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Abstract

Increasing urbanisation has led to a greater use of artificial structures by bats as alternative

roost sites. Despite the widespread presence of bats, roost availability may restrict their distribu-

tion and abundance in urban environments. There is limited quantitative information on the driv-

ers of bat roost selection and roosting preferences, particularly in African bats. We explore the

factors influencing roost selection in the Mauritian tomb bat (Taphozous mauritianus), within an

urban landscape in Lilongwe city, Malawi. Eight building and five landscape features of roosts

were compared with both adjacent and random control buildings throughout the city. Bat occu-

pied buildings were situated closer to woodland (mean 709m) compared to random buildings

(mean 1847m) but did not differ in any other landscape features explored. Roosts were situated

on buildings with larger areas and taller walls, suggesting bats select features for predator-

avoidance and acoustic perception when leaving the roost. Bats preferred buildings with

exposed roof beams which may provide refuge from disturbance. Whilst roosts are situated

more often on brick walls, this feature was also associated with landscape features, therefore

its importance in roost selection is less clear. These results are indicative that T. mauritianus

selects roosts at both the building and landscape level. The selectivity of T. mauritianus in rela-

tion to its roost sites implies that preferred roosts are a limited resource, and as such, conserva-

tion actions should focus on protecting roost sites and the woodland bats rely on.

Introduction

Urban areas are expanding at an unprecedented rate, causing significant reductions in biodi-

versity and ecosystem service provision [1]. Sixty-eight percent of the world’s population is
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projected to live in cities by 2050, an increase of 13% from 2018 estimates [2]. Anthropogenic

activities are a major threat to bats globally and more than a third of bat species are considered

threatened or data deficient by the International Union for Conservation of Nature (IUCN)

[3]. Factors threatening bat populations include habitat loss and fragmentation, roost distur-

bance, agriculture, hunting, persecution, non-native predators, urban development, climate

change, and the emergence of diseases such as white-nose syndrome in North America [3–6].

Bats spend over half their time under the influence of the selective pressures imposed upon

them by their roost environment [7]. Roosts provide bats with important sites for hibernation,

mating, and rearing young; as well as offering protection from environmental extremes and

predators [8]. For many bats, roosts often play a significant part in shaping and maintaining

social interactions [9, 10] and the type and location of available roosts is likely to play a decisive

role in determining bat survival and fitness [11].

The conversion of natural landscapes into agricultural land and managed forests has meant

many bats are forced to use human-made structures due to a lack of natural roost sites [12].

Some bats have benefited from the increased roosting opportunities provided by human devel-

opment [13–17]. However, the lower intensity of urban habitat use across bat species com-

pared to natural areas indicates that overall bats are affected negatively by urbanisation [18].

Increased human-bat conflict (HBC), opportunistic predators, a reduction in health through

pollutants, and artificial lighting have all been suggested as potential barriers to colonisation of

urban areas by bats [19, 20]. The ability of bats to respond to urbanisation is highly dependent

on the mobility, degree of specialisation, mobility, behavioural plasticity and the spatial scale at

which species respond [21, 22]. Thus, a species may react positively, negatively, or in a neutral

way to urban encroachment depending on the circumstances.

To date, relatively few studies have investigated the process of roost selection in bats occu-

pying buildings [15, 23–26]. Distance to woodland and water, coverage at roost sites, linear

vegetation elements, and temperature have all been shown to influence roost selection for sev-

eral bat species [15, 27]. This reliance on both local and landscape-scale elements means the

size and distribution of bat populations may be constrained by the availability of favorable

roost sites. Bat species that utilise a narrow range of resources for roosting and foraging may

find it difficult to adapt to future urban expansion.

Globally, most urbanisation occurs in developing countries, which are predicted to contain

83% of the world’s urban population by 2050 [2]. More than half of global population growth

(58%) by 2050 is expected to occur in Africa [2]. Although the vast majority of bat species

diversity resides within the tropics [28], to date no studies have investigated the drivers of

roost selection of tropical bats in an urban environment. This lack of information limits our

ability to develop effective mitigation strategies for HBC and sustainable management of biodi-

versity in increasingly urbanised environments. Understanding roost selection and the degree

of ecological specialisation by bats can assist in determination of species vulnerability to habi-

tat loss and climate change, informing global assessments of species conservation status [29,

30].

We assessed the drivers of roost selection in the Mauritian tomb bat Taphozous mauritianus
in Lilongwe city, Malawi. T. mauritianus is a small and widespread species that roosts under

the eaves of buildings in central and south-eastern Africa [31]. Whilst being listed as a species

of least concern, the IUCN identifies a need to elucidate this bat’s population size, distribution,

and dynamics. This species often roosts in buildings in Malawi which increases HBC. An

improved understanding of its roosting habits is critical to inform conflict mitigation and

determine species distribution over large geographic areas [32].

To date only basic descriptive studies on the roost sites of T. mauritianus are available [33–

35] limiting our understanding of the roosting requirements of this species and therefore
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effective management of roosts, habitats and HBC. We used a paired occupied and unoccupied

control design to assess predictors of roost occupancy at the local and landscape scale. We

hypothesised that T. mauritianus select roost sites based on both the local-scale features of

buildings and the surrounding landscape matrix. At the landscape scale, we predicted that T.

mauritianus select roosts situated close to available resources, such as woodland and water

bodies, in accordance with previous studies on other species [15, 24, 27]. At the local scale, we

predicted T. mauritianus select roosts situated away from any direct sunlight [33], closer to

trees, and with larger building eaves than unoccupied sites.

Materials and methods

Study species

The Mauritian tomb bat is a species of sac-winged bat in the family Emballonuridae (body

mass ~ 26g) which occurs throughout central and south-eastern Africa and Madagascar [36].

T. mauritianus are most commonly found in moist, open habitats and savanna regions [37],

but also in open woodland [33]. T. mauritianus primarily roost with their abdomen against a

vertical surface. Day roosts are commonly found in the open but away from direct sunlight,

and include the outer walls of buildings, cliff faces, and the trunks of large trees [33]. T. mauri-
tianus can tolerate high levels of human disturbance but remain constantly vigilant during the

day. T. mauritianus are listed as least concern due to their wide distribution, presumed large

population, and tolerance to a degree of habitat modification [37].

Study area

We conducted the study within the residential zones of Lilongwe city, in central Malawi (13˚

58’60”S, 33˚46’60”E, 1,050 m above sea level) during the dry season months of June to July

2018. Malawi is located in Southern Africa with an estimated population of 17.5 million which

is expected to double by 2018 [38]. Lilongwe is the Capital city of Malawi, covering an area of

456 km2 with an estimated population of 989,318, and population density of 2455/km2 in 2018

[39]. Urbanisation is increasing in Lilongwe, with a 50% increase in area of settlements

between 2008 and 2017 [40]. Anthropogenic habitats constitute 79.64% of land area (e.g. sub-

sistence agriculture and unwooded urban areas), with only 20.36% of the city containing natu-

ral habitats (woodland, grassland, shrub land, parkland, open water and dambo). The majority

of land use in Lilongwe is low intensity agriculture (52.3%) followed by high density unwooded

urban area (15.27%), medium density wooded urban areas (8.87%) and unwooded urban

areas (8.09%) (S1 Table) [41]. Roosts were located within an area of approximately 29 km2 sit-

uated to the north of Lilongwe River characterized by high and medium urban density areas,

with low levels of woodland.

Roosts and random buildings

We identified twenty-one bat-occupied buildings (BOBs) through door-to-door surveys

within the study area. We systematically inspected all walls at each roost and visually counted

bats. We chose thirteen random unoccupied buildings as control samples by selecting the

nearest house to a randomly generated grid reference acquired using QGIS 2.2.0 [42]. If build-

ing access was not possible, we assessed the next closest building until access was granted. We

externally inspected buildings to confirm the absence of bats. Due to the external roosting hab-

its of T. mauritianus, confirmation of the absence of bats could be assessed with absolute cer-

tainty. All buildings used in the study were occupied by humans. We were only able to obtain

access to thirteen unoccupied buildings due to logistical constraints.

PLOS ONE Urban roosting ecology of Mauritian tomb bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0240434 November 5, 2020 3 / 12

https://doi.org/10.1371/journal.pone.0240434


Paired controls

Roost selection of bats found in optimal habitat could be due to specific building features, or

the process could be more akin to random selection [15, 23, 43]. To assess relative importance

of building features we identified 21 paired control buildings by selecting the nearest unoccu-

pied building to the BOB (defined as< 200 m away [15, 43]). If access to the nearest unoccu-

pied building was not possible, the owners of the next closest building were contacted until

access was granted.

Building features

We recorded the following features for all sampled buildings (e.g. bat-occupied, random and

paired controls): (i) height of wall ((m) at bat roost locality), (ii) wall material (brick or non-

brick), (iii) roof material (corrugated metal or tiles), (iv) eaves depth (defined as the length

from the end of the eaves to the point where the eaves met the wall (m)), (v) wall orientation

(north, north-east, east, south-east, south, south-west, west, north-west), (vi) building area

(m2), (vii) building perimeter (m), (viii) presence of exposed roof beams and (ix) distance

from roost to the nearest tree greater than 5 m tall. Measurements were carried out using a

Bosch GLM 250 VF Professional laser range finder and a Garmin eTrex1 10 handheld GPS

unit.

We allocated a number to the wall of each control building and used a random number

generator to select a wall from which the building measurements were recorded. For paired

buildings, the number of walls examined equaled the number measured on the paired BOB.

For random controls, we took measurements on up to a maximum of six walls. We took all

measurements on control buildings from the central point of each wall selected. We conducted

research under permit from the Department of National Parks and Wildlife Malawi.

Landscape features

We quantified habitats around roost and random control buildings in QGIS 2.2.0 [42] using

aerial photographs obtained from Google Satellite imagery (dated: 29/05/2018). We created

habitat land cover maps using 17 pre-defined habitat/land use categories (Table 1) which we

digitised from Google satellite imagery using the Open Layers plugin within QGIS version

Table 1. Top models (Δi < 2) predicting building occupancy by T. mauritianus based on AICC and Akaike weight

Wi for comparisons between: (i) roosts and all controls (paired + random) and (ii) roosts and paired controls.

Model AICC Di Wi

Roosts vs all controls
Wall height + area + wall materiala + eaves deptha + beamsa 49.2728 0.0000 0.2176

Wall height + area + wall material 49.6630 0.3901 0.1790

Wall height + area + wall material + eaves deptha + beamsa + treea 50.4491 1.1762 0.1209

Wall height + area + eaves depth + beams 50.8716 1.5987 0.0978

Intercept only 174.8033 125.5305 0.0000

Roosts vs paired
Wall height + area + beams 32.5679 0.0000 0.5639

Wall height + area + beams + eaves deptha 34.3921 1.8242 0.2265

Intercept only 122.6432 90.0752 0.0000

Models built with binomial distribution and logit link. Intercept models included for comparisons under conditions

of no roost selection. Di represents delta (AICC) and indicates the difference in the AICC value with the top model.

The symbol ‘a’ denotes non-significant terms based on 0.05 significance threshold.

https://doi.org/10.1371/journal.pone.0240434.t001
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2.16.3. We digitised habitat polygons visually from spatial data at scales between 1:7,000 and

1:10,000 and which were ground validated by researchers at African Bat Conservation (ABC).

We recorded the following landscape features: (i) distance to nearest woodland (or parkland)

(m), (ii) distance to nearest open water (river, lake, swimming pool, reservoir, pond, and foun-

tain) (m), (iii) area of nearest woodland (or parkland) (ha), (iv) road density (sum length [m]

of road within 500 m), (v) and building density. We measured building density by counting

the number of buildings within 1.5km of each building in the following concentric distance

bands: 0–0.5 km, 0.5–1.0 km, and 1.0–1.5 km using Google Satellite Imagery.

Statistical analysis

We used an information theoretic approach to assess the relative importance of characteristics

for roost selection by T. mauritianus [44]. We developed candidate models using building and

landscape characteristics. We analysed explanatory variables for collinearity using pearsons

correlations, and assessed multicollinearity by calculating the variance inflation factor (VIF)

for each variable within a given model (a value exceeding four indicated significant multicolli-

nearity [45]). To eliminate variable redundancy, we dropped building perimeter from analyses

as it was highly correlated with building area (kendall’s tau = 0.8, p< 0.0001).

We used Generalized Linear Models (GLMs) with a binomial error structure and a logit

link function to assess the role of building and landscape features on occupancy of buildings

by T. mauritianus. We assigned a value of 1 to BOBs and 0 to random/paired bat-unoccupied

buildings (response variable). Building and landscape features were incorporated as fixed

effects (explanatory variables). We developed separate models to assess the importance of fac-

tors important for local (i.e., roost height, eaves depth, wall and roof material, orientation,

exposed beams, distance to tree, building area) and landscape features (i.e., distance to wood-

land and water, area of nearest woodland, road and building density).

To assess the importance of building features in roost selection, we pooled datasets for random

and paired buildings (i.e., all controls) and compared with BOBs. We compared features of BOBs

with paired bat-unoccupied buildings to determine the local features important for roost selec-

tion, independent of landscape features. For the assessment of building features, the roost, or wall

from which the measurements were taken from on the paired buildings, was the unit under inves-

tigation within the developed models. We compared BOBs to random bat-unoccupied buildings

to investigate whether bats selected buildings according to local landscape features.

Model fit was analysed using Akaike Information Criterion scores corrected for small sam-

ple sizes (AICC), as well as Akaike weights (Wi). The difference in AICC between the ith and

top-ranked model (Δi) was evaluated. Models in which Δi < 2 received substantial support and

were so considered the top selected models [43]. Where multiple models received substantial

support (i.e., Δi < 2), we summed Akaike weights for each model in which a particular variable

occurred (abbreviated as W+) to aid interpretation [42–44]. This method allows assessment of

the relative importance of any given variable and is recommended when many models are

investigated [44]. All analyses were conducted within the RStudio environment [46] and

graphical outputs created with OriginPro [47].

Results

We recorded a total of 75 individual T. mauritianus on 21 separate buildings including churches,

universities, and residential buildings in Lilongwe (S1 Table). All T. mauritianus roosts were sit-

uated on the outside of buildings, exclusively under the eaves. Bats consistently roosted on build-

ings in which the roof beams were exposed and avoided the apex side of buildings.
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Building features

Roost vs all controls. We pooled data from random and paired buildings (i.e., all con-

trols), and no single best model could be inferred (Table 1). There was no difference in eaves

depth or presence of beams between BOBs and control buildings (lowest AICC model; eaves:

X2 = 1.232, df = 1, p = 0.267; beams: X2 = 3.267, df = 1, p = 0.071).

In all top models, bat-occupied buildings were larger and walls were taller compared to

unoccupied ones (lowest AICC model; height: X2 = 14.910, df = 1, p< 0.001; area: X2 = 9.630,

df = 1, p = 0.002) (Table 1). Occupied buildings were 216.59 m2 larger (mean ± SE, roosts:

486.89 ± 33.63 m2; controls: 229.72 ± 13.24 m2), and walls 2.17 m taller (mean ± SE, roosts:

5.61 ± 0.21 m; controls: 3.50 ± 0.04 m), compared to control buildings.

Wall material was not a predictor of building occupancy (X2 = 3.785, df = 1, p = 0.053)

(Table 1), though this was only marginally insignificant. Assessment of the relative importance

of parameters indicates that wall material is an important feature predicting bat presence

(Table 2). Bats selected buildings constructed of brick (90.9% of roost walls constructed with

brick compared to 42.5% for controls). The intercept only model scored one of the highest

AICC values (ranked 100 out of 104), indicating that bats are highly selective of roosts based on

building features.

Roosts vs paired controls. Of 106 models comparing BOBs with paired buildings two

models were supported (Δi < 2, W+ = 0.7904) (Table 2). Both top candidate models were

Table 2. The relative importance (W+) of variables in predicting the presence of T. mauritianus on buildings

throughout Lilongwe, Malawi.

Scale Variable W+

Building (roosts vs all controls) Building area 0.9534

Wall height 0.9201

Wall material 0.8076

Eaves depth 0.5846

Beams 0.4888

Distance to tree 0.2730

Roof material 0.0769

Orientation 0.0000

Building (roosts vs paired) Building area 0.9923

Beams 0.9728

Wall height 0.9594

Eaves depth 0.3792

Wall material 0.1614

Distance to tree 0.0476

Roof material 0.0066

Orientation 0.0000

Landscape (roosts vs random) Distance to woodland 1.2037

Building density (0–0.5 km) 0.8055

Road density 0.4173

Distance to water 0.4061

Building density (1.0–1.5 km) 0.3854

Woodland area 0.2924

Building density (0.5–1.0 km) 0.2232

‘W+’ represents the sum of Akaike weights for each model the variable appears in. Models built with binomial

distribution and logit link.

https://doi.org/10.1371/journal.pone.0240434.t002
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consistent with previous models (i.e., roosts vs all controls) as roost height (X2 = 9.994, df = 1,

p = 0.002) and building area (X2 = 24.822, df = 1, p< 0.001) predicted occupancy by T. mauri-
tianus. The presence of beams also determined bat occupancy (X2 = 12.287, df = 1, p< 0.001).

Wall material was not found to be a predictor of building occupancy by bats and had low

relative importance when controlling for landscape features (Table 2). The intercept only

model scored one of the highest AICC values, indicating that building features are playing an

important role in the roost selection process of T. mauritianus when in an optimal habitat.

Landscape features

Roosts vs random controls. To assess the impact of landscape features on building occu-

pation by T. mauritianus, we compared 141 models using AICC and Akaike weight values

(Table 3). No single best model could be determined from the analyses because the top ten

models had a Δi < 2 and a cumulative Akaike weight of 0.424 (Table 3). All top candidate mod-

els agreed that BOBs were situated closer to woodland compared to non-occupied random

controls (lowest AICC model; X2 = 14.408, df = 1, p< 0.001). BOBs were an average of 1131.73

m closer to woodland than unoccupied buildings (mean ± SE, roosts: 708.59 ± 178.08 m; con-

trols: 1840.32 ± 162.06 m). No other landscape variables affected roost selection of T. mauritia-
nus. Evaluation of the relative importance of each landscape feature indicated strong support

that distance to woodland had a greater importance over any other landscape variable

(Table 2). The intercept-only model was not included in the confidence set of models, receiv-

ing little support (Δi = 12.1457 and Wi = 0.0002), and can thus be discounted as a plausible

model.

Discussion

Here we show that T. mauritianus are highly selective of roosts based on building features and

local landscape variables. At the building level, we predicted T. mauritianus would select roosts

Table 3. Top models (Δi < 2) assessing the impact of landscape features on building occupancy by T. mauritianus
based on AICC and Akaike weight Wi. Results based on comparisons made between roosts and random controls.

Model AICC Di Wi

Distance to woodland 35.2132 0.0000 0.0693

Distance to woodland + building density (0.5 km)a + building density (1500m)a 35.9262 0.7130 0.0485

Distance to woodland + distance to watera + road density (0.5 km)a + building

density (0.5 km)a
36.1329 0.9197 0.0437

Distance to woodland + woodland areaa 36.1679 0.9546 0.0430

Distance to woodland + road densitya 36.4442 1.2310 0.0374

Distance to woodland + distance to watera + density of buildings (0.5 km)a 36.4653 1.2520 0.0370

Distance to woodland + density of buildings (0.5 km)a 36.7091 1.4959 0.0328

Distance to woodland + distance to watera + road densitya + building density

(500m)a + building density (1.0–1.5 km)a
36.8790 1.6657 0.0301

Distance to woodland + distance to watera + building density (500m)a + building

density (1.0–1.5 km)a
37.0187 1.8055 0.0281

Distance to woodland + building density (1.0–1.5 km)a 37.0822 1.8690 0.0272

Distance to woodland + distance to watera 37.0955 1.8822 0.0270

Intercept only 47.3589 12.1457 0.0002

Models built with binomial distribution and logit link. Intercept model included for comparisons under conditions

of no roost selection. Di represents delta (AICC) and indicates the difference in the AICC value with the top model.

The symbol ‘a’ denotes non-significant terms based on 0.05 significance threshold.

https://doi.org/10.1371/journal.pone.0240434.t003
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situated away from any direct sunlight [33], and with larger building eaves than unoccupied

buildings. Indeed in our study, T. mauritianus preferred buildings with taller walls and larger

areas. This is consistent with studies characterising roost preferences in other bat species,

despite the differences in their roosting ecology [14, 23–25, 48]. Bats in rural Madagascar

selected larger and taller buildings as roosts [14]. Tree-roosting bats tend to choose taller trees

—an apparent mechanism of predator-avoidance from terrestrial predators such as weasels

[11, 49]. Bats tend to favour structures that are significantly taller than surrounding structures

[23–25, 48]. A study in South Africa recorded T. mauritianus roosting at an average height of

around six meters, though it was not clear whether bats were actively selecting taller buildings

[35].

Roosting at height may reduce the risk of predation, either by reducing the risk of discovery

from ground predators or by increasing the difficulty of them climbing up [11]. Whilst preda-

tors within urban areas may vary from those in non-urban areas, the challenges presented may

be somewhat similar. Domestic cats are often the most prevalent predator of bats within cities,

particularly for bats roosting in houses [50]. Cats are common in Lilongwe city along with

other natural predators including genets (Genetta genetta) and snakes. As such, T. mauritianus
may be under a selective pressure to roost at height to avoid predation. Roosting externally on

buildings makes T. mauritianus easily visible to humans and therefore roosting at height may

also reduce human disturbance and HBC. Studies of attic dwelling bats suggested that a prefer-

ence for tall buildings reduces the risk of exclusion [24]. Roosting at height may also allow for

ease of take-off, and improved orientation as taller dominant objects provide better acoustic

and visual perception cues when returning from foraging [48].

In accordance with our predictions T. mauritianus preferred larger buildings compared to

controls. House dwelling bats in Madagascar also preferred larger buildings [14]. A larger

building area may provide more opportunities for roost sites, especially as larger buildings

often become increasingly complex in architectural design.

We predicted that T. mauritianus would select buildings located close to trees, as previous

observations suggested that T. mauritianus sometimes flies to nearby trees when disturbed or

threatened [33, 51]. This was not supported by our results, as T. mauritianus roosts were not

situated closer to trees compare to control buildings. During anecdotal observations we found

that disturbed bats would seek refuge in other areas on the building rather than a nearby tree.

This, combined with the preference for the presence of exposed beams, suggests T. mauritia-
nus may use exposed beams for refuge when disturbed rather than flying to nearby trees. This

contrasts with previous findings for tree-roosting bats in natural day roosts, which showed a

preference for roost sites situated close to trees [11]. Therefore, buildings may provide greater

refuge opportunities than those naturally available, and is likely to increase with building size.

Although wall material was not a significant predictor of occupancy for paired buildings,

wall material was in the top three highest ranked models when roosts were compared to all

controls. Therefore, whilst bats may prefer brick structures (as found by bats in Madagascar

[14]), it is possible that bats select buildings due to location and or wider landscape features,

and that brick buildings are more commonly found in the areas with preferred landscape. Nev-

ertheless, 91% of occupied roosts were comprised of brick. This is consistent to findings from

an observational study of T. mauritianus in Durban, South Africa where around 80% of roosts

were associated with brick walls [34, 35]. Whilst brick structures may provide an easier surface

for bats to grip, they may provide camouflage due to the grizzled pelage of T. mauritianus [52].

Consequently, bats may select brick surfaces as they resemble natural surfaces such as cliff

walls and tree trunks [33], compared to the majority of non-brick buildings which had white

painted walls, which would make T. mauritianus conspicuous when roosting. The spatial dis-

tribution of bats and occupation of roosts is not solely dependent on building or landscape
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features, but also influenced by the degree of roost fidelity and social cohesion. In Lilongwe

there is evidence that T. mauritianus exhibits high roost fidelity (at least one roost has been

occupied by bats for 10 years). High roost fidelity and preference for certain structural features

indicates that some buildings would be suboptimal roost sites, and thus roost sites may be a

limiting resource over time due to changes in urban buildings making T. mauritianus vulnera-

ble to disturbance and roost loss.

In line with previous studies, we predicted that bats would select roost sites based on their

proximity to resources such as water and foraging sites [15, 24, 25, 27, 43, 53]. Indeed some

bats select roosts closer to open water than random buildings [15, 27]. In this study, roost

buildings were not situated closer to open water compared to unoccupied buildings, indicating

bats are not selecting roosts according to proximity to riparian habitats. However, T. mauritia-
nus have been recorded foraging over water [54, 55], suggesting the lack of preference for

roost sites close to water could reflect the homogeneity of open water features throughout

Lilongwe and the similarity in proximity to water between roost and random buildings sam-

pled (mean distance to water roost buildings = 415 m, unoccupied buildings = 494 m).

T. mauritianus selected roosts situated close to woodland. Previous observations of T.

mauritianus within open and riparian forest suggest a level of dependency on these habitat

types [33]. Fragmented patches of woodland provide an important habitat for moths in urban

environments by allowing them to proliferate [56]. Therefore, it is possible T. mauritianus
occupying roosts in urban areas may rely on woodland habitat for foraging [33]. This high-

lights the importance of maintaining urban woodlands for bats, as despite being considered

“urban exploiters” the ability of T. mauritianus to occupy urban areas is dependent upon not

only the presence of preferred buildings, but also access to woodlands for foraging. Malawi has

the highest rate of deforestation in the Southern African Development Community (SADC)

region (estimated at 30,000–40,000 hectares per year), due to agricultural expansion, develop-

ment and fuel use [57]. Woodland in Lilongwe declined by 25% between 1990 and 2010, and is

under increasing threat from continued residential and industrial development, and fuel wood

extraction [41]. Deforestation in Lilongwe and other tropical cities threatens the persistence of

“urban exploiter” bats, and may render urban areas unsuitable for bats. Conservation of

remaining urban woodland should therefore be prioritised in urban biodiversity management

plans.

Conclusions and conservation implications

Urbanisation is a major threat to biodiversity globally, yet many species may benefit from it,

including bats [58]. Our results demonstrate patterns of non-random association between T.

mauritianus and building and landscape features which is indicative of roost selection. We

have provided the first quantified evidence of the specific building and roost structural features

preferred by T. mauritianus, information which is critical to inform roost mitigation, creation

and conservation in urban areas. The preference for larger buildings with taller walls, contain-

ing exposed beams will be important information in managing HBC and roost conservation in

tropical areas. Perhaps most significantly, we have demonstrated the importance of nearby

woodland for urban roost occupancy by T. mauritianus, which could make this species vulner-

able to future urbanisation. Lilongwe city is rapidly expanding and woodlands are declining,

which may reduce the suitability of urban areas for T. mauritianus whilst simultaneously

increasing HBC. T. mauritianus are not legally protected in Malawi and are subject to persecu-

tion, resulting in the destruction of entire colonies (ABC pers com.).

Effective conservation of T. mauritianus in urban areas will therefore require the protection

of roosts, conservation of urban woodlands and public education about the ecological
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importance of bats within the urban landscape [59]. Our results will inform practical measures

to mitigate HBC with T. mauritianus and inform effective conservation of bats and their habi-

tats in urban environments across their range.
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14. López-Baucells A, Rocha R, Andriatafika Z, Tojosoa T, Kemp J, Forbes K, et al. Roost selection by

synanthropic bats in rural Madagascar: what makes non-traditional structures so tempting? Hystrix, the

Italian Journal of Mammalogy. 2017; 28(1):28–35. https://doi.org/10.4404/hystrix-28.1–12046

15. Entwistle AC, Racey PA, Speakman JR. Roost selection by the brown long-eared bat Plecotus auritus.

J Appl Ecol. 1997; 34(2):399–408. PubMed PMID: ISI:A1997XB02800010.

16. Stebbings RE. Conservation of European bats. London: Christopher Helm; 1988.

17. Bartonicka T, Bielik A, Rehak Z. Roost switching and activity patterns of the soprano pipistrelle Pipistrel-

lus pygmaeus during lactation. Ann Zool Fenn. 2008; 45:503–12.

18. Jung K, Threlfall CG. Urbanisation and its effects on bats–a global meta-analysis. In: Voigt CC,

Kingston T, editors. Bats in the Anthropocene: Conservation of Bats in a Changing World Cham:

Springer; 2016.

19. Russo D, Ancillotto L. Sensitivity of bats to urbanization: a review. Mammalian Biology—Zeitschrift für
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