Skip to main content
. 2020 Nov 5;16(11):e1008326. doi: 10.1371/journal.pcbi.1008326

Table 1. Some useful Python libraries for numerical and scientific computing.

Module name Description Link
Pandas For data analysis; supports objects like dataframes https://pandas.pydata.org/
NumPy For scientific computing; supports matrices and arrays https://numpy.org/
SymPy For symbolic maths; can also convert Python code into math notation https://www.sympy.org/en/index.html
matplotlib Produces publication-quality plots/graphs https://matplotlib.org/
scikit-learn A machine learning algorithm library https://scikit-learn.org/stable/