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Summary.

We consider integrating a non-probability sample with a probability sample which provides high 

dimensional representative covariate information of the target population. We propose a two-step 

approach for variable selection and finite population inference. In the first step, we use penalized 

estimating equations with folded concave penalties to select important variables and show 

selection consistency for general samples. In the second step, we focus on a doubly robust 

estimator of the finite population mean and re-estimate the nuisance model parameters by 

minimizing the asymptotic squared bias of the doubly robust estimator. This estimating strategy 

mitigates the possible first-step selection error and renders the doubly robust estimator root n 
consistent if either the sampling probability or the outcome model is correctly specified.
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1. Introduction

Probability sampling is regarded as the gold standard in survey statistics for finite population 

inference. Fundamentally, probability samples are selected under known sampling designs 

and therefore are representative of the target population. However, many practical challenges 

arise in collecting and analysing probability sample data such as data collection costs and 

increasing non-response rates (Keiding and Louis, 2016). With advances of technology, non-

probability samples become increasingly available for research purposes, such as remote 

sensing data and web-based volunteer samples. Non-probability samples provide rich 

information about the target population and can be potentially helpful for finite population 
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inference. These complementary features of probability samples and non-probability 

samples raise the question of whether it is possible to develop data integration methods that 

leverage the advantages of both sources of data.

Existing methods for data integration can be categorized into three types. The first type is 

the so-called propensity score adjustment (Rosenbaum and Rubin, 1983). In this approach, 

the probability of a unit being selected into the non-probability sample, which is referred to 

as the propensity or sampling score, is modelled and estimated for all units in the non-

probability sample. The subsequent adjustments, such as propensity score weighting or 

stratification, can then be used to adjust for selection biases; see, for example, Lee and 

Valliant (2009), Valliant and Dever (2011), Elliott and Valliant (2017) and Chen, Li and Wu 

(2018). Stuart et al. (2011, 2015) and Buchanan et al. (2018) used propensity score 

weighting to generalize results from randomized trials to a target population. 

O’Muircheartaigh and Hedges (2014) proposed propensity score stratification for analysing 

a non-randomized social experiment. One notable disadvantage of propensity score methods 

is that they rely on an explicit propensity score model and may be biased and highly variable 

if the model is misspecified (Kang and Schafer, 2007). The second type uses calibration 

weighting (Deville and Särndal, 1992; Kott, 2006; Chen, Valliant and Elliott, 2018; Chen et 
al., 2019). This technique forces the moments or the empirical distribution of auxiliary 

variables to be the same between the probability sample and the non-probability sample, so 

that after calibration the weighted distribution in the non-probability sample appears similar 

to that in the target population (DiSogra et al., 2011). The third type is mass imputation, 

which imputes the missing values for all units in the probability sample. In the usual 

imputation for missing data analysis, the respondents in the sample constitute a training data 

set for developing an imputation model. In the mass imputation, the non-probability sample 

is used as a training data set, and imputation is applied to all units in the probability sample; 

see, for example, Breidt et al. (1996), Rivers (2007), Kim and Rao (2012), Chipperfield et al. 
(2012) and Yang and Kim (2018).

Let X ∈ ℝp be a vector of auxiliary variables (including an intercept) that are available from 

two sources of data, and let Y be a general-type study variable of interest. We consider 

combining a probability sample observing X, referred to as sample A, and a non-probability 

sample observing (X, Y), referred to as sample B, to estimate μ the population mean of Y. 

Because the sampling mechanism of a non-probability sample is unknown, the target 

population quantity is not identifiable in general. Researchers rely on an identification 

strategy that uses the non-informative sampling assumption imposed on the non-probability 

sample. To ensure that this assumption holds, researchers try to control for all covariates that 

are predictors of both sampling and the outcome variable. In practice, subject matter experts 

recommend a rich set of potentially useful variables but typically will not identify the set of 

variables to adjust for. In the presence of a large number of auxiliary variables, variable 

selection is important, because existing methods may become unstable or even infeasible, 

and irrelevant auxiliary variables can introduce a large variability in estimation. There is a 

large literature on variable-selection methods for prediction, but little work on variable 

selection for data integration that can successfully recognize the strengths and the limitations 

of each source of data and utilize all information captured for finite population inference. 
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Gao and Carroll (2017) proposed a pseudolikelihood approach to combining multiple non-

survey data with high dimensionality; this approach requires that all likelihoods are correctly 

specified and therefore is sensitive to model misspecification. Chen, Valliant and Elliott 

(2018) proposed a model-based calibration approach using lasso regression; this approach 

relies on a correctly specified outcome model. To our knowledge, robust inference has not 

been addressed in the context of data integration with high dimensional data.

We propose a doubly robust variable-selection and estimation strategy that harnesses the 

representativeness of the probability sample and the outcome information in the non-

probability sample. The double robustness entails that the final estimator is consistent for the 

true value if either the probability of selection into the non-probability sample, which is 

referred to as the sampling score, or the outcome model is correctly specified, but not 

necessarily both (a double-robustness condition); see, for example, Bang and Robins (2005), 

Tsiatis (2006), Cao et al. (2009) and Han and Wang (2013). To handle high dimensional 

covariates, our strategy separates the variable selection step and the estimation step for the 

finite population mean to achieve two different goals.

In the first step, we select a set of variables that are important predictors of either the 

sampling score or the outcome model using penalized estimating equations. We assume that 

the sampling score follows a logistic regression model with unknown parameter α ∈ ℝp and 

the outcome follows a generalized linear model with unknown parameter β ∈ ℝp. 

Importantly, we separate the estimating equations for α and β to achieve stability in variable 

selection under the double-robustness condition. Specifically, we construct the estimating 

equation for α by calibrating the weighted average of X from sample B, weighted by the 

inverse of the sampling score, to the weighted average of X from sample A (i.e. a design-

unbiased estimate of population mean of X). We construct the estimating equation for β by 

minimizing the standard least squared error loss under the outcome model. To establish the 

selection properties, we consider the ‘large n, diverging p’ framework. The major technical 

challenge is that, under the finite population framework, the selection indicators of sample A 

are not independent in general. To overcome this challenge, we construct martingale random 

variables with a weak dependence that enables the application of the Bernstein inequality. 

This construction is used in establishing our selection consistency result.

In the second step, we re-estimate (α, β) on the basis of the joint set of covariates selected 

from the first step and consider a doubly robust estimator of μ, μdr α, β .We propose to use 

different estimating equations for (α, β), derived by minimizing the asymptotic squared bias 

of μdr α, β . This estimation strategy is not new; see, for example, Kim and Haziza (2014) 

for missing data analyses in low dimensional data; here, we demonstrate its new role in high 

dimensional data to mitigate the possible selection error in the first step. In essence, our 

strategy for estimating (α, β) renders the first-order term in the Taylor series expansion of 

μdr α, β  with respect to (α, β) to be exactly zero, and the remaining terms are negligible 

under regularity conditions. This estimating strategy makes the doubly robust estimator root 

n consistent if either the sampling probability or the outcome model is correctly specified. 

This also enables us to construct a simple and consistent variance estimator allowing for 

doubly robust inferences. Importantly, the estimator proposed enables model 

Yang et al. Page 3

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



misspecification of either the sampling score or the outcome model. In the existing high 

dimensional causal inference literature, the doubly robust estimators have been shown to be 

robust to selection errors by using penalization (Farrell, 2015) or approximation errors by 

using machine learning (Chernozhukov et al., 2018). However, this double-robustness 

feature requires both nuisance models to be correctly specified. We relax this requirement by 

allowing one of the nuisance models to be misspecified. We clarify that, even though the set 

of variables for estimation may include the variables that are solely related to the sampling 

score but not the outcome and therefore may harm efficiency of estimating μ (De Luna et al., 
2011; Patrick et al., 2011), it is important to include these variables for μdr α, β  to achieve 

consistency in the case when the outcome model is misspecified and the sampling score 

model is correctly specified; see Section 6.

The paper proceeds as follows. Section 2 provides the basic set-up of the problem. Section 3 

presents the proposed two-step procedure for variable selection and doubly robust estimation 

of the finite population mean. Section 4 describes the computation algorithm for solving 

penalized estimating equations. Section 5 presents the theoretical properties for variable 

selection and doubly robust estimation. Section 6 reports simulation results that illustrate the 

finite sample performance of the method. In Section 7, we present an application to analyse 

a non-probability sample collected by the Pew Research Center (PRC). We relegate all 

proofs to the on-line supplementary material.

2. Basic set-up

2.1. Notation: two samples

Let U = 1, …, N  be the index set of N units for the finite population with N known. The 

finite population consists of ℱN = Xi, Y i : i ∈ U . The parameter of interest is the finite 

population mean μ = N−1Σi = 1
N Y i. We consider two sources of data: a probability sample, 

referred to as sample A, and a non-probability sample, referred to as sample B. Table 1 

illustrates the observed data structure. Sample A consists of observations 

OA = dA, i = πA, i
−1 , Xi : i ∈ A  with sample size nA, where πA, i = P i ∈ A  is known in 

sample A. Sample B consists of observations OB = Xi, Y i : i ∈ ℬ  with sample size nB. We 

define IA,i and IB,i to be the selection indicators corresponding to sample A and sample B 

respectively. Although the non-probability sample contains rich information on (X, Y), the 

sampling mechanism is unknown, and therefore we cannot compute the first-order inclusion 

probability for Horvitz-Thompson estimation. The naive estimators applied to sample B 

without adjusting for the sampling process are subject to selection biases (Meng, 2018).

2.2. An identification assumption

Before presenting the proposed methodology for integrating the two sources of data, we first 

discuss the identification assumption. Let f(Y|X) be the conditional distribution of Y given X 
in the superpopulation model ζ that generates the finite population. We make the following 

assumption.
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Assumption 1.

a. The selection indicator IB of sample B and the response variable Y are 

independent given X, i.e. P(IB = 1|X, Y) = P(IB = 1|X), which is referred to as the 

sampling score πB(X), and

b. πB(X) > Nγ−1δB > 0 for all X, where γ ∈ (2
3 , 1].

Assumption 1(a) implies that m(X) = E(Y|X) = E(Y|X, IB = 1) can be estimated solely on 

the basis of sample B. Assumption 1(b) specifies a lower bound of πB(X). A standard 

condition in the literature imposes a strict positivity in the sense that πB(X) > δB > 0; 

however, it implies that nB
−1 = O N−1 , which may be restrictive in survey practice. Here, we 

relax this condition and allow nB
−1 = O N−γ , where γ can be strictly less than 1.

Assumption 1 is a key assumption for identification. Under assumption 1, E(μ) is identifiable 

on the basis of sample A by E{IAm(X)} or sample B by E{IBY/πB(X)}. However, this 

assumption is not verifiable from the observed data. To ensure that this assumption holds, 

researchers often consider many possible predictors for the selection indicator IB or the 

outcome Y, resulting in a rich set of variables in X.

2.3. Existing estimators

In practice, the sampling score function πB(X) and the outcome mean function m(X) are 

unknown and need to be estimated from the data. Let πB(XTα) and m(XTβ) be the 

postulated models for πB(X) and m(X) respectively, where α and β are unknown 

parameters. Various estimators of μ have been proposed in the literature, each requiring 

different model assumptions and estimation strategies. We provide examples below and 

discuss their properties and limitations.

2.3.1. Example 1 (inverse probability of sampling score weighting)—Given an 

estimator α, the inverse probability of sampling score weighting estimator is

μIPW = μIPW α = 1
N ∑

i = 1

N IB, i
πB Xi

Tα
Y i . (1)

The justification for μIPW relies on a correct specification of πB(X) and the consistency of α. 

There are different approaches to obtain α. Following Valliant and Dever (2011), we can 

obtain α by fitting the sampling score model on the basis of the combined data 

OA ∪ OB = ωi = dA, i, Xi, Ii = 0 :i ∈ A ∪ ωi = 1, Xi, Ii = 1 :i ∈ ℬ , weighted by ωi. The 

resulting estimator α is valid nB is relatively small (Valliant and Dever, 2011). Elliott and 

Valliant (2017) proposed an alternative strategy based on the Bayes rule: πB(X) ∝ P(IA = 1|

X)OB(X), where OB X = P IB = 1 ∣ X, OA ∪ OB /P IB = 0 ∣ X, OA ∪ OB  is the odds of 

selection into sample B among the combined sample. This approach does not require nB to 

be small; however, if X does not correspond to the design variables for sample A, it requires 

postulating an additional model for P(IA = 1|X). Moreover, variable selection based on this 
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approach is not straightforward with a high dimensional X. To obtain α, we use the 

following estimating equation for α:

∑
i = 1

N IB, i
π Xi

Tα
− IA, i

πA, i
ℎ Xi; α = 0, (2)

for some h(Xi; α) such that equation (2) has a unique solution. Kott and Liao (2017) 

advocated the use of h(X; α) = X and Chen, Li and Wu (2018) advocated the use of h(X; α) 

= π(XT; α)X.

2.3.2. Example 2 (outcome regression based on sample A)—The outcome 

regression estimator is

μreg = μreg β = 1
N ∑

i = 1

N
IA, idA, im Xi

Tβ , (3)

where β  is obtained by fitting the outcome model based solely on OB under assumption 1.

The justification for μreg relies on a correct specification of m(XTβ) and the consistency of 

β . If m(XTβ) is misspecified or β  is inconsistent, μreg can be biased.

2.3.3. Example 3 (calibration weighting)—The calibration weighting estimator is

μcal = μcal = 1
N ∑

i = 1

N
ωiIB, iY i, (4)

where ωi: i ∈ ℬ  satisfies constraint (i) Σi ∈ SBωiXi = Σi ∈ SAdA, iXi or constraint (ii) 

Σi ∈ SBωim Xi; β = Σi ∈ AdA, im Xi; β  (McConville et al., 2017; Chen, Valliant and Elliott, 

2018; Chen et al., 2019).

The justification for μcal subject to constraint (i) relies on the linearity of the outcome model, 

i.e. m(X) = XTβ* for some β*, or the linearity of the inverse probability of sampling weight, 

i.e. πB(X)−1 = XTα* for some α* (Fuller (2009), theorem 5.1). The linearity conditions are 

unlikely to hold for non-continuous variables. In these cases, μcal may be biased. The 

justification for μcal subject to constraint (ii) relies on a correct specification of m(X; β).

2.3.4. Example 4 (doubly robust estimator)—The doubly robust estimator is

μdr = μdr α, β = 1
N ∑

i = 1

N IB, i
πB Xi

Tα
Y i − m Xi

Tβ + IA, idA, im Xi
Tβ . (5)

The estimator μdr is doubly robust with fixed dimensional X (Chen, Li and Wu, 2018), in the 

sense that it achieves consistency if either πB(XTα) or m(XTβ) is correctly specified, but not 
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necessarily both. The double robustness is attractive; therefore, we shall investigate the 

potential of μdr in a high dimensional set-up.

3. Methodology in high dimensional data

In the presence of a large number of covariates, not all of them are relevant for making 

inference of the population mean of the outcome. Including unnecessary covariates in the 

model makes the computation unstable and increases estimation errors. Variable selection is 

required to handle high dimensional covariates. For any vector α ∈ ℝp, denote the number of 

non-zero elements in α as α 0 = Σj = 1
p I αj ≠ 0 , the L1-norm as α 1 = Σj = 1

p |αj|, the L2-

norm as α 2 = ∑j = 1
p αj2 and the L∞-norm as α ∞ = max1 ⩽ j ⩽ p|αj|. For any 

J ⊆ 1, …, p , let αJ be the subvector of α formed by elements of α whose indices are in J. 

Let Jc be the complement of J. For J1, J2 ⊆ 1, …, p  and matrix Σ ∈ ℝp × p, let ΣJ1, J2 be 

the submatrix of Σ formed by rows in J1 and columns in J2. Following the literature on 

variable selection, we first standardize the covariates so that they have variances 

approximately equal to 1, which makes the variable-selection procedure more stable. We 

make the following modelling assumptions.

Assumption 2 (sampling score model).

The sampling mechanism of sample B, πB(X), follows a logistic regression model πB(XTα), 

i.e. logit{πB(XTα)} = XTα for α ∈ ℝp.

Assumption 3 (outcome model).

The outcome mean function m(X) follows a generalized linear regression model, i.e. m(X) = 

m(XTβ) for β ∈ ℝp, where m(·) denotes the link function.

Define α* to be the p-dimensional parameter that minimizes the Kullback-Leibler 

divergence,

α* = arg min
α ∈ ℝp

E πB X log
πB X

πB XTα
+ 1 − πB X log

1 − πB X
1 − πB XTα

,

and β* = argminβ ∈ ℝpE Y − m XTβ 2
.

In assumption 2, we adopt the logistic regression model for the sampling score following 

most of the empirical literature; but our framework can be extended to the case of other 

models such as the probit model. The models πB(XTα) and m(XTβ) are working models, 

which may be misspecified. If the sampling score model is correctly specified, we have 

πB(X) = πB(XTα*). If the outcome model is correctly specified, we have m(X) = m(XTβ*).
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The procedure proposed consists of two steps: the first step selects important variables in the 

sampling score model and the outcome model, and the second step focuses on doubly robust 

estimation of the population mean.

In the first step, we propose to solve penalized estimating equations for variable selection. 

Using equation (2) with h(X; α) = X, we define the estimating function for α as

U1 α = 1
N ∑

i = 1

N IB, i
πB XiTα

−
IA, i
πA, i

Xi .

To select important variables in m(XTβ), we define the estimating function for β as

U2 β = 1
N ∑

i = 1

N
IB, i Y i − m XiTβ Xi .

Let U(θ) = (U1(α)T, U2(β)T)T be the joint estimating function for θ = (αT, βT)T. When p is 

large, following Johnson et al. (2008), we consider the penalized estimating function for (α, 

β) as

Up α, β = U α, β −
qλα |α| sgn α
qλβ |β| sgn β , (6)

where qλα α = qλα |α0| , …, qλα |αp| T and qλβ β = qλβ |β0| , …, qλβ |βp| T
 are some 

continuous functions, qλα |α| sgn α  is the elementwise product of qλα α  and sgn(α), and 

qλβ |β| sgn β  is the elementwise product of qλβ β  and sgn(β). We let qλ(x) = dpλ(x)/dx, 

where pλ(x) is some penalization function. Although the same discussion applies to different 

non-concave penalty functions, we specify pλ(x) to be a folded concave smoothly clipped 

absolute deviation penalty function (Fan and Lv, 2011). Accordingly, we have

qλ |θ| = λ I |θ| < λ + aλ − |θ| +
a − 1 λ I |θ| ⩾ λ , (7)

for a > 0, where (·)+ is the truncated linear function, i.e., if x ⩾ 0, (x)+ = x and, if x < 0, (x)+ 

= 0. We use a = 3.7 following the suggestion of Fan and Li (2001). We select the variables if 

the corresponding estimates of coefficients are non-zero in either the sampling score or the 

outcome model, indexed by C.

Remark 1.

To help to understand function (6) we discuss two scenarios. If |αj| is large, then qλα |αj|  is 0, 

and therefore U1,j(α) is not penalized. In contrast, if |αj| is small but non-zero, then qλα |αj|

is large, and U1,j(α) is penalized with a penalty term. The penalty term then forces αj to be 0 
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and excludes the jth element of X from the final selected set of variables. The same 

discussion applies to U2(β) and qλβ |β| .

In the second step, we consider the doubly robust estimator μdr α, β  in equation (5) with 

α, β  re-estimated on the basis of XC. As we shall show in Section 5, the set C contains the 

true important variables in either the sampling score model or the outcome model with 

probability approaching 1 (the oracle property). Therefore, if either the sampling score 

model or the outcome model is correctly specified, the asymptotic bias of μdr α*, β*  is 0; 

however, if both models are misspecified, the asymptotic bias of μdr α*, β*  is

a . bias α*, β* = E μdr α*, β* − μ

= E 1
N ∑

i = 1

N IB, i
πB XiTα*

− 1 Yi − m XiTβ*

+ E 1
N ∑

i = 1

N
IA, idA, i − 1 m XiTβ* .

To minimize a.bias(α, β)2, we consider the estimating function

∂a . bias(α, β)2

∂ αC
T , βC

T T = 2a . bias α, β
IB

1
πB XTα

− 1 Y − m XTβ XC

IB
πB XTα

− dAIA ∂m XTβ / ∂βC

(8)

and the corresponding empirical estimating function

J α, β =
J1 α, β
J2 α, β =

1
N ∑

i = 1

N
IB, i

1
πB Xi

Tα
− 1 Y i − m Xi

Tβ XiC

1
N ∑

i = 1

N IB, i
πB Xi

Tα
− dA, iIA, i

∂m Xi
Tβ

∂βC

(9)

for estimating (α, β), constrained on αT, βT T ∈ ℝ2p:αCc = 0, βCc = 0 .

To summarize, our two-step procedure is as follows.

Step 1: solve the penalized joint estimating equation Up(α, β) = 0, denoted by α, β . 

Let ℳα = j:αj ≠ 0 , ℳβ = j:βj ≠ 0  and C = ℳα ∪ ℳβ.

Step 2: obtain the proposed estimator as

μp−dr = μp−dr α, β = 1
N ∑

i = 1

N
IB, i

Y i − m Xi
Tβ

πB Xi
Tα

+ IA, idA, im Xi
Tβ , (10)
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where α and β  are obtained by solving J(α, β) = 0 for α and β with αCc = 0 and 

βCc = 0.

Remark 2.

The two steps use different estimating functions (6) and (9) for selection and estimation with 

the following advantages. First, function (6) separates the selection for α and β in U1(α) and 

U2(β), so it stabilizes the selection procedure if either the sampling score model or the 

outcome model is misspecified. Second, using equation (9) for estimation leads to an 

attractive feature for inference about μ. We point out that, although the joint estimating 

function (9) is motivated by minimizing the asymptotic bias of μdr α*, β*  when both 

nuisance models are misspecified, we do not expect the proposed estimator for μ to be 

unbiased in this case. Instead, using function (9) has the advantage in the case when either 

the sampling score or the outcome model is correctly specified. It is well known that post-

selection inference is notoriously difficult even when both models are correctly specified 

because the estimation step is based on a random set of variables being selected. We show 

that our estimation strategy based on function (9) mitigates the possible first-step selection 

error and makes μdr α, β  root n consistent if either the sampling probability or the outcome 

model is correctly specified in high dimensional data. Heuristically this is achieved because 

the first Taylor series expansion term is set to be 0 because of function (8). We relegate the 

details to Section 5.

Remark 3.

Variable selection circumvents the instability or infeasibility of direct estimation of (α, β) 

with high dimensional X. Moreover, in step 2, we consider the union of covariates XC, 

where C = ℳα ∪ ℳβ. It is worth comparing this choice with two other common choices in 

the literature. The first considers separate sets of variables for the two models, i.e. the 

sampling score is fitted on the basis of ℳα, and the outcome model is fitted on the basis of 

ℳβ. However, we note that in the joint estimating equations J1(α, β) and J2(α, β) should 

have the same dimension; otherwise, a solution to J(α, β) = 0 may not exist. Moreover, 

Brookhart et al. (2006) and Shortreed and Ertefaie (2017) have shown that including 

outcome predictors in the propensity score model will increase the precision of the estimated 

average treatment effect without increasing bias. This implies that an efficient variable-

selection and estimation method should take into account both sampling-covariate and 

outcome-covariate relationships. As a result, μdr α, β  may have a better performance than 

the oracle estimator that uses the true important variables separately in the sampling score 

and the outcome model. Second, many researchers have suggested that including predictors 

that are solely related to the sampling score but not the outcome may harm estimation 

efficiency (De Luna et al., 2011; Patrick et al., 2011). However, this strategy is effective 

when both the sampling score and the outcome models are correctly specified. When the 

sampling score model is correctly specified but the outcome model is misspecified, 

restricting the variables to be the outcome predictors may make the sampling score 
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misspecified by using the wrong set of variables. The simulation study suggests that μp−dr
restricted to the set of variables in ℳβ is not doubly robust.

4. Computation

In this section, we discuss the computation for solving the penalized estimating equation (6). 

Following Johnson et al. (2008), we use an iterative algorithm that combines the Newton-

Raphson algorithm for solving estimating equations and the minorization-maximization 

algorithm for the non-convex penalty of Hunter and Li (2005).

First, by the minorization-maximization algorithm, the penalized estimator θ = α, β  solving 

equation (6) satisfies

Up θ = U θ −
qλα |α| sgn α |α|

ϵ + |α|

qλβ |β| sgn β |β|
ϵ + |β|

= 0, (11)

where ϵ is a predefined small number. In our implementation, we choose ϵ to be 10−6.

Second, we solve equation (11) using the Newton-Raphson algorithm. It may be challenging 

to implement the Newton-Raphson algorithm directly, because it involves inverting a large 

matrix. For computational stability, we use a co-ordinate decent algorithm (Friedman et al., 
2007) by cycling through and updating each of the co-ordinates. Define m(k)(t) = dkm(t)/dkt 
for k ⩾ 1:

∇ θ = ∂U θ
∂θT = diag ∂U1 α

∂αT , ∂U2 β
∂βT ,

∂U1 α
∂αT = − 1

N ∑
i = 1

N
IB, i

1 − πB Xi
Tα

πB Xi
Tα

XiXi
T,

∂U2 β
∂βT = − 1

N ∑
i = 1

N
IB, im 1 Xi

Tβ 2XiXi
T,

(12)

and

Λ θ =

qλ1 |θ1| ⋯ 0
⋮ ⋱ ⋮
0 ⋯ qλ2p |θ2p|

.

Let θ start at an initial value θ 0 . With the other co-ordinates fixed, the kth Newton-Raphson 

update for θj is

θj
k = θj

k − 1 + ∇jj θ k − 1 + NΛjj θ k − 1 −1

Uj θ k − 1 − NΛjj θ k − 1 θj
k − 1 ,

(13)
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where ∇jj(θ) and Λjj(θ) are the jth diagonal elements in ∇(θ) and Λ(θ) respectively. The 

procedure cycles through all the 2p elements of θ and is repeated until convergence.

We use K-fold cross-validation to select tuning parameters (λα, λβ). More specifically, we 

partition both samples into approximately K equal sized subsets and pair subsets of sample 

A and subsets of sample B randomly. Of the K pairs, we retain one single pair as the 

validation data and the remaining K − 1 pairs as the training data. We fit the models on the 

basis of the training data and estimate the loss function on the basis of the validation data. 

We repeat the process K times, with each of the K pairs used exactly once as the validation 

data. Finally, we aggregate the K estimated loss function. We select the tuning parameter as 

the parameter that minimizes the aggregated loss function over a prespecified grid.

Because the weighting estimator uses the sampling score πB(X) to calibrate the distribution 

of XC between sample B and the target population, we use the following loss function for 

selecting λα:

Loss λα = ∑
j = 1

p
∑

i = 1

N IB, i
πB XiTα λα

−
IA, i
πA, i

Xi, j

2
,

where α λα  is the penalized estimator α with tuning parameter λα.We use the prediction 

error loss function for selecting λβ:

Loss λβ = ∑
i = 1

N
IB, i Y i − m XiTβ λβ

2,

where β λβ  is the penalized estimator β with tuning parameter λβ.

5. Asymptotic results for variable selection and estimation

We establish the asymptotic properties for the proposed double variable-selection and 

doubly robust estimation method. We assume that sample A is collected by simple random 

sampling or Poisson sampling with the following regularity conditions. Although it appears 

restrictive, our results extend to high entropy sampling designs; see remark 4.

Assumption 4.

For all 1 ⩽ i ⩽ N, πA,i ⩾ Nγ−1δA > 0, where γ ∈ (2
3 , 1].

Similarly to assumption 1(b), we relax the strict positivity on πA,i and assume nA = O(Nγ) 

for γ possibly strictly less than 1. Let n = min(nA, nB), which is O(Nγ) under assumptions 1 

and 4.

Remark 4.

We discuss the applicability of our asymptotic framework to sample A with high entropy 

sampling designs. Examples of high entropy sampling designs include simple random 
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sampling, correlated Poisson sampling designs, normalized conditional Poisson sampling 

designs, Rao-Sampford sampling, the Chao design and the stratified design; see Berger 

(1998a,b), Brewer and Donadio (2003) and Grafström (2010). The asymptotic properties for 

high entropy sampling designs are determined solely by their first-order inclusion 

probabilities. Therefore, for two high entropy sampling designs with the same first-order 

inclusion probabilities, their asymptotic behaviours are the same. In particular, we can 

consider the conditional Poisson sampling design (Hájek, 1964; Tillé, 2011), which appears 

when conditioning the Poisson design on a fixed sample size nA. Let pA = {pA,i: i = 1, … , 

N} with Σi = 1
N pA, i = nA be the inclusion probabilities for the conditional Poisson sampling 

design. Given pA, it is possible to find πA = {πA,i: i = 1, … , N} with Σi = 1
N πA, i = nA such 

that the conditional Poisson sampling design with pA is asymptotically equivalent to the 

Poisson sampling design with the inclusion probabilities πA (Hájek, 1964; Conti, 2014). 

Therefore, for a high entropy design, to apply our theoretical results, we check the 

conditions for the corresponding inclusion probability πA under Poisson sampling.

Let ℳα = 1 ⩽ j ⩽ p:αj* ≠ 0 , ℳβ = 1 ⩽ j ⩽ p:βj* ≠ 0  and ℳθ = ℳα ∪ p + ℳβ . Define sα 

= ∥α*∥0, sβ = ∥β*∥0, sθ = sα + sβ and λθ = min(λα, λβ).

Assumption 5.

The following regularity conditions hold.

Condition 1. The parameter θ belongs to a compact subset in ℝ2p, and θ* lies in the 

interior of the compact subset.

Condition 2. Xi: i ∈ U  are fixed and uniformly bounded.

Condition 3. There are constants c1 and c2 such that

0 < c1 ⩽ λmin
1
N ∑

i = 1

N
XiTXi ⩽ λmax

1
N ∑

i = 1

N
XiTXi ⩽ c2 < ∞,

where λmin(·) and λmax(·) are the minimum and the maximum eigenvalue of a matrix 

respectively.

Condition 4. Let ϵi(β) = Y i − m Xi
Tβ  be the ith residual. There is a constant c3 such 

that E{|ϵi(β*)|2+δ} ⩽ c3 for all 1 ⩽ i ⩽ N and some δ > 0. There are constants c4 and 

c5 such that E[exp{c4|ϵi(β*)|}|Xi] ⩽ c5 for all 1 ⩽ i ⩽ N.

Condition 5. m 1 Xi
Tβ , m 2 Xi

Tβ  and m 3 Xi
Tβ  are uniformly bounded away from 

∞ on Nθ, τ = θ ∈ ℝ2p:‖θℳθ − θℳθ
* ‖ ⩽ τ sθ/n , θℳθ

c = 0  for some τ > 0.

Condition 6. minj ∈ ℳα|αj*|/λα ∞ and mink ∈ ℳβ|βk*|/λβ ∞, as n → ∞.

Condition 7. sθ = o(n1/3), λα, λβ → 0, log(n)2 = o nλθ
2 , log(p) = o nλθ

2/log(n)2 , 

psθ
4 log(n)6 = o n3λθ

2  and psθ
4 log(n)8 = o n4λθ

4 , as n → ∞.
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These assumptions are typical in the literature on penalization methods. Condition 2 

specifies a fixed design which is well suited under the finite population inference 

framework. Condition 4 holds for Gaussian distributions, sub-Gaussian distributions, and so 

on. Condition 5 holds for common models. Condition 7 specifies the restrictions on the 

dimension of covariates p and the dimension of the true non-zero coefficients sθ. To gain 

insight, when the true model size sθ is fixed, condition 7 holds for p = O(n), i.e. p can be the 

same size as n.

We establish the asymptotic properties of the penalized estimating equation procedure.

Theorem 1.

Under assumptions 1–5, there is an approximate penalized solution θ, which satisfies the 

selection consistency properties:

P |Uj
p θ | = 0, j ∈ ℳθ 1, (14)

P |Uj
p θ | ⩽ λθ

log n , j ∈ ℳθ
c 1, (15)

P θℳθ
c = 0 1 (16)

and

θℳθ − θℳθ* = OP sθ/n , (17)

as n → ∞:

Results (14) and (15) imply that U(θ) = oP λθ/log(n) . Results (16) and (17) imply that, with 

probability approaching 1, the penalized estimating equation procedure would not overselect 

irrelevant variables and estimate the true non-zero coefficients at the ✓(sθ/n) convergence 

rate, which is the so-called oracle property of variable selection.

We now establish the asymptotic properties of μp−dr(α, β). Define a sequence of events 

Dn = ℳθ ⊂ C , where we emphasize that Dn depends on n but we suppress the dependence 

of ℳθ and C on n. Following the same argument as for equation (17), given the event Dn, 

we have α − α* T, β − β* T = Op sθ/n . Combining with P Dn 1, we have

α − α* T, β − β* T = Op sθ/n . (18)

By Taylor series expansion,
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n1/2 μp−dr α, β − μ = n1/2 μp−dr α*, β* − μ + n1/2μp−dr α, β
∂ αT, βT

α − α*
β − β*

+ OP n1/2 α − α*
β − β* 2

2

= n1/2 μp−dr α*, β* − μ + OP n1/2 α − α*
β − β* 2

2

(19)

= n1/2 μp−dr α*, β* − μ + op 1 , (20)

where μp−dr(α, β) is defined in equation (10). Equation (19) follows because we solve 

equation (9) for (α, β). Equation (20) follows because of equation (18) and assumption 5. As 

a result, the way for estimating (α, β) leads to asymptotic equivalence between μp−dr(α, β)
and μp−dr α*, β* .

We now show that μp−dr α*, β*  is asymptotically unbiased for μ if either πB(XTα) or 

m(XTβ) is correctly specified. We note that

n1/2E μp−dr α*, β* − μ = n1/2

N ∑
i = 1

N
E

E IB, i
πB Xi

Tα*
− 1 ∣ Xi E Y i − m Xi

Tβ* ∣ Xi .
(21)

If πB(XTα) is correctly specified, then πB(XTα*) = πB(X) and therefore equation (21) is 0; 

if m Xi
Tβ  is correctly specified, then m Xi

Tβ* = m Xi  and therefore equation (21) is 0.

Following the variance decomposition of Shao and Steel (1999), the asymptotic variance of 

the linearized term is

V n1/2 μp−dr α*, β* − μ = n1/2E V μp−dr α*, β* − μ ∣ IB, X, Y
+ n1/2V E μp−dr α*, β* − μ ∣ IB, X, Y : = V 1 + V 2,

where the conditional distribution in E(·|IB, X, Y) and V(·|IB, X, Y) is the sampling 

distribution for sample A. The first term V1 is the sampling variance of the Horvitz-

Thompson estimator. Thus,

V 1 = E n
N2 ∑

i = 1

N
∑
j = 1

N
πA, ij − πA, iπA, j

m Xi
Tβ*

πA, i

m Xj
Tβ*

πA, j
. (22)

For the second term V2, note that
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E μp−dr α*, β* − μ ∣ IB, X, Y = 1
N ∑

i = 1

N IB, i
πB, i XiTα*

− 1 Yi − m XiTβ* .

Thus,

V 2 = n
N2 ∑

i = 1

N
E IB, i

πB, i Xi
Tα*

− 1
2

Y i − m Xi
Tβ* 2 . (23)

Theorem 2 summarizes the asymptotic properties of μp−dr(α, β).

Theorem 2.

Under assumptions 1–5, if either πB(XTα) or m(XTβ) is correctly specified,

n1/2 μp−dr α, β − μ N 0, V ,

as n→∞, where V = limn→∞(V1 + V2), and V1 and V2 are defined in equations (22)) and 

(23) respectively.

To estimate V1, we can use the design-based variance estimator applied to m Xi
Tβ  as

V 1 = n
N2 ∑

i ∈ SA
∑

j ∈ SA

πA, ij − πA, iπA, j
πA, ij

m Xi
Tβ

πA, i

m Xj
Tβ

πA, j
. (24)

To estimate V2, we further express V2 as

V 2 = n
N2 ∑

i = 1

N
E IB, i

πB, i Xi
Tα* 2 − 2IB, i

πB, i Xi
Tα*

Y i − m Xi
Tβ* 2

+ Y i − m Xi
Tβ* 2 .

(25)

Let σ2 Xi
Tβ* = E Y i − m Xi

Tβ* 2
, and let σ2 Xi  be a consistent estimator of σ2 Xi

Tβ* . We 

can then estimate V2 by

V 2 = n
N2 ∑

i = 1

N IB, i

πB XiTα 2 −
2IB, i

πB XiTα
Yi − m XiTβ 2 + IA, idA, iσ2 Xi .

By the law of large numbers, V 2 is consistent for V2 regardless of whether one of πB, i Xi
Tα

or πB, i Xi
Tβ  is misspecificed, and therefore it is doubly robust.
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Theorem 3 (double robustness of V ).

Under assumptions 1–5, if either πB(XTα) or m(XTβ) is correctly specified, V = V 1 + V 2 is 

consistent for V.

Remark 5.

It is worth discussing the relationship of our proposed method to existing variable-selection 

methods in the survey literature. On the basis of a single probability sample source, 

McConville et al. (2017) proposed a model-assisted survey regression estimator of finite 

population totals using the lasso (the least absolute shrinkage and selection operator) to 

improve the efficiency. Chen, Valliant and Elliott (2018) and Chen et al. (2019) proposed 

model-based calibration estimators using the lasso based on non-probability samples 

integrating with auxiliary known totals or probability samples respectively. However, their 

methods require that the working outcome model includes sufficient population information 

and therefore are not doubly robust. To the best of our knowledge, our paper is the first to 

propose doubly robust inference of finite population means after variable selection.

6. Simulation study

6.1. Set-up

In this section, we evaluate the finite sample performance of the procedure proposed. We 

first generate a finite population ℱN = Xi, Y i : i = 1, …, N  with N = 10000, where Yi is a 

continuous or binary outcome variable, and Xi = (1, X1,i, …, Xp−1,i)T is a p-dimensional 

vector of covariates with the first component being 1 and other components independently 

generated from the standard normal distribution. We set p = 50. From the finite population, 

we select a non-probability sample ℬ of size nB ≈ 2000, according to the selection indicator 

IB,i ~ Ber(πB,i). We select a probability sample A of the average size nA = 500 under 

Poisson sampling with πA,i ∝ (0.25 + |X1i| + 0.03|Yi|). The parameter of interest is the 

population mean μ = N−1Σi = 1
N Y i.

For the non-probability sampling probability, we consider both linear and non-linear 

sampling score models:

a. logit πB, i = α0
TXi, where α0 = (−2, 1, 1, 1, 1, 0, 0, 0, … , 0) (model PSM I);

b. logit πB, i = 3.5 + α0
T log Xi

2 − sin X3, i + X4, i − X5, i − X6, i, where α0 = (0, 0, 0, 

3, 3, 3, 3, 0, … , 0)T (model PSM II).

For generating a continuous outcome variable Yi, we consider both linear and non-linear 

outcome models with β0 = (1, 0, 0, 1, 1, 1, 1, 0, … , 0)T:

a. Y i = β0
TXi + ϵi, ϵi N(0, 1) (model OM I);

b. Y i = 1 + exp 3sin β0
TXi + X5, i + X6, i + ϵi, ϵi N(0, 1) (model OM II).

For generating a binary outcome variable Yi, we consider both linear and non-linear 

outcome models with β0 = (1, 0, 0, 3, 3, 3, 3, 0, … , 0)T,
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a. Y ~ Ber{πY(X)} with logit πY (X) = β0
TX (model OM III);

b. Y ~ Ber{πY(X)} with logit πY (X) = 2 − log β0
TX 2 + 2X5, i + 2X6, i (model OM 

IV).

We consider the following estimators:

a. naive, μnaive, the naive estimator using the simple average of Yi from sample B, 

which provides the degree of the selection bias of sample B;

b. oracle, μora, the doubly robust estimator μdr αora, βora , where αora and βora are 

based on the joint estimator restricting to the known important covariates for 

comparison;

c. p-ipw, μp−ipw, the penalized inverse probability of sampling weighting estimator 

μIPW = N−1Σi ∈ ℬπB, i
−1 Y i, where logit πB, i = Xi

Tα using a logistic regression 

model, and α is obtained by a weighted penalized regression of IB,i on Xi based 

on the combined data from sample A and sample B, with the units in sample A 

weighted by the known sampling weights and the units in sample B weighted by 

1.

d. p-reg, μp−reg, the penalized regression estimator μp−reg = N−1Σi ∈ AdA, im(X; β), 
where β  is obtained by a penalized regression of Yi on Xi based on sample B;

e. p-dr0, μp−dr0, the penalized double estimating equation estimator based on the 

set of outcome predictors ℳβ;

f. p-dr, μp−dr, the proposed penalized double estimating equation estimator based 

on the union of sampling and outcome predictors ℳα ∪ ℳβ.

We also note that μdr without variable selection is severely biased and unstable and therefore 

is excluded for comparison.

6.2. Simulation results

All simulation results are based on 500 Monte Carlo runs. Table 2 reports the selection 

performance of the proposed penalization procedure in terms of the proportion of 

underselecting (‘Under’) or overselecting (‘Over’), the average false negative results, FN 

(the average number of selected covariates that have the true 0 coefficients), and the average 

false positive results, FP (the average number of selected covariates that have the true 0 

coefficients). The procedure proposed selects all covariates with non-zero coefficients in 

both the outcome model and the sampling score model under the true model specification. 

Moreover, the number of false positive results is small under the true model specification.

Fig. 1 displays the simulation results for the continuous outcome. The naive estimator μnaive
shows large biases across all scenarios. The oracle estimator μora is doubly robust, in the 

sense that, if either the outcome or the sampling score is correctly specified, it is unbiased. 
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The penalized inverse probability of sampling weighting estimator μp−ipw shows largest 

biases except for scenario (ii). This approach is justifiable only if the sampling rate of 

sample B is relatively small compared with the population size. The penalized regression 

estimator μp−reg is only singly robust. When the outcome model is misspecified as in 

scenarios (ii) and (iv), it shows large biases. The proposed estimator μp−dr based on 

ℳα ∪ ℳβ is doubly robust, and its performance is comparable with the oracle estimator that 

requires knowing the true important variables. Moreover, μp−dr is slightly more efficient 

than μora. This efficiency gain is due to using the union of covariates selected for the 

sampling score model and the outcome model. This is consistent with the findings in 

Brookhart et al. (2006) and Shortreed and Ertefaie (2017). The proposed penalized double 

estimating equation estimator μp−dr0 based on ℳβ is slightly more efficient than μp−dr based 

on ℳα ∪ ℳβ in scenario (i) when both the outcome and the sampling score models are 

correctly specified; however, μp−dr0 has a large bias in scenario (ii) when the outcome model 

is misspecified and therefore is not doubly robust anymore; see remark 3.

Fig. 2 displays the estimation results for the binary outcome. The same discussion above 

applies here. Moreover, when the outcome model is incorrectly specified, the oracle 

estimator has a large variability. In this case, the estimator proposed outperforms the oracle 

estimator, because the variable selection step helps to stabilize the estimation performance.

Table 3 reports the simulation results for the coverage properties for the continuous outcome 

and binary outcome. Under the double-robustness condition (i.e. if either the outcome model 

or the sampling score model is correctly specified), the coverage rates are close to the 

nominal coverage, whereas, if both models are misspecified, the coverage rates are off the 

nominal coverage.

7. An application

We analyse two data sets from the 2005 PRC (http://www.pewresearch.org/) and the 2005 

behavioural risk factor surveillance system (BRFSS). The goal of the PRC study was to 

evaluate the relationship between individuals and community (Chen, Li and Wu, 2018; Kim 

et al., 2018). The 2005 PRC data set is from a non-probability sample provided by eight 

vendors, which consists of nB = 9301 subjects. We focus on two study variables: a 

continuous Y1 (days had at least one drink last month) and a binary Y2 (an indicator of voted 

in local elections). In contrast, the 2005 BRFSS sample is a probability sample, which 

consists of nA = 441456 subjects with survey weights. This data set does not have 

measurements on the study variables of interest; however, it contains a rich set of common 

covariates with the PRC data set listed in Fig. 3. To illustrate the heterogeneity in the study 

populations, Fig. 3 contrasts the covariate means from the PRC data and the design-

weighted covariate means (i.e. the estimated population covariate means) from the BRFSS 

data set. The covariate distributions from the PRC sample and the BRFSS sample are 

considerably different, e.g. age, education (high school or less), financial status (no money 

to see doctors; own house), retirement rate and health (smoking). Therefore, the naive 

analyses of the study variables based on the PRC data set are subject to selection biases.
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We compute the naive and proposed estimators. To apply the method proposed, we assume 

that the sampling score is a logistic regression model, the continuous outcome follows a 

linear regression model and that the binary outcome follows a logistic regression model. 

Using fivefold cross-validation, the double-selection procedure identifies 18 important 

covariates (all available covariates except for the north-east region) in the sampling score 

and the binary outcome model, and it identifies 15 important covariates (all available 

covariates except for black, an indicator of smoking every day, the north-east region and the 

south region) in the continuous outcome model.

Table 4 presents the point estimates, the standard errors and the 95% Wald confidence 

intervals. For estimating the standard error, because the second-order inclusion probabilities 

are unknown, following the survey literature, we compute the variance estimator in equation 

(24) by assuming that the survey design is single-stage Poisson sampling. We find 

significant differences in the results between the naive estimator and the proposed estimator. 

As demonstrated by the simulation study in Section 6, the naive estimator may be biased 

because of selection biases, and the estimator proposed utilizes a probability sample to 

correct for such biases. From the results, on average, the target population had at least one 

drink for 4.84 days over the last month, and 71.8% of the target population voted in local 

elections.
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Fig. 1. 
Estimation results for the continuous outcome under four scenarios (under OM I and OM II, 

the outcome model is respectively correctly specified and misspecified, and, under PSM I 

and PSM II, the probability of sampling score model is respectively correctly specified and 

misspecified): (a) scenario (i),OMI and PSM I; (b) scenario (ii), OM II and PSM I; (c) 

scenario (iii), OM I and PSM II; (d) scenario (iv), OM II and PSM II
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Fig. 2. 
Estimation results for the binary outcome under four scenarios (under OMIII and OMIV, the 

outcome model is respectively correctly specified and misspecified, and, under PSM I and 

PSM II, the probability of sampling score model is respectively correctly specified and 

misspecified): (a) scenario (i), OM III and PSM I; (b) scenario (ii), OM IV and PSM I; (c) 

scenario (iii), OM III and PSM II; (d) scenario (iv), OM IV and PSM II
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Fig. 3. 
Covariate means by two samples (age is divided by 100): ● sample A; ▲ sample B
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Table 1.

Two sources of data†

Sample Sampling weight π−1 Covariate X Study variable Y

Probability sample 1 ✓ ✓ ?

⋮ ⋮ ⋮ ⋮

nA ✓ ✓ ?

Non-probability sample nA + 1 ? ✓ ✓

⋮ ⋮ ⋮ ⋮

nA + nB ? ✓ ✓

†
Sample A is a probability sample, and sample B is a non-probability sample. ‘✓’ and ‘?’ indicate observed and unobserved data respectively.
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Table 2.

Simulation results for selection performance for the proposed double-penalized estimating equation procedure 

under four scenarios†

Scenario β* α*

Under (×102) Over (×102) FN FP Under (×102) Over (×102) FN FP

Continuous outcome

(i) OM I and PSM I 0.0 31.8 0.0 1.4 0.0 0.0 0.0 0.0

(ii) OM II and PSM I 70.6 15.0 0.9 0.2 0.0 0.0 0.0 0.0

(iii) OM I and PSM II 0.0 32.8 0.0 1.4 100.0 100.0 4.0 1.0

(iv) OM II and PSM II 0.0 0.4 0.0 0.4 100.0 100.0 3.5 4.3

Binary outcome

(i) OM III and PSM I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(ii) OM IV and PSM I 100.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0

(iii) OM III and PSM II 0.0 0.0 0.0 0.0 100.0 100.0 4.0 1.0

(iv) OM IV and PSM II 100.0 0.0 4.0 0.0 100.0 96.0 4.0 1.0

†
Under OMI and OMII, or OMIII and OMIV, the outcome model is respectively correctly specified and misspecified, and, under PSM I and PSM 

II, the probability of sampling score model is respectively correctly specified or misspecified.
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Table 3.

Simulation results for the coverage properties for the continuous and binary outcomes: empirical coverage rate 

and empirical coverage rate ±2×Monte Carlo standard error

Scenario Results for continuous outcome Results for binary outcome

(i) OM I or OM III and PSM I 95.2 (93.3, 97.1) 95.7 (93.9, 97.6)

(ii) OM II or OM IV and PSM I 94.6 (92.6, 96.6) 95.5 (93.6, 97.4)

(iii) OM I or OM III and PSM II 96.2 (94.2, 97.8) 95.6 (93.8, 97.5)

(iv) OM II or OM IV and PSM II 88.2 (85.3, 91.1) 42.9 (38.3, 47.6)
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Table 4.

Point estimate, standard error and 95% Wald confidence interval CI

Method Y1 (days had at least 1 drink last month) Y2 (whether voted in local elections)

Estimate Standard error CI Estimate ×102 Standard error ×102 CI×102

Naive 5.36 0.90 (5.17, 5.54) 75.3 0.5 (74.4, 76.3)

Proposed 4.84 0.15 (4.81, 4.87) 71.8 0.2 (71.3, 72.2)
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