Python notebooks to view Digital Imaging and Communications in Medi-

cine (DICOM) images [4].

How Jupyter enhances collaboration and reproducibility

Reproducibility in science is an important concept. Without which, there is a lack of transpar-

ency about what was done. One would expect that if scientists follow the same method, the

results will be the same. This is sometimes difficult to achieve with complex data and analysis

methods. The quality of research in relation to collaboration was brought into question in a

recent Wellcome Trust report on research culture that stated there was some concern over the

impact of lack of research collaboration on research quality, and in some cases, unhealthy com-

petition between researchers [11]. Hardwicke and colleagues highlights that the availability of

data is essential for a self-correcting ecosystem in science and that this can be undermined by

unclear analysis and poorly curated data, which, in turn, impedes analytic reproducibility [12].

There has been a counter movement to improve these issues with organisations such as the

UK Reproducibility Network (UKRN) [13], which is a network of 10 universities in the UK that

are concerned with reproducibility in research. The founder of UKRN calls for institutional

changes to promote open-research practices [14]. Although various research studies do share

their data, other researchers’ understanding of the shared dataset and their ability to repeat the

previous analysis hinges on the documentation of both the dataset and analysis steps followed,

as well as being able to replicate the software environment in order to run the code in the first

instance. Because of these requirements, notebooks are being used increasingly by researchers

to share analysis code along with an explanation and steps involved in processing the data for

reproducible research purposes. This has led to wide-scale use in the research community [15].

By using interactive notebooks, the data analysis code and steps taken can be shared together

with any additional documentation, formulas, etc., that are required to understand the applied

method. Sharing data and analysis code in such a way dramatically improves the speed in which

the analysis can be rerun by other researchers. Researches are also building on notebook tech-

nology for novel purposes, for example, Tellurium notebooks that were developed to support

the creation of reproducible models for systems and synthetic biology [16].

Aside from the research applications, Jupyter notebooks are also being increasingly used to

teach subjects like data science and programming [17] as they feature dynamic responses such

as interactive visualisations and rapid updating of results based on the filtering of data (e.g.,

Fig 11).

Fig 10. An interactive drop-down list created using a Python list.

https://doi.org/10.1371/journal.pcbi.1008326.g010

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 8 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g010
https://doi.org/10.1371/journal.pcbi.1008326

Notebooks and assessment

Notebooks can also be set up to carry out formative or summative assessment. The “nbgrader”

tool [18] allows for the creation and grading of assignments in the notebook environment. The

tool allows a user to generate an instructor version of a notebook that has predefined solutions.

This, in turn, is used to generate the student version of the notebooks without the solutions.

These student versions of the notebook(s) can then be distributed to the students by email or

via a virtual learning environment (VLE). The principal aims of the tool were to address issues

surrounding the maintenance of separate student/instructor notebook versions, automatic

grading of exercises, the manual grading of “free response” questions, and the ability to pro-

vide feedback to students. There are 2 ways of using the nbgrader. The first is a standalone ver-

sion; the second is designed to work with JupyterHub, which can manage the release and

collection of submitted assessments. The nbgrader adds a tool bar to each cell to make the cell

either an “answer” or a “test” cell. The answer cells allow students to add code placed between

a placeholder. Unit tests are written by the instructor to evaluate the correctness of the stu-

dent’s solution. Tests can also be hidden from the students. Points can be assigned to each cell

to assign specified marks if the unit tests pass. Cells can also be set to “manually graded”

answers so students can write free text, code formulas, etc. Student feedback can be provided

when grading by adding text to any required cell and then converting the notebooks into

HTML format so they can be emailed/added to VLE for the students to view.

A simpler method of providing interactive tasks for formative assessment that does not

require the knowledge of writing unit tests is to use the exercise extension. This extension can

be used to add exercises (Fig 12). Adding feedback in the form of exercises is a unique feature

of notebooks that elevates them from simply being an online textbook. The ability to provide

Fig 11. Interactive plot generated with the “plotly” module that can be rotated and zoomed with individual data points selected.

https://doi.org/10.1371/journal.pcbi.1008326.g011

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 9 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g011
https://doi.org/10.1371/journal.pcbi.1008326

interactive tasks that let students engage directly with the notebook without the need to use

additional software is a powerful feature. Moreover, this helps maintain the narrative flow, as

the exercises can be woven into the content in appropriate places without diverting the user to

other tools or resources, all of which helps with the overall user experience.

Here, we give an example of creating an exercise where we create a task cell and put the

solution in the preceding cell. The solution cell can be hidden until the “show solution” button

(Fig 12) is activated, which reveals the hidden cell. This is a good way of adding coding tasks

for students and then presenting them with a model answer/solution for comparison and/or

further explanation. Fig 12 shows a task where the student has to add a textual value to a

Python dictionary data structure and output the result. Students can attempt to write the code

for this and then toggle the solution to check their answer with the one provided.

Sharing your notebooks

Notebooks can be shared in the same way as any other file. In order to run a notebook, how-

ever, users will need to install and set up software (i.e., Anaconda). This may not be the ideal

solution given that novices may have difficulties installing and setting up the environment

required to view and use notebooks. This is further compounded if the user needs to install

extra libraries and extensions that may be required to run a notebook as intended. One way

around this that is helpful when sharing notebooks with novices is the Binder Project [19].

Binder is a web service (currently open source) that allows users to create interactive shar-

able and reproducible computational environments in the cloud [20]. Binder uses several dif-

ferent technologies (i.e., repo2docker, JupyterHub, and BinderHub) that allow a user to place

their notebooks in a repository (e.g., GitHub). Once done, a form can be filled in on the Binder

website (mybinder.org). This includes a repository Uniform Resource Locator (URL), Git tag,

and optional path of notebook file. Following this, a user will receive a URL that they can send

to others to share their notebooks.

Fig 12. Example using the “exercise2” extension to create a task. When the “show solution” button is pressed, the answer is displayed below.

https://doi.org/10.1371/journal.pcbi.1008326.g012

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 10 / 19

http://mybinder.org/
https://doi.org/10.1371/journal.pcbi.1008326.g012
https://doi.org/10.1371/journal.pcbi.1008326

For a more technical explanation of how Binder works, please see the Binder paper pre-

sented at the SCIPY conference in 2018 and its associated YouTube video [20]. For more infor-

mation on how to implement sharing Notebooks with Binder, see the Data Carpentry tutorial

that guides users through sharing their notebooks with GitHub and using Binder [21].

Case studies

We present 2 short case studies detailing how we have used Jupyter notebooks to teach pro-

gramming skills to different audiences on 2 of our courses, an MSc module on a Health Infor-

matics programme and an introduction to programming module on postgraduate certificate

(PG Cert) in Clinical Bioinformatics. This is followed by a brief initial evaluation of the use of

notebooks in our teaching.

Case study 1: Modern Information Engineering (MIE)

The Modern Information Engineering module is a new 15-credit master’s level optional course

unit that was proposed to model the process of modern software development using the

Scrum framework [22] from the Agile software development methodology [23]. The unit was

delivered in a blended format with both distance learning and a 3-day block of face-to-face

teaching sessions. Students (n = 21) were from a variety of backgrounds. Nine (43%) were

NHS Graduate Management trainees. A further 4 (19%) had clinical backgrounds. The rest

(38%) had a variety of backgrounds. The course runs over a 9-week period with students work-

ing in Agile teams to add functionality to a medication prescribing dashboard (Fig 13) written

in Python using the Flask web framework [24]. Students work in Sprints (2-week cycles) to

add features to the dashboard, of which the skeleton code was provided to the groups.

Fig 13. Example of the prescribing dashboard the teams would add functionally to following the Scrum framework.

https://doi.org/10.1371/journal.pcbi.1008326.g013

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 11 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g013
https://doi.org/10.1371/journal.pcbi.1008326

The first part of this unit involved teaching fundamental Python and databases skills using

SQL to students, many of whom have had no or limited exposure to computer programming

(coding). We implemented the teaching of Python and SQL in the Jupyter notebook environ-

ment. The unit was a module available as part of the MSc Health Informatics programme that

is a joint award between the Universities of Manchester and University College London (UCL)

[25]. The principal challenge faced was delivering teaching of coding skills to those who have

little or no coding experience via distance learning in a way that allowed them to focus on

obtaining these fundamental skills in the chosen language (Python) without introducing any

additional complexity to the process. A further challenge was that unlike undergraduate

courses where we may teach in person using a PC cluster (computer room/lab) with preloaded

software managed by IT services, many master’s level students will be required (and usually

prefer) to use their own computing devices (laptops/tablets/desktops). Supporting the use of

software on these different operating systems and platforms adds an additional challenge. In

order to remove or reduce these barriers to learning, we decided to make use of the interactive

Jupyter notebooks that support among others the Python programming language. We were

then able to host a set of notebooks taking students through the various coding topics in order

(Fig 14). A link to the notebooks was provided on the VLE for the module (i.e., Moodle) and

the universities central username and password system added to prevent non-university affili-

ated personnel accessing the notebooks.

Fig 14. List of notebooks covering the various topics of programming with Python.

https://doi.org/10.1371/journal.pcbi.1008326.g014

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 12 / 19

https://doi.org/10.1371/journal.pcbi.1008326.g014
https://doi.org/10.1371/journal.pcbi.1008326

The main reason we built our own notebooks rather than link to other existing resources

(e.g., Software Carpentry, https://software-carpentry.org/) was to provide specific health-

related examples for the students so that the domain would be familiar to them. Many of the

computer science examples can be abstract in nature. By providing concrete health examples,

it was hoped that this would help the students to see the relevance of potential applications of

programming in health settings. We were also able to add tasks throughout the notebooks that

allowed students to code in the notebook and then view a model answer (e.g., Fig 15) using the

exercise extension discussed previously.

Fig 16 shows an example of a notebook from the set about the topic of variables and strings.

Using the notebooks in this way allowed us to side step the issues of asking the students to

download and set up Python on their machines with the associated complexities of supporting

this. We do this later on in the unit where we move to group work and using an integrated

development environment (IDE). At the beginning of the unit, we remove this barrier and

allow the students to focus on learning the Python language and programming fundamentals.

Initial feedback suggests that this improved their confidence with coding prior to the summa-

tive portion of the module. We provided support for students using the notebooks through the

VLE and also by Slack (a cloud-based instant messaging service). Teaching assistants (TAs)

would monitor the Slack channels and respond to issues the students faced with running the

notebooks and Python in general.

Case study 2: Introduction to programming

A second case study involving the teaching of basic coding in Python was a 15-credit module

in a new distance learning PG Cert in Clinical Bioinformatics. It was designed to teach the fun-

damentals of genomics medicine to a diverse cohort of students. Clinical Bioinformatics is a

relatively new profession and represents the marriage of computer science with clinical prac-

tice. The computational and data skills needed to become a clinical bioinformatician are in

short supply in the NHS with training and education trying to fill the skills gap [26]. Those

new to the field could come from many backgrounds, for example, those from the health sector

with little or no programming experience to those with IT knowledge but with limited clinical

experience.

Similarly, to case study 1, the module also adhered to agile principles [23] but was delivered

entirely online. The first part of the unit involved teaching basic GitHub and Python skills to

students with differing levels of programming experience. It needed to support these varied

learning requirements but also support students remotely, without face-to-face contact while

emulating clinical bioinformatics in practice. We therefore created an immersive and realistic

software development environment with real-world practice-based problems in the form of

sprints. To ensure an authentic learning experience, the students were taught to use Anaconda

Fig 15. Example of task from notebook. Clicking the “Show Solution” button reveals the model answer.

https://doi.org/10.1371/journal.pcbi.1008326.g015

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 13 / 19

https://software-carpentry.org/
https://doi.org/10.1371/journal.pcbi.1008326.g015
https://doi.org/10.1371/journal.pcbi.1008326

to install Python 3 onto their own machines. They also installed Git, and Windows users also

installed and initialised Git Bash so that all students could be taught in a LINUX environment.

The course content was delivered outside of Blackboard (learning management system) to the

students using GitHub (https://github.com/i3hsInnovation).

Fig 16. Example of notebook on variables and strings programming topics.

https://doi.org/10.1371/journal.pcbi.1008326.g016

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 14 / 19

https://github.com/i3hsInnovation
https://doi.org/10.1371/journal.pcbi.1008326.g016
https://doi.org/10.1371/journal.pcbi.1008326

Other than initial introductory materials, the course material was taught using Jupyter

Notebooks. The notebooks allowed us to provide interactive teaching on the basic principles

of Python programming including exercises that the students could complete within the note-

book to hone their skills. Once the basic principles of Python programming were covered, we

introduced the students to representational state transfer (REST) APIs commonly used to col-

late genomics data. The immersive nature of the notebooks allowed us to build authentic tuto-

rials to help students understand how data are retrieved from REST APIs and how they could

build their own REST APIs. The notebooks gave the students the space to practice and develop

these new skills comfortably in a fail-safe environment while using real-world examples. The

flexibility of the notebooks also meant we could reuse them easily and incorporate slightly dif-

ferent examples to support the diverse student cohort.

The notebooks introduced the team-based sprint scenarios requiring the students to proto-

type code that will meet real-world needs of NHS scientists and an in-production genomics

software application (VariantValidator, https://onlinelibrary.wiley.com/doi/full/10.1002/

humu.23348). The interactive and engaging teaching provided by the notebooks helped scaf-

fold the learning with short snippets of interactive code. These blocks of learning eventually

culminated in a final SPRINT project where the learners built resources based on needs from

their own practice (or became additional prototypes to support the VariantValidator project).

Other tools such as Slack helped with the group work and educational support, such as solv-

ing initial configuration issues, pastoral support, and providing personal feedback on SPRINT

activities. This peer-supported learning approach helped hone another essential skill in clinical

bioinformatics—being an active member of a community of practice [27]. It was the dual

approach of active learning materials providing a fail-safe environment in the notebooks cou-

pled with the peer-supported learning via Slack that meant we were able to deliver effective

training into multiple countries including a student working in frontline healthcare in China

during the peak of the Coronavirus Disease 2019 (COVID-19) epidemic. At the end of the

course, because the notebooks were downloaded to the students’ machines, they had the tools,

tutorials, and examples at their fingertips to learn back in practice. The aim of this “sandbox”

of editable and authentic learning materials was to help students to strengthen their program-

ming skills in the long term and progress as members of the wider Clinical Bioinformatics

community.

Evaluation

A detailed evaluation is beyond the scope of this paper as we are yet to run the various modules

for significant time to collect sufficient data. We do, however, present some initial findings

from a survey carried out on units using Jupyter notebooks for teaching as well as some state-

ments from students about their experiences. Twelve students completed the survey and were

asked 6 questions concerning the use of Jupyter notebooks. These consisted of the following:

1. How useful did you find this course unit? (1 = not at all, 10 = very useful)

2. How easy was it to use the Jupyter notebooks in your learning? (1 = very difficult, 10 = very

easy)

3. Did the notebooks structure and combination of activities help you build understanding?

(no/yes)

4. Did the pace of activities feel right to you? (no/yes)

5. How likely would you be to recommend Jupyter Notebooks and the learning approach we

have followed? (1 = not at all likely, 10 = extremely likely)

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 15 / 19

https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23348
https://onlinelibrary.wiley.com/doi/full/10.1002/humu.23348
https://doi.org/10.1371/journal.pcbi.1008326

6. Overall how satisfied were you with the course? (1 = least happy, 10 = happiest)

The results of which can be seen in Fig 17. We see that students provided predominantly

positive responses to the questions asked. Results show that the students indicated that they

would recommend notebooks for learning, found the course unit useful, and were satisfied

with the course. For case study 2, students also provided reflective videos and feedback. This

included the following comments on the practice-focused Jupyter Notebooks:

“[. . .] the programming module starts with the basics for students where it is new to them.

It gives an excellent overview of the different methodologies and languages and resources that

are key to bioinformatics and what’s also really helpful, or I found helpful, is that the code

is taught in snippets in Juptyer Notebooks so you are able to try out small parts of the code

for yourself . . . before you even need to get to grips with the development environment. So

that was really useful”—student on PG Cert Clinical Bioinformatics in their video feedback of

the course https://youtu.be/TiIEyEeNiaU (at 2 minutes 15 seconds)

“As an NHS clinician with very little experience of coding, the course and specifically the

introduction to programming has a steep learning curve. The modules have all been challenging

but the accessibility of tutor support and their proactive approach to supporting students has

meant that I’ve never felt lost. As a non-specialist in this field, the course has provided me with

the toolkit to understand the specific role that bioinformatics plays within the NHS. Whether

one goes on undertake further study in this field or not, this PGCert course covers much of the

material that a clinician will need familiarity with in the evolving healthcare landscape.”

And

“[. . .] very grateful for the quality of teaching on the course (across all the modules).”—stu-

dent on PG Cert Clinical Bioinformatics, who created a reflective presentation on Introduction

to Programming (https://www.youtube.com/watch?v=F-YwweY2K-4&feature=youtu.be&hd=1)

Fig 17. Results of notebook student survey (n = 12).

https://doi.org/10.1371/journal.pcbi.1008326.g017

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 16 / 19

https://youtu.be/TiIEyEeNiaU
https://www.youtube.com/watch?v=F-YwweY2K-4&feature=youtu.be&hd=1
https://doi.org/10.1371/journal.pcbi.1008326.g017
https://doi.org/10.1371/journal.pcbi.1008326

Permission was obtained from students to use their statements and videos in publications

and for marketing purposes. Videos are publically available on YouTube.

Discussion

One has to be cautious when introducing such technology into the classroom, especially when

running a distance learning/online course if a large part of the course unit is dependent on

notebook content. Such notebooks should be tested thoroughly and technical support available

for their maintenance and any issues that may arise. Their use may also be more or less prob-

lematic with different user groups. Although it is more likely that those from a science, tech-

nology, engineering and math (STEM) background will be more comfortable with such tools,

we cannot assume that this is necessarily the case. Myths like that of the “digital native” (those

born in the age of pervasive digital media) having some special advantages over other genera-

tions have been proven to be an unhelpful stereotype [28]. This means that one has to provide

adequate support for the use of such tools to ensure their smooth adoption catering for differ-

ent levels of digital literacy. Support for students with accessibility needs is also a consider-

ation, and where possible, web content should conform to Web Content Accessibility

Guidelines (WCAG) [29]. To achieve these aims, it is useful to place the students at the centre

of the design process, considering who the target audience is and their needs, the application

of the desired learning principles, how they will be presented, and importantly, how this design

stands the test of time and is able to be adapted to meet changing needs [30].

For the MIE module (case study 1), we were careful not to assume prior knowledge espe-

cially given the diverse nature of the backgrounds and experience of Health Informatics stu-

dents enrolled on that module. As this was applied to a blended module, we could not make

use of standard computer clusters with preloaded software. Most of the students would be

accessing the module using their own laptops/devices; therefore, we wanted to avoid the setup

issues of downloading and installing a Python distribution (at least initially) until they had

gained some familiarity and confidence with coding. We also didn’t want to introduce an IDE

at the initial stage of the module or use the console as this is not ideal for writing larger blocks

of code. These issues were overcome by remotely hosting the notebooks using cloud services

and providing a link for the students to log in via the main university login system. This way,

they would have their own secure copy of the notebooks for the module that could be accessed

and modified allowing them to rapidly focus on writing and learning to code, rather than all of

the peripheral setup requirements and support issues.

In contrast, the approach for the Introduction to Programming module was to provide an

authentic and immersive learning journey. The aim was to try to simulate everyday clinical

bioinformatics working practices but in a safe learning environment that could give them the

space to fail and learn from their mistakes both individually and as a team. This meant stu-

dents needed to download the notebooks locally and work with different versions using

GitHub and work as a team on Slack. The challenge was to provide enough support to help

deal with any issues they had with the tools and techniques being taught but enough autonomy

so they could develop problem-solving skills much needed in clinical bioinformatics. This bal-

ancing act required a lot of resource both at design stage with additional materials for different

learner requirements and during the delivery stage.

Supporting modules such as these may require more resources and support than traditional

face-to-face modalities. The interactive coding tasks helped the student to gain hands on expe-

rience in coding while customising their own class notes, which they can download and keep

beyond the duration of the course. Such tasks and interactive elements provided via notebooks

uniquely help to move students from a more static learning experience into a more dynamic

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 17 / 19

https://doi.org/10.1371/journal.pcbi.1008326

experience [17]. This can provide a deeper level of immersion in the tasks (for example, explor-

ing a dataset via an interactive plot or applying skills to a practice-based problem of their

choosing). In terms of Blooms (revised) taxonomy, this moves students towards the top of

higher ordered thinking into creation and production [31].

Careful consideration should also be afforded to the overall aims of the module/unit/course,

and technology should be used where appropriate to improve or facilitate learning, rather than

be used for novelty purposes. Findings suggest that learning should be the main focus, rather

than an aim to be “tech-centric” [32]. If we want to apply digital pedagogy successfully, we

need to match each bit of technology with our required pedagogical goals [32]. Essentially, the

technology is there to enhance the learning and should be chosen to support the fulfilment of

the learning objectives while considering the students’ wider contexts and learning environ-

ments. A further consideration is the quality and practices that we impart through such meth-

ods. There are calls for journal editors and reviewers to enforce computational reproducibility

[33]; however, many scientists use and write code on a regular basis but often lack formal

training in good software engineering practices [34]. To embed good practices that students

can use in their further research careers, we need to ensure that whenever possible, the content

we generate helps to distil these practices. This in turn negates the importance of providing

appropriate training for educators themselves.

Conclusion

The use of Jupyter notebooks on several of our university modules has been positively received

by both staff and students who see them as a useful resource for learning to code and commu-

nicate research findings and analysis, and in the cases presented, learning the Python program-

ming language specifically. The use of notebooks in such units also gives students an

introduction to the notebook environment, which some may go on to use for research pur-

poses later in their career or for the research component of their masters degrees. The use of

digital notebooks and other technologies should be carefully evaluated to ensure they add real

value to the learning aims and objectives, placing the pedagogic aims of the course at the centre

of the process. Given that the use of such tools is becoming more ubiquitous in the bioscience

research and scientific education domains, it would be advantageous for academic tutors in

such fields to have an awareness and understanding of their application and to consider their

use for providing interactive components to computational learning tasks where appropriate.

References
1. Gregory J, Salmon G. Professional development for online university teaching. Distance Educ. 2013;

34(3):256–270.

2. Georgina DA, Olson MR. Integration of technology in higher education: A review of faculty self-percep-

tions. Internet High Educ. 2008; 11(1):1–8.

3. Project Jupyter. Project Jupyter [Internet]. 2019 [cited 2020 Jan 27]. Available from: https://jupyter.org/

4. Richardson ML, Amini B. Scientific Notebook Software: Applications for Academic Radiology. Curr

Probl Diagn Radiol. 2018; 47(6):368–377. https://doi.org/10.1067/j.cpradiol.2017.09.005 PMID:

29122394

5. Cone M. Everything you need to learn Markdown [Internet]. Getting Started. 2019 [cited 2019 Sep 23].

Available from: https://www.markdownguide.org

6. The LaTex Project. Introduction to LaTeX [Internet]. 2019 [cited 2020 Jan 27]. Available from: https://

www.latex-project.org/about/

7. Wikibooks contributors. LaTeX/Mathematics [Internet]. The Free Textbook Project. 2020 [cited 2020

Jan 27]. Available from: https://en.wikibooks.org/wiki/LaTeX/Mathematics

8. Anaconda Incorporated. Anaconda Distribution [Internet]. ANACONDA. 2019 [cited 2019 Sep 21].

Available from: https://www.anaconda.com/distribution/

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 18 / 19

https://jupyter.org/
https://doi.org/10.1067/j.cpradiol.2017.09.005
http://www.ncbi.nlm.nih.gov/pubmed/29122394
https://www.markdownguide.org
https://www.latex-project.org/about/
https://www.latex-project.org/about/
https://en.wikibooks.org/wiki/LaTeX/Mathematics
https://www.anaconda.com/distribution/
https://doi.org/10.1371/journal.pcbi.1008326

9. Project Jupyter. Project Jupyter [Internet]. JupyterHub. 2019 [cited 2020 Jan 27]. Available from: https://

jupyter.org/hub

10. Project Jupyter. Using Interact—Jupyter Widgets 7.5.1 documentation [Internet]. Using Interact. 2017 [cited

2020 Jan 27]. Available from: https://ipywidgets.readthedocs.io/en/latest/examples/Using Interact.html

11. The Wellcome Trust. What Researchers Think About the Culture They Work In. 2020.

12. Hardwicke TE, Mathur MB, MacDonald K, Nilsonne G, Banks GC, Kidwell MC, et al. Data availability,

reusability, and analytic reproducibility: Evaluating the impact of a mandatory open data policy at the

journal Cognition. R Soc Open Sci. 2018; 5(8):1–18.

13. University of Bristol. UK Reproducibility Network | School of Psychological Science | University of Bristol

[Internet]. The UK Reproducibility Network (UKRN). 2020 [cited 2020 Jan 22]. Available from: https://

www.bristol.ac.uk/psychology/research/ukrn/

14. Munafo M. World View: Raising research quality will require collective action. Nature [Internet]. 2019;

576:183. Available from: http://ci.nii.ac.jp/naid/40007256857/ https://doi.org/10.1038/d41586-019-

03750-7 PMID: 31822845

15. Rule A, Birmingham A, Zuniga C, Altintas I, Huang S-C, Knight R, et al. Ten Simple Rules for Reproduc-

ible Research in Jupyter Notebooks. PLoS Comput Biol [Internet]. 2018;1–8. Available from: http://

arxiv.org/abs/1810.08055

16. Medley JK, Choi K, König M, Smith L, Gu S, Hellerstein J, et al. Tellurium notebooks—An environment

for reproducible dynamical modeling in systems biology. PLoS Comput Biol. 2018; 14(6):1–24.

17. Barba L, Barker L, Blank D, Brown J, Downey A, George T, et al. Teaching and Learning with Jupyter [Inter-

net]. 2020 [cited 2020 Jan 27]. Available from: https://jupyter4edu.github.io/jupyter-edu-book/index.html

18. Jupyter Development Team. nbgrader—nbgrader 0.6.1 documentation [Internet]. nbgrader. 2017 [cited

2020 Jan 27]. Available from: https://nbgrader.readthedocs.io/en/stable/

19. The Binder Project. Binder [Internet]. 2020 [cited 2020 Jun 5]. Available from: https://mybinder.org/

20. Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, et al. Binder 2.0—Reproducible,

interactive, sharable environments for science at scale. In: PROC OF THE 17th PYTHON IN SCIENCE

CONF (SCIPY 2018). 2018:113–120.

21. Data Carpentry. Sharing Jupyter Notebooks [Internet]. 2019 [cited 2020 Jun 5]. Available from: https://

reproducible-science-curriculum.github.io/sharing-RR-Jupyter/

22. Scrum.org. What is Scrum? [Internet]. What is Scrum? 2020 [cited 2020 Jan 25]. Available from: https://

www.scrum.org/resources/what-is-scrum

23. Agile Alliance. What is Agile Software Development? [Internet]. Agile 101: What is Agile? 2020 [cited

2020 Jan 25]. Available from: https://www.agilealliance.org/agile101/

24. Pallets. Welcome to Flask—Flask Documentation (1.1.x) [Internet]. 2010 [cited 2020 Mar 11]. Available

from: https://flask.palletsprojects.com/en/1.1.x/

25. The University of Manchester. MSc/PGDip/PGCert Health Informatics (UCL/UoM Joint Award) (2020 entry)

[Internet]. Health Informatics Joint Award. 2020 [cited 2020 Jan 27]. Available from: https://www.manchester.

ac.uk/study/masters/courses/list/12478/msc-pgdip-pgcert-health-informatics-ucl-uom-joint-award/

26. Attwood TK, Blackford S, Brazas MD, Davies A, Schneider MV. A global perspective on evolving bioin-

formatics and data science training needs. Brief Bioinform. 2019 Mar; 20(2):398–404. https://doi.org/

10.1093/bib/bbx100 PMID: 28968751

27. Davies AC, Harris D, Banks-Gatenby A, Brass A. Problem-based learning in clinical bioinformatics edu-

cation: Does it help to create communities of practice? PLoS Comput Biol. 2019; 15(6):1–13.

28. Kirschner PA, De Bruyckere P. The myths of the digital native and the multitasker. Teach Teach Educ

[Internet]. 2017; 67:135–42. Available from: http://dx.doi.org/10.1016/j.tate.2017.06.001

29. W3C. Web Content Accessibility Guidelines (WCAG) 2.1 [Internet]. W3C Recommendation 05 June

2018. 2018 [cited 2020 Jan 25]. Available from: https://www.w3.org/TR/WCAG21/

30. Beetham H, Sharpe R. Rethinking Pedagogy for a Digital Age: Designing for 21St Century Learning.

2nd ed. London: Routledge; 2013. 670 p.

31. Anderson L, Krathwohl D, editors. A taxonomy for learning, teaching, and assessing: A revision of

Bloom’s taxonomy of educational objectives. New York, New York, USA: Longman; 2001.

32. Curry N. World of Better Learning [Internet]. Putting the pedagogy first in digital pedagogies. 2018 [cited

2020 Jan 27]. Available from: https://www.cambridge.org/elt/blog/2018/10/05/putting-the-pedagogy-

first-in-digital-pedagogies/

33. Gymrek M, Farjoun Y. Recommendations for open data science. Gigascience. 2016; 5(1):4–6.

34. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific

Computing. PLoS Biol. 2014; 12(1):1–7.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008326 November 5, 2020 19 / 19

https://jupyter.org/hub
https://jupyter.org/hub
https://ipywidgets.readthedocs.io/en/latest/examples/Using
https://www.bristol.ac.uk/psychology/research/ukrn/
https://www.bristol.ac.uk/psychology/research/ukrn/
http://ci.nii.ac.jp/naid/40007256857/
https://doi.org/10.1038/d41586-019-03750-7
https://doi.org/10.1038/d41586-019-03750-7
http://www.ncbi.nlm.nih.gov/pubmed/31822845
http://arxiv.org/abs/1810.08055
http://arxiv.org/abs/1810.08055
https://jupyter4edu.github.io/jupyter-edu-book/index.html
https://nbgrader.readthedocs.io/en/stable/
https://mybinder.org/
https://reproducible-science-curriculum.github.io/sharing-RR-Jupyter/
https://reproducible-science-curriculum.github.io/sharing-RR-Jupyter/
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.agilealliance.org/agile101/
https://flask.palletsprojects.com/en/1.1.x/
https://www.manchester.ac.uk/study/masters/courses/list/12478/msc-pgdip-pgcert-health-informatics-ucl-uom-joint-award/
https://www.manchester.ac.uk/study/masters/courses/list/12478/msc-pgdip-pgcert-health-informatics-ucl-uom-joint-award/
https://doi.org/10.1093/bib/bbx100
https://doi.org/10.1093/bib/bbx100
http://www.ncbi.nlm.nih.gov/pubmed/28968751
http://dx.doi.org/10.1016/j.tate.2017.06.001
https://www.w3.org/TR/WCAG21/
https://www.cambridge.org/elt/blog/2018/10/05/putting-the-pedagogy-first-in-digital-pedagogies/
https://www.cambridge.org/elt/blog/2018/10/05/putting-the-pedagogy-first-in-digital-pedagogies/
https://doi.org/10.1371/journal.pcbi.1008326

