Table 1. Some useful Python libraries for numerical and scientific computing.
Module name | Description | Link |
---|---|---|
Pandas | For data analysis; supports objects like dataframes | https://pandas.pydata.org/ |
NumPy | For scientific computing; supports matrices and arrays | https://numpy.org/ |
SymPy | For symbolic maths; can also convert Python code into math notation | https://www.sympy.org/en/index.html |
matplotlib | Produces publication-quality plots/graphs | https://matplotlib.org/ |
scikit-learn | A machine learning algorithm library | https://scikit-learn.org/stable/ |