Table 1. Average results from the leave-one-patient-out cross-validations for each model.
Model | Locality | mean ROC AUC | mean Dice | mean Sensitivity | mean Specificity | mean Prediction Time (s) |
---|---|---|---|---|---|---|
LR | Global | 0.809±0.110** | 0.322±0.218** | 0.386±0.243** | 0.959±0.047 | 0.055±0.031 |
LR | Local | 0.861±0.109** | 0.337±0.221** | 0.448±0.254 | 0.955±0.041** | 0.062±0.015* |
LR | Hybrid | 0.872±0.092 | 0.348±0.221 | 0.444±0.252 | 0.955±0.047** | 0.126±0.038** |
RF | Global | 0.789±0.104** | 0.319±0.215** | 0.361±0.218** | 0.965±0.037 | 29.762±6.857** |
RF | Local | 0.845±0.099** | 0.311±0.208** | 0.404±0.208** | 0.956±0.030** | 704.859±146.593** |
RF | Hybrid | 0.859±0.089** | 0.353±0.220 | 0.415±0.231** | 0.964±0.034 | 736.284±148.309** |
Average ROC AUC values, Dice coefficients, sensitivity, specificity, and prediction time values for one dataset from the leave-one-patient-out cross-validation for each model. Best results according to each metric are highlighted in bold. Significant differences to this best-performing method computed with a one-sided paired student’s t-test are marked with a star (*) for a confidence interval of 95% (p < 0.05) and two stars (**) for a confidence interval of 99% (p < 0.01). Nominal p-values are reported without correction for multiplicity, similarly as in [23].