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Abstract

Background—Elevated adiposity is often posited by medical and public health researchers to be 

a risk factor associated with cardiovascular disease, diabetes, and other diseases. These health 

challenges are now thought to be reflected in epigenetic modifications to DNA molecules, such as 

DNA methylation, which can alter gene expression.

Methods—Here we report the results of three Epigenome Wide Association Studies (EWAS) in 

which we assessed the differential methylation of DNA (obtained from peripheral blood) 

associated with three adiposity phenotypes (BMI, waist circumference, and impedance-measured 

percent body fat) among American Indian adult participants in the Strong Heart Study.

Results—We found differential methylation at 8264 CpG sites associated with at least one of our 

three response variables. Of the three adiposity proxies we measured, waist circumference had the 

highest number of associated differentially methylated CpGs, while percent body fat was 

associated with the lowest. Because both waist circumference and percent body fat relate to 

physiology, we focused interpretations on these variables. We found a low degree of overlap 

between these two variables in our gene ontology enrichment and Differentially Methylated 
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Region analyses, supporting that waist circumference and percent body fat measurements 

represent biologically distinct concepts.

Conclusions—We interpret these general findings to indicate that highly significant regions of 

the genome (DMR) and synthesis pathways (GO) in waist circumference analyses are more likely 

to be associated with the presence of visceral/ abdominal fat than more general measures of 

adiposity. Our findings confirmed numerous CpG sites previously found to be differentially 

methylated in association with adiposity phenotypes, while we also found new differentially 

methylated CpG sites and regions not previously identified.

Introduction

The condition “obesity” is often posited by medical and public health researchers to be a risk 

factor associated with cardiovascular disease, diabetes, and other metabolic and 

inflammatory disturbances [1]. Obesity is defined as the accumulation of excess body fat 

which may be detrimental to health [2], but is most frequently diagnosed using the body 

mass index (BMI), a ratio of an individual’s weight to the square of their height [3]. 

However, it is well-documented that substantial variation exists among human populations in 

terms of the percent body fat an individual carries, and the health risks to which a given BMI 

value purportedly corresponds [4, 5]. Indeed, BMI can track body fat percentage poorly, 

limiting comparisons between human populations, even among populations with relatively 

small amounts of genetic divergence [5, 6].

For proxy variables such as the BMI to be valuable, they must have a high degree of fidelity 

to the traits they are intending to represent. However, BMI has been shown to misrepresent 

both the comparative physiologies of populations [6] and the health of individuals in a 

clinical setting [7, 8]. In spite of this limitation, BMI continues to be used as a diagnostic 

criterion for the likelihood that the adipose tissue present in an individual will result in 

health problems (i.e., “obesity”), and is frequently used to describe global trends in public 

health, especially in reference to predicting future prevalences of metabolic syndrome and 

cardiovascular disease [2].

“Obesity”-associated health challenges such as metabolic syndrome and cardiovascular 

disease are now thought to be potentially mediated via epigenetic mechanisms that impact 

gene expression (e.g., [9]). In particular, DNA methylation (DNAm), or the addition of a 

methyl group to the cytosine nucleotide of 5′-C-phosphate-G-3′ (CpG) dinucleotides, is one 

of the most well-studied epigenetic biomarkers, and differential DNAm at multiple loci has 

been associated with BMI in past studies [1, 3, 9-11].

This study investigated the extent to which an Epigenome Wide Association Studies 

(EWAS) focused on BMI replicates findings of two EWAS focused on other physiological 

measurements: waist circumference and percent body fat. The former has been included in 

some previous EWAS (e.g., [3, 9], though these studies were done using data from other 

populations and therefore of uncertain generalizeability). Waist circumference is a coarse 

proxy for visceral adipose tissue, which has been associated with increased likelihood of 

multiple forms of cancer, insulin resistance, and other pathologies [12-15]. We chose percent 

body fat because it is a direct measurement of the amount of adipose tissue a person has, and 
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thus functions as a control for the notion that body fat itself is directly causing disease. We 

conducted our analyses on data gathered as part of the Strong Heart Study, a population-

based prospective cohort study to monitor cardiovascular disease and its risk factors in 

American Indian communities [16].

The goals of the present investigation were to (1) expand the diversity of ancestry and 

experience represented in epigenetic studies of human health, (2) apply Illumina’s EPIC 

array to expand the number of CpG sites and Differentially Methylated Regions (DMRs) 

examined in association with BMI, and (3) to compare these associations to two other, more 

biologically relevant variables: waist circumference and percent body fat. Here we present 

the results of three EWAS, one for each adiposity proxy. We compare the results of these 

three analyses, and present a comparison among our overall findings and those of previous 

EWAS focused on BMI and waist circumference.

Methods

Study population

The Strong Heart Study is a population-based prospective cohort study funded by the 

National Heart Lung and Blood Institute to monitor cardiovascular disease and its risk 

factors in 12 US American Indian communities from the Northern Plains, the Southern 

Plains, and the Southwest [16]. The study began in 1989, and recruited men and women 

between 45 and 75 years old in all communities; all participants gave informed consent to 

participate in the study. In this study, DNA methylation in peripheral blood was measured in 

2351 individuals recruited in the first (of three) phases of the Strong Heart Study. After 

quality control was performed, 2325 samples were included in our analyses (all from Phase 

1 of the Strong Heart Study) (Fig. 1).

Data collection

Participants were interviewed and physically examined by centrally trained staff according 

to a standardized protocol [16, 17]. In the interview, participants reported sociodemographic 

data (age, sex, education), smoking status (never, current, former), and medical history. The 

physical examination conducted anthropometric measures, including height, weight, and 

blood pressure, and collected a fasting blood sample and spot urine sample.

Adiposity phenotypes

Participants were examined in the morning after a 12-h overnight fast, which included 

instruction not to eat breakfast the morning of the visit to the exam, and to eat or drink 

nothing but water after 9:00 the previous evening [17]. Height was measured standing in 

centimeters rounded to the nearest integer, and weight was measured in kilograms using a 

scale that was re-zeroed each day and calibrated against a known 50 lb weight every month 

or whenever the scale was moved. Body Mass Index was calculated by dividing weight in 

kilograms by height in meters squared. Waist circumference at umbilicus was measured 

supine in centimeters rounded to the nearest integer. The bioelectric impedance was 

measured supine on the right side, unless amputated, using Impedance Meter Model # 

B1A101 (RJL Equipment Company). For the impedance measurements, participants were 
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checked by examiners to confirm they had not exercised vigorously for the past 12 h, had 

not consumed alcohol in the past 24 h, and were not dehydrated. We estimated fat free mass 

and percentage of body fat using fat free by equations based on total body water validated in 

American Indian populations [18, 19].

DNA methylation

Biological specimens were collected during a physical examination and were stored at <−70 

°C. DNA from white blood cells was extracted and stored at the Penn Medical Laboratory, 

MedStar Health Research Institute under a strict quality control system. Genomic DNA was 

shipped to Texas Biomedical Research Institute where it was bisulfite-converted, eluted in 

buffer, and DNAm was measured using Illumina’s MethylationEPIC BeadChip Array 

(EPIC), which provides a measure of DNAm at a single nucleotide resolution at >850,000 

CpG sites. This platform is enriched with content important in disease and likely labile to 

environmental exposures. Samples were randomized across and within plates to remove 

potential batch artifacts and confounding effects, and replicate and across-plate control 

samples were included on every plate.

DNA methylation data were read in six different batches (five batches of 400 individuals and 

the sixth one with 350 individuals), and combined using the R package minfi. Individuals 

without a bimodal distribution in DNA methylation levels were excluded (N = 18). We 

generated a sample QC report based on EPIC control probes to assess staining, 

hybridization, bisulfite conversion, and other parameters (minfi R package). Detection of 

failed probes was based on Illumina’s recommendations (6159 CpG sites that had a p-

detection value greater than 0.01 in more than 5% of the individuals were removed). We 

determined the total intensity (methylated + unmethylated channel) across all probes 

measured, excluding 8 participants that had low median intensities (the cut off point was 10 

log2 intensity units). Single sample noob normalization was conducted with the R package 

minfi [20, 21]. After these exclusions, we had a total 2325 individuals and 860079 CpGs. 

We then deconvolved white blood cell types using the Houseman method [22] in the sva R 

package (which distinguishes among CD8T, CD4T, NK, B cells, Monocytes, and 

Granulocytes) that were used later on as adjustment variables in the regression models. 

Principal Component Analysis (PCA) was conducted to determine if any batch effect 

correction was required, and batch effect correction was conducted for sample plate, sample 

row, and sample isolation technique using the combat function (sva R package). PCA was 

repeated afterward to check that batch effect had been removed. Cross-hybridizing probes, 

sex chromosomes, and SNP probes with minor allele frequency > 0.05 [23] were removed 

for analysis. Our final number of CpG sites for analysis was 790026.

Differentially methylated positions and regions analyses

Three predictors of DNAm were assessed: BMI, waist circumference, and body fat 

percentage. We used linear regression to identify mean differences in DNAm associated with 

our potential predictors using the limma package in R [24], adjusting for biologically 

relevant variables (age, sex, smoking status (never, former, current), and location/origin of 

each participant (Arizona, Oklahoma, North/South Dakota)) and estimated cell type 

proportions [22]. Multiple comparisons were accounted for using the Benjamini and 
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Hochberg method for false discovery rates (FDR) [25]. DMRs analysis was performed using 

the DMRcate R package, which uses Stouffer p value [26] for combining p values and 

grouping significant CpG sites into regions. For these analyses we considered the FDR-

corrected results to be significant at p ≤ 0.05.

Gene ontology enrichment

We performed gene ontology enrichment analyses using the gometh package of R, which 

includes a correction for bias due to the differing numbers of CpG sites profiled for each 

gene. Enrichment results of p < 0.05 FDR were considered significant; we chose this value 

in order to maintain the same cutoff across all of our analyses and consistent with related 

literature (e.g., [9]).

Comparisons with previous EWAS

We chose five previously conducted EWAS encompassing nine cohort studies against which 

to compare our results: the criterion for inclusion was that the studies must include the 

Houseman deconvolution of white blood cell types, and include either BMI or waist 

circumference as the investigated phenotype in the EWAS (no other studies included percent 

body fat). The studies selected used data from diverse cohorts, but all used the Illumina 

Infinium HumanMethylation450k BeadChip Array. The studies included drew their data 

from the following cohorts: the Research on Obesity & Diabetes among African Migrants 

(RODAM) study among Ghanians living in the Netherlands, Germany, the UK, and Ghana; 

the Rotterdam Study (RS) among residents of Rotterdam, Netherlands; the Atherosclerosis 

Risk in Communities Study (ARIC) among white and Black residents in four states in the 

USA; the Framingham Heart Study (FHS) among the residents of Framingham 

Massachusetts, USA; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) 

study among multiple generations of white families living in Minnesota and Utah in the 

USA; the Qatari Family Study (QFS) among multiple generations of Qatari families living in 

Qatar; the European Prospective Investigation into Cancer and Nutrition (EPICOR) study 

among Italian people; the Kooperative Gesundheits-forschung in der Region Augsburg 

(Cooperative Health Research in the Augsburg Region, or KORA) cohort among a 

representative sample of the residents of the Augsburg Region of Germany; and the London 

Life Sciences Prospective Population (LOLIPOP) Study among residents of London in the 

UK.

We compiled the differentially methylated CpGs each study found to be statistically 

significantly associated with BMI or waist circumference, and compared them with our 

results, noting which findings were consistent with our study.

Results

The median (interquartile range) for BMI, waist circumference and % body fat were 29.6 

(26.22, 33.63) kg/m2, 103 (94, 112) cm, and 35.9 (28.8, 42.4)%, respectively (Table 1). 

Women had higher BMI and waist circumference and markedly higher % body fat than men. 

Participants from Arizona had higher values for the three phenotypes compared to 

Oklahoma and North/South Dakota.
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We found differential methylation at 8264 CpG sites associated with one or more of our 

three response variables. Specifically, we found that BMI was associated with 3383, waist 

circumference with 7743, and percent bodyfat with 810 differentially methylated CpG sites, 

with substantial overlap among and between the three variables (Figs. 2 and 3). Of the top 

ten most significant CpGs for each variable, relatively few were unique to an individual 

measure of phenotype (Fig. 4, Supplementary Table 1-4).

Our DMR analyses identified 312 DMRs across all three EWAS: 15 were uniquely 

associated with BMI, 194 were uniquely associated with waist circumference, 90 were 

associated with both BMI and waist circumference, and 13 were associated with all three 

variables (Fig. 5, Supplementary Tables 5-7). We chose three regions with the highest 

number of differentially methylated CpG sites associated with all three outcomes (BMI, 

percent bodyfat, and waist circumference) to illustrate those regions in more detail: the 

genes associated with these regions are ACB1G, FLI1, and SENCR (Fig. 6). In sensitivity 

analyses stratifying the main findings for the three variables by sex, the findings were 

similar for both men and women (Supplementary Table 8).

For each of the three EWAS that we performed, we carried out gene ontology enrichment 

analyses (R, gometh package) correcting for bias due to the differing numbers of CpG sites 

profiled for each gene. We found that 248 differentially methylated genes were associated 

with BMI, 315 with waist circumference, and four with percent body fat. There was 

substantial overlap among and between the three variables: all gene ontology (GO) terms 

associated with percent body fat were also found in BMI and waist circumference analyses, 

while 208 GO terms were associated with both BMI and waist circumference (Fig. 7, 

Supplementary Tables 9-11).

This is the first Illumina Infinium HumanMethylationEPIC BeadChip Array (EPIC) EWAS 

to assess DNAm associated with adiposity, and the only EWAS to date that has used data 

from a cohort of people with predominantly American Indian ancestry. In order to validate 

our results both in terms of the assay, and in terms of the variability among human 

populations, we compared our results to those of 5 other published studies, which examined 

either BMI or waist circumference associations with differential DNA methylation using the 

previous generation of Illumina array. We found that 134 of the CpG sites that our study 

identified as differentially methylated in association with either BMI, waist circumference, 

or percent body fat were also identified as differentially methylated in association with either 

BMI or waist circumference in at least one of the other studies, which drew data from 

multiple cohorts (RODAM [11], RS [3], ARIC, FHS, GOLDN [3, 9] the Qatari Family 

Study [10], EPICOR, KORA, and LOLIPOP [1]) (Supplementary Table 12).

Discussion

Here we report that three common proxies for determining an individual’s body-fat-related 

health risk (the definition of “obesity”) have overlapping, but distinct, associations with 

methylation of DNA at CpG sites and genomic regions [27]. Our results substantially 

expand the number of CpG sites examined in association with BMI and waist circumference, 

as previous studies used a previous generation of Illumina Infinium HumanMethylation 
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BeadChip Array, the capacity of which was approximately 450 thousand CpG sites (the 

capacity of the EPIC array is greater than 860 thousand CpGs). However, there is overlap 

between the two generations of assay: many of our results matched previous studies done 

using the previous generation (450k sites) array [1, 3, 9-11].

Of the three adiposity proxies we measured, waist circumference had the highest number of 

associated differentially methylated CpGs, while percent body fat was associated with the 

lowest number of differentially methylated CpGs. In our DMR analyses, body fat showed a 

similar pattern: the highest number of DMRs were associated with waist circumference, with 

fewest associated with percent body fat.

As percent body fat is a calibrated measure of an individual’s body composition, and waist 

circumference is a direct measure of central adiposity, we interpret these two variables to be, 

in theory, the most relevant and focused indicators of physiology (of the three proxies that 

we assessed). In interpreting the results presented here, we, therefore, suggest that the CpGs 

associated only with BMI, but not with percent body fat or waist circumference, be the 

object of secondary focus, as it is possible that these signals reflect domains other than 

adiposity.

Limiting our focus to waist circumference and percent body fat is in keeping with 

recommendations of the current literature, which generally reports that index variables such 

as BMI are poor indicators of overall health and fitness both in individuals [7, 8] and for 

groups because they apply unevenly across populations [2], while being easily confounded 

in general [28]. The CpGs and DMRs associated with percent body fat and waist 

circumference are more likely to be indicative of physiology and potential health outcomes 

associated with the presence of adipose tissue and its distribution in the body compared to 

CpGs and DMRs associated with BMI alone [29, 30].

Even with such a constraint imposed, our study replicates 127 previously identified 

differentially methylated CpGs that in our study were associated with either waist 

circumference or body fat, and which were associated in previous studies with either waist 

circumference or BMI (no previous study considered percent body fat). In addition to this 

overlap with results from the previous generation of Illumina’s array, we identified 7828 

other differentially methylated CpGs associated with percent body fat, waist circumference, 

or both. Among those, 4537 are not found in the 450 K array.

Gene ontology (GO) enrichment analyses indicated that immune system pathways (e.g., 

leukocyte differentiation and activation, lymphocyte activation, and hemipoetic/lymphoid 

organ development) were among the most significantly DMRs in all three analyses. While 

our study relies on blood DNA methylation, rather than methylation of adipose tissue itself, 

these methylation signals in blood could be reflecting changes in immune system pathways 

that are either affected by adiposity or that predispose to differential adiposity levels. For 

example, it is known that immune function can be impaired by malnutrition: methylation 

along these pathways may be congruent with previous findings of increased immune activity 

associated with greater degrees of adiposity (reviewed in [31]). Similarly, cells in visceral fat 

depots (associated with higher waist circumferences) have been shown to produce higher 
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counts of lymphocytes and inflammation transcripts than cells in subcutaneous fat depots—

indicating that at least in some cases, higher waist circumferences may be associated with 

increased immunoactivity [32]. Whether the differential methylation in our dataset 

represents an increase or decrease in transcriptomic activity cannot be conclusively 

determined: methylation within the body of genes (rather than in promoters) has been 

associated with increased and baseline level transcription, while methylation of transcription 

factor binding sites effectively silences genes [33, 34].

Waist circumference is a proxy for central adiposity, while percent body fat is a proxy for 

how much fat an individual has relative to their body mass. The low degree of overlap 

between these two variables in general, but specifically gene ontology enrichment and DMR 

analyses, indicates that in terms of DNA methylation, physiologically—and thus likely for 

health outcomes—these two measurements represent concepts which are biologically 

distinct. We therefore interpret these general findings to indicate that highly significant 

regions of the genome (DMR) and synthesis pathways (GO) in waist circumference analyses 

are more likely to be associated with the presence of visceral/abdominal fat than other 

measures. In fact, regions and pathways associated only with waist circumference and not 

with percent body fat (nor BMI) may be better candidates for investigation of visceral-fat-

related DNA methylation markers as well as related health concerns. Similarly, we interpret 

the low number of significant regions (DMR) and pathways (GO) that are associated with 

percent body fat as indicating that how much fat an individual carries is a bad proxy for 

physiology—and thus unlikely to predict health outcomes, although the impact of 

measurement error cannot be totally discarded.

In particular, our DMR analysis showed that the top ten DMRs (ranked by density of 

methylation (number of methylated CpGs/width of region)) associated with waist 

circumference alone were strongly associated with genes involved in cell signaling, immune 

function, and metabolism (i.e., PSMB1, ROR2, RALGDS, NOTCH1, PLPBP, ZDHHC7, 

SYF2, SIGLEC15, ITPKA, VGLL4). This is congruent with the results of our gene ontology 

enrichment analysis for waist circumference, which found that pathways related to immune 

system function and signal transduction were among the most heavily differentially 

methylated. It is challenging to codify the combined results of all three DMR analyses into a 

similar narrative, as, for example, the three most heavily DMRs that occur across all three 

phenotypes do not have a united biological function. SENCR (smooth muscle 

differentiation-associated lncRNA) is not, to our knowledge associated with any adiposity 

related condition and FLI1 (a proto-oncogene) is associated with Ewing sarcoma, a form of 

cancer that is agnostic to BMI [35, 36]. However, reduced expression of ABCG1 

(macrophage cholesterol and phosopholipids transport) has been associated with metabolic 

syndrome, which may be relevant to some, but not all, individuals with elevated adiposity 

[37]. All in all, combining the results of DMR analyses from all three adiposity phenotypes 

does not indicate that BMI, percent bodyfat, and waist circumference are physiologically 

synonymous, nor does doing so appear to add nuance.

Although percent body fat and waist circumference represent an improvement from the use 

of BMI to make conclusions about body composition and adiposity, they are still noisy 

approximations of overall health [8]. For example, waist circumference does not take into 
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account the relative amounts of visceral and subcutaneous adipose tissue [38], and 

substantial measurement error is associated with impedance measures of percent body fat 

[39]. Impedance measures of percent body fat have been shown to be less precise than Dual 

Energy X-Ray Absorptiometry (DXA) for determining the total and regional amounts of 

adipose tissue [39]. Even with a perfect measure of the percent of an individual’s mass that 

is comprised of adipose tissue, fat distribution has also been found to be associated with 

health outcomes. For example, abdominal adiposity (represented by waist circumference) 

has been positively associated with liver cancer [12-14], and visceral (rather than 

subcutaneous) adipose tissue may be associated with insulin resistance and the onset of type 

2 diabetes [15, 38].

In the context of future studies, we emphasize that waist circumference and body fat 

percentage are known to be insufficiently sensitive to elucidate the relationships among 

adipose tissue, perceived fatness, and health risks [7, 40-42]. Advancing knowledge of the 

relationship of adipose tissue to various disease statuses in humans will require major shifts 

in both framework and technique (reviewed in [43]). The current conceptual framework in 

which we investigate health associations with adipose tissue relies on the assumption that 

adipose tissue is overwhelmingly negative to health, when in reality there exists a healthy 

window of the amount of adipose tissue necessary for health throughout life [44, 45]. In 

terms of techniques used, we advocate a departure from the cheap but rudimentary BMI and 

waist circumference in favor of considering more expensive, but higher precision methods 

such as DXA and MRI that allow for the high degree of precision needed to make 

conclusions about complex phenotypes: data that are needed and currently not available in 

studies of American Indian communities [15, 46, 47]. Adoption of these methods may 

require reducing the sample size of studies, but we argue that a smaller number of high-

precision datapoints (such as in a cross-sectional study) would yield more novel information 

than a large number of low-precision datapoints.

Several of the differentially methylated genes associated with adiposity measures within our 

study are established to be associated with smoking (e.g., AHRR, F2RL3, and RARA) [48, 

49]. Additional experimental studies are necessary to understand the directionality of this 

relationship and the degree to which smoking may interact with physiological processes to 

influence adiposity phenotype and DNA methylation patterns.

This study is the first to use DNA methylation data obtained using the Illumina 

MethylationEPIC BeadChip (EPIC) in an adiposity EWAS, and is also the only EWAS of 

which we are aware that uses percent body fat as a proxy for adiposity in humans. This study 

broadens the populations across which such comparisons are made: studies to which we 

compared our results include no individuals of North or South American descent. Previous 

studies have used data from cohorts made up of individuals of European descent (RS, FHS I, 

FHS II, GOLDN, EPICOR, KORA), although a few have considered individuals of Ghanian 

(RODAM), African (ARIC), South Asian (LOLIPOP), and West Asian (Qatari Family 

Study) ancestry [1, 3, 9-11, 50]. Our findings confirmed numerous CpG sites previously 

found to be differentially methylated in association with adiposity phenotypes, while we also 

found new differentially methylated CpG sites and regions not previously identified.

Crocker et al. Page 9

Int J Obes (Lond). Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data availability

Access to Strong Heart Study raw data is subject to approval by participating tribes 

following the procedures established by the Strong Heart Study in agreement with the tribes. 

Detailed information is available in the Strong Heart Study website https://

strongheartstudy.org/.

Code availability

Code used to analyze data in this paper is available from the senior author and the 

corresponding author.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Diagram illustrating data processing procedure used for this study.
Flow chart describing the processing of data, the number of samples that were removed at 

each stage, and the final sample size.

* 5 participants missing education, 2 smokings status, 11 BMI, 52 LDL cholesterol, 14 

hypertension treatment, 111 eGFR, 30 diabetes
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Fig. 2. Venn Diagram of results of three EWAS studies (BMI, waist circumference, and percent 
body fat).
This diagram shows the overlap in significantly differentially methylated CpG results for 

three EWAS studies described in this paper.
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Fig. 3. Manhattan plot of three EWAS studies (BMI, waist circumference, and percent body fat).
Blue (higher) horizontal lines show Bonferroni correction cutoff, red (lower) horizontal lines 

show FDR correction cutoff (color figure online).
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Fig. 4. Venn diagram of differentially methylated CpG sites.
Diagram shows the top ten most significantly differentially methylated CpG sites in each of 

three EWAS studies (BMI, waist circumference, and percent body fat).
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Fig. 5. Venn diagram of differentially methylated CpG regions.
Diagram shows the overlap in significantly differentially methylated regions results for three 

EWAS studies (BMI, waist circumference, and percent body fat).

Crocker et al. Page 17

Int J Obes (Lond). Author manuscript; available in PMC 2020 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Graphical representation of selected results from DMR analyses.
We chose three regions (a–c) with the highest number of CpG sites associated with our three 

outcomes (BMI, percent body fat, and waist circumference). For each region we illustrate (i) 

the chromosome and location of the region (ii) the expanded region and specific location of 

CpGs within it (iii) any overlap with promoter regions of the genome (shown as orange bars) 

and the effect size of individual CpGs within a region (points) and the entire region (gray 

shading) for each of our three response variables: (iv) BMI, (v) percent body fat and (vi) 

waist circumference. Within each plot (a–c iv-vi) points are connected with smoothed 

splines.
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Fig. 7. Venn diagram of Gene Ontology Enrichment Association results.
Diagram shows the overlap in Gene Ontology Enrichment Association results for three 

EWAS studies (BMI, waist circumference, and percent body fat).
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