
https://doi.org/10.1007/s42484-020-00023-9

RESEARCH ARTICLE

On the convergence of projective-simulation–based reinforcement
learning in Markov decision processes

W. L. Boyajian1 · J. Clausen1 · L. M. Trenkwalder1 · V. Dunjko1,2 ·H. J. Briegel1,3

Received: 7 November 2019 / Accepted: 2 July 2020
© The Author(s) 2020

Abstract
In recent years, the interest in leveraging quantum effects for enhancing machine learning tasks has significantly increased.
Many algorithms speeding up supervised and unsupervised learning were established. The first framework in which ways to
exploit quantum resources specifically for the broader context of reinforcement learning were found is projective simulation.
Projective simulation presents an agent-based reinforcement learning approach designed in a manner which may support
quantumwalk-based speedups. Although classical variants of projective simulation have been benchmarked against common
reinforcement learning algorithms, very few formal theoretical analyses have been provided for its performance in standard
learning scenarios. In this paper, we provide a detailed formal discussion of the properties of this model. Specifically, we
prove that one version of the projective simulation model, understood as a reinforcement learning approach, converges to
optimal behavior in a large class of Markov decision processes. This proof shows that a physically inspired approach to
reinforcement learning can guarantee to converge.

Keywords Reinforcement learning · Projective simulation · Convergence proof · Markov decision process ·
Physics-inspired artificial intelligence

1 Introduction

In the past decade, quantum information science established
itself as a fruitful research field that leverages quantum
effects to enhance communication and information process-
ing tasks (Nielsen and Chuang 2000; Bennett and DiVin-
cenzo 1995). The results and insights gained inspired further
investigations which more recently contributed to the emer-
gence of the field quantum machine learning (Schuld et al.
2014; Biamonte et al. 2016; Dunjko and Briegel 2018). The
aim of this new field is twofold. On the one hand, machine
learning methods are developed to further our understand-
ing and control of physical systems and, on the other hand,
quantum information processing is employed to enhance

� L. M. Trenkwalder
lea.trenkwalder@uibk.ac.at

1 Institute for Theoretical Physics, University of Innsbruck,
6020 Innsbruck, Austria

2 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

3 Department of Philosophy, University of Konstanz,
78457 Konstanz, Germany

certain aspects of machine learning. A learning framework
that features in both aspects of quantum machine learning is
projective simulation (PS). In particular, PS can be seen as
a platform for the design of autonomous (quantum) learning
agents (Briegel and las Cuevas 2012).

The development of projective simulation is not moti-
vated by the aim of designing ever-faster computer algo-
rithms. Projective simulation is a tool for understanding
various aspects of learning, where agents are viewed from
the perspective of realizable entities such as robots or bio-
logical systems interacting with an unknown environment.
In this embodied approach, the agent’s perception is influ-
enced by its sensors, its actions are limited by its physical
capabilities, and its memory is altered by its interaction
with an environment. The deliberation process of the agent
can be described by a random walk process on the mem-
ory structure and it is their quantum counterpart, quantum
random walks, that offers a direct route to the quantization
of the deliberation and learning process. Thereby, PS not
only allows us to study learning in the quantum domain, it
also offers speedups in a variety of learning settings (Paparo
et al. 2014; Sriarunothai et al. 2017).

Projective simulation can be used to solve reinforcement
learning (RL) problems as well. Taken as a classical RL

/ Published online: 5 November 2020

Quantum Machine Intelligence (2020) 2:13

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-020-00023-9&domain=pdf
http://orcid.org/0000-0002-5690-707X
mailto: lea.trenkwalder@uibk.ac.at

approach, the PS has proven to be a successful tool for
learning how to design quantum experiments (Melnikov
et al. 2018). InMelnikov et al. (2018), PS was used to design
experiments that generate high-dimensional multipartite
entangled photonic states. The ability of PS to learn and
adapt to an unknown environment was further used for
optimizing and adapting quantum error correction codes
(Nautrup et al. 2019). In a quite different context, PS is used
to model complex skill acquisition in robotics (Hangl et al.
2016, 2020).

Although PS has been shown suitable for a number of
applications, it is a fair question of just how well it does,
compared with other models, or compared with theoretical
optima. However, the empirical evaluation of a model
through simulations and analytically proving the properties
of the same model are fundamentally distinct matters.
For example, in many applications, empirical convergence
can be reached even if the conditions for theoretical
convergence are not met. In any real-world application,
such as learning to play the game of Go, convergence
to optimal performance, even though it is theoretically
feasible, is not reached due to the size of the state space,
which for the game of Go consists of 10170 states. This,
however, is not worrying in practice where the goal is
to create a well-performing and fast algorithm without
the goal of full convergence or theoretical guarantees. In
numerical investigations of various textbook problems, it
was shown that PS demonstrates a competitive performance
with respect to standard RL methods (Melnikov et al.
2017, 2018; Mautner et al. 2015; Makmal et al. 2016). In
this work, we complement those results by comparing PS
with other RL approaches from a theoretical perspective.
Specifically, we analyze if PS converges to an optimal
solution. Other methods, like Q-learning and SARSA, have
already been proven to converge in environments which are
describable by Markov Decision Processes (MDPs) (Dayan
and Sejnowski 1994; Singh et al. 2000; Jaakkola et al. 1994;
Watkins and Dayan 1992). One should notice, however,
that Q-learning and SARSA are methods equipped with
update rules explicitly designed for such problems. PS, in
contrast, was designed with a broader set of time-varying
and partially observable learning environments in mind.
For this reason, it is capable of solving tasks that a direct
(naive) implementation of Q-learning and SARSA fails to
learn as they are designed to obtain a time-independent
optimal policy (Watkins and Dayan 1992; Sutton and Barto
2018); examples can be found in Mautner et al. (2015).
Thus, it would be unlikely for a PS agent to exactly realize
the same optimality with respect to the discounted infinite
horizon reward figures of merit (for which Q-learning was
designed) without any further adjustment to the model.
Nonetheless, in this work, we analyze the properties of
PS taken as a pure MDP solving RL algorithm. We show

that a slightly modified PS variant recovers the notion of
state-action values as a function of its internal parameters,
while preserving the main characteristics that make PS
stand out from other RL algorithms, such as the locality of
the update rules. As we show, this new variant is suitable
for episodic MDPs, and we can prove convergence to the
optimal strategy for a range of solutions. In the process, we
connect the modified PS model with the basic PS model,
which allows us to partially explain and understand the
empirical performance and successes of PS reported in
previous experimental works.

This paper is organized as follows: We quickly recap
the main concepts of RL theory1 in Section 2 concerning
MDPs that will be used by us during the rest of this paper
before we present the PS model in Section 3. In Section 4,
we begin by introducing the adaption to PS needed for the
convergence proof, which will be followed by the conver-
gence proof that is based on a well-known theorem in sto-
chastic approximation theory. In the Appendix of the paper,
we provide a detailed exposition of RLmethods which intro-
duces the necessary concepts for the analysis, with a broader
perspective on RL theory in mind. Additionally, after
discussing multiple variants of the PS update rules and their
implications, we present an extensive investigation of the
similarities and difference of PS to standard RL methods.

2Markov decision processes

2.1 Policy and discounted return

In the RL framework, an RL problem is a general
concept that encompasses the learning of an agent through
the interaction with an environment with the goal of
maximizing some precisely defined figure of merit such
as a reward function. In a discrete-time framework, the
agent–environment interaction can be modeled as follows.
At every time step t , the agent perceives the environmental
state St . Then, the agent chooses an action At to execute
upon the environment. The environment completes the cycle
by signaling to the agent a new state St+1 and a reward
Rt+1. The variables Rt , St , and At are, in general, random
variables, where Rt can take values rt ∈ R, while St and
At take values sampled from sets S = {s1, s2, . . . } and
A = {a1, a2, . . . } respectively. For simplicity, we assume in
the following that these two sets are finite and rt is bounded
for all time steps t .

A particularly important set of RL problems are those
where the environment satisfies the Markovian property.
These problems can be modeled by Markov Decision

1We will follow the notation introduced in Sutton and Barto (2018)
closely.

Quantum Machine Intelligence (2020) 2:13Page 2 of 2113

Processes (MDPs). In an MDP, the probabilities of
transitions and rewards are given by the set of probabilities:

p(s′, r | s, a) := Pr{St+1 = s′, Rt+1 = r | St = s, At = a}.
(1)

At every time step, the agent chooses an action as the
result of some internal function that takes as input the
current state of the environment. Thus, formally, an agent
maps states into actions, which is captured by the so-called
policy of the agent. Mathematically, the policy (at a certain
time step t) can be defined as the set of probabilities:

π(a | s) := Pr{At = a | St = s}. (2)

The successive modification of these probabilities, π =πt ,
through the experience with the environment constitutes
the learning that the agent undergoes in order to achieve a
goal. In an MDP, the notion of goal can be formalized by
introducing a new random variable:

Gt(γdis) :=
∞∑

k=0

γ k
disRt+k+1, (3)

called the discounted return, where γdis ∈ [0, 1] is the
discount parameter. The case with γdis = 1 is reserved
for episodic tasks, where the agent–environment interaction
naturally terminates at some finite time. The discounted
return at some time step t consists of the sum of all rewards
received after t , discounted by how far in the future they
are received. The solution to the MDP is the policy that
maximizes the expected return starting from any state s,
called the optimal policy.

A particular set of RL problems we will consider in this
work are the so-called episodic tasks. In these, the agent-
environment interactions naturally break into episodes, e.g.,
an agent playing some card game, or trying to escape from
a maze. Note that while in some episodic problems the
objective could be to finish the episode with the fewest pos-
sible actions (e.g., escaping a maze), in general, the optimal
solution is not necessarily related to ending the episode.
A notion of episodic MDP can be easily incorporated
into the theoretical formalism recalled above, by including a
set ST ⊂ S, of so-called terminal or absorbing states. These
states are characterized by the fact that transitions from a
terminal state lead back to the same state with unit probabil-
ity and zero reward. In episodicMDPs, the goal for the agent
is to maximize the expected discounted return per episode.

It should be noted that the concept of absorbing states is
a theoretical construct introduced to include the concept of
episodic and non-episodic MDPs into a single formalism.
In a practical implementation, however, after reaching a
terminal state, an agent would be reset to some initial state,
which could be a predefined state or chosen at random
for instance. While such a choice could have an impact

on learning rates, it is irrelevant regarding the optimal
policy. For this reason, in the following, we do not make
any assumption about the choice of the initial states. We
will assume, however, that the environment signals the
finalization of the episode to the agent.

2.2 Value functions and optimal policy

The concept of an optimal policy is closely intertwined with
that of value functions. The value vπs of a state s ∈ S under
a certain policy π is defined as the expected return after state
s is visited; i.e., it is the value:

vπ(s) := Eπ {Gt | St = s} . (4)

It has been proven for finite MDPs that there exists at least
one policy, called the optimal policy π∗, which maximizes
over the space of policies vπ(s) ∀s simultaneously, i.e.:

v∗(s) = max
π

{vπ(s)} , ∀s ∈ S, (5)

where v∗ denotes the value functions associated to the
optimal policy.

Value functions can also be defined for state-action pairs.
The so-called Q-value of a pair (s, a), for a certain policy
π , is defined as the expected return received by the agent
following the execution of action a while in state s, and
sticking to the policy π afterwards. The Q-values of the
optimal policy, or optimal Q-values, can be written in terms
of the optimal state value functions as:

q∗(s, a) = r(s, a) + γdisE {v∗(St+1)|St = s, At = a} , (6)

where

r(s, a) = E {Rt+1 | St = s, At = a} . (7)

The relevance of Q-values is evidenced by noting that given
the set of all q∗ values, an optimal policy can be derived
straightforwardly as:

π∗(s) = arg max
a′

{
q∗(s, a′)

}
. (8)

(Note the notational difference in the arguments to
distinguish between the stochastic policy (2), which returns
a probability, and the deterministic policy (8), which returns
an action.) For this reason, standard RL methods achieve
an optimal policy in an indirect way, as a function of the
internal parameters of the model, which are those which are
updated through the learning of the model, and which in the
limit converge to the q∗ values. A similar procedure will be
used by us in Section 4, where we discuss the convergence
of PS to the optimal policy of MDPs.

2.3 Q-Learning and SARSA

Q-Learning and SARSA are two prominent algorithms that
capture an essential idea of RL: online learning in an

 Page 3 of 21 13Quantum Machine Intelligence (2020) 2:13

unknown environment. They are particularly designed to
solve Markovian environments and their prominence can
in part be ascribed to the theoretical results that prove
their convergence in MDPs. In both algorithms, learning is
achieved by estimating the action value function qπ(s, a)

for every state action pair for a given policy π . This estimate
is described as the Q-value which is assigned to each
state-action pair. The update of the Q-value is given by:

Qt+1(st , at) = (1 − α)Qt(st , at) + α(Rt+1

+γdisf (Qt(st+1, at+1)). (9)

The learning rate α describes how fast a new estimate of the
Q-value overwrites the previous estimate. In SARSA, the
function f is the identity, so that the Q-value is not only
updated by the reward Rt+1 but also with the Q-value of
the next state-action pair along the policy π . Thus, SARSA
is an on-policy algorithm, as described in Appendix A. In
Q-learning, on the other hand, the function f = maxat+1

takes the maximal Q-value of the next state. This algorithm
is an off-policy algorithm due to sampling of the next action
independently from the update of the Q-values.

3 Projective simulation

Projective simulation (PS) is a physically inspired frame-
work for artificial intelligence introduced in Briegel and las
Cuevas (2012). The core of the model is a particular kind of
memory called episodic and compositional memory (ECM)
composed of a stochastic network of interconnected units,
called clips (cf. Fig. 2 in Briegel and las Cuevas (2012)).
Clips represent either percepts or actions experienced in the
past, or in more general versions of the model, combinations
of those. The architecture of ECM, representing deliberation
as a random walk in a network of clips, together with the
possibility of combining clips and thus creating structures
within the network, allows for modeling incipient forms of
creativity (Briegel 2012; Hangl et al. 2020). Additionally,
the deliberation process leading from percepts to actions has
a physical interpretation in PS. Visiting any environmental
state activates a corresponding percept clip in the ECM. This
activation can be interpreted as an excitation, which then
propagates stochastically through the network in the form of
a random walk. The underlying dynamics have the potential
to be implementable by real physical processes, thus relat-
ing the model to embodied agents including systems which
exploit quantum effects, as has been explored in Dunjko
et al. (2016) and Clausen and Briegel (2018).

PS can be used as an RL approach, where the action,
the percept, and the reward are used to update the
ECM structure. In general, the PS framework enables to

leverage complex graph structures to enhance learning.
For example, generalization can be implemented through
manipulation of the ECM topology so that the RL agent is
capable of learning in scenarios it would otherwise fail to
learn (Melnikov et al. 2017). However, this generalization
mechanism is not necessary for solving MDP environments.

Before we discuss the ECM for solving MDPs in detail,
we need to emphasize the difference between the state
of the environment and the percept the agent receives.
In an algorithm specifically designed to solve MDPs, the
state contains sufficient information of the environment
such that the corresponding transition function fulfills the
Markov property. We will refer to this type of state as
Markov state. This assumption on the state space can
generally not be made in most realistic learning scenarios
but it can be generalized to partially observable MDPs
where the Markovian dynamics are hidden. In a partially
observable environment, the input of the learning algorithm
is an observation that is linked to a Markov state via a,
from the perspective of the algorithm, unknown probability
distribution.

A percept, as introduced in the PS model, further
generalizes the concept of such an observation. Here, the
percept does not necessarily have to be connected to an
underlying Markov state contrary to the observation in
partially observable MDPs. This distinction might not seem
necessary for learning in a classical environment but plays
a significant role when one considers quantum systems that
cannot be described with hidden variable models. In this
work, since we focus on MDPs, we will equate the percepts
an agent receives and the state of the MDP. In the following,
both are denoted by s. Furthermore, we will not emphasize
the difference between the percept and its corresponding
percept clip, assuming there is a one-to-one correspondence
between percept and percept clip. The same holds for the
actions and their corresponding action clips.

The ECM structure used to solve MDPs consists of one
layer of percept clips that is fully connected with a layer
of action clips. Each edge represents a state action pair
(s, a) which is assigned a real-valued weight (or hopping
value) h = h(s, a) and a non-negative glow value g =
g(s, a). While the weight h determines the probability of
transition between a percept clip and an action clip, the glow
variable g measures how ‘susceptible’ this weight h is to
future rewards from the environment. In Eq. 10, heq is an
(arbitrarily given) equilibrium value, and λt+1 is the reward
received immediately after action at , in accordance with the
time-indexing conventions in Sutton and Barto (2018) as
shown in Fig. 1.

A variety of different update rules are discussed in
Appendix D and compared with other RL methods in
Appendix E. In the following, we will focus on the standard
update used in Briegel and las Cuevas (2012), Mautner et al.

Page 4 of 2113 Quantum Machine Intelligence (2020) 2:13

Fig. 1 Transition from time step t to t + 1, (t = 0, 1, 2, . . .), via the
agent’s decision at , where s and λ denote environment state and reward
(λ0=0), respectively (adapted from Sutton and Barto (2018))

(2015), and Melnikov et al. (2018). The update rules for the
h-value and the glow value are given by:

ht+1(s, a) = ht (s, a) − γ (ht (s, a) − heq)

+gt (s, a)λt+1 (10)

gt (s, a) = (1 − δ(s,a),(st ,at))(1 − η)gt−1(s, a)

+δ(s,a),(st ,at) (11)

The update of the h-value consists, in the language used
in the context of Master equations, of a gain and a loss
term. The parameter for the loss term is called damping
parameter and is denoted by γ ∈ [0, 1]. The parameter for
the gain term is called glow parameter and is denoted by
η ∈ [0, 1]. In particular, η = 1 recovers the original PS as
introduced in Briegel and las Cuevas (2012). Finally, δt :=
δs,st δa,at = δ(s,a),(st ,at) denotes the Kronecker delta symbol,
which becomes 1 if the respective (s, a)-pair is visited at
cycle t , and is otherwise 0. The agent’s policy is defined
as the set of all conditional probabilities (i.e., transition
probabilities in the ECM clip network):

pij = p(aj |si) = Π(hij)

κi

, κi =
∑
j

Π(hij), (12)

of selecting action aj when in state si and is here described
in terms of some given function Π . Examples of Π which
have been used or discussed in the context of PS are an
identity function (Briegel and las Cuevas 2012; Mautner
et al. 2015):

Π(x) = x, (13)

if x is non-negative, and an exponential function leading to
the well-known softmax policy (Melnikov et al. 2018) if a
normalization factor is added:

Π(x) = eβx, (14)

where β≥0 is a real-valued parameter.

4 Convergence of PS in episodic MDPs

In previous works, it has been shown numerically that the
basic version of a PS agent is capable of learning the
optimal strategy in a variety of textbook RL problems. The

PS model with standard update rules, however, does not
necessarily converge in all MDP settings. This version of the
PS is thoroughly analyzed in Appendix D and Appendix E.
As recalled in Section 2, in MDPs, optimality can be
defined in terms of the optimal policy. In this section, we
present a modified version of the PS that has been designed
exclusively to tackle this kind of problem. We consider
arbitrary episodic MDPs, and derive an analytical proof of
convergence. In this version, the policy function depends on
the normalized h̃ values, which, as we show later, behave
similarly as state-action values, and in fact, in episodic
MDPs, they converge to the optimal q∗ values for a range of
discount parameters.

4.1 Projective simulation for solvingMDPs

In the following, we introduce a new variant of PS aimed
at solving episodic MDPs. In those problems, there is a
well-defined notion of optimality, given by the optimal
policy. As described above, the basic PS constitutes a direct
policy method (see also Appendix A). Finding the optimal
policy of an MDP by policy exploration seems a rather
difficult task. However, as other methods have proven,
finding the optimal q∗ values can be done with relatively
simple algorithms, and the optimal policy can be derived
from the q∗ values in a straightforward manner. Motivated
by this, we add a new local variable to the ECM network
in order to recover a notion of state-action values while
maintaining the locality of the model.

For this version, we consider “first-visit” glow, defined
as follows.2 The glow of any given edge is set to 1 whenever
that edge is visited for the first time during an episode and in
any other circumstance it is damped by a factor (1−η), even
if the same edge is visited again during the same episode. In
addition, the entire glow matrix is reset to zero at the end of
an episode. We thus write the updates as:

ht+1(s, a) = ht (s, a) + λt+1gt (s, a) (15)

gt (s, a) = (1 − η)gt−1(s, a) + δ(s,a),(s,a)first-visit (16)

Nt+1(s, a) = Nt(s, a) + δ(s,a),(s,a)first-visit (17)

Here, the update for h is the same as in Eq. 10, but given
that the MDPs are time-independent environments, γ has
been set to 0. We add a matrix N to the standard PS, which
counts the number of episodes during which each entry of h

has been updated. The idea behind these updates is that the
ratios:

h̃t (s, a) := ht (s, a)

N + 1
(18)

2We can assume without loss of generality that the environment signals
the finalization of the episode. Thus, the first visits to an edge can be
determined locally. Moreover, the same signal can be used to reset the
glow values locally.

Page 5 of 21 13Quantum Machine Intelligence (2020) 2:13

resemble state-action values. To gain some intuition about
this, note that h-values associated to visited edges will
accumulate during a single episode a sum of rewards of the
form:

λt + (1 − η)λt+1 + (1 − η)2λt+2 + . . . , (19)

which gets truncated at the time step the episode ends.
Hence, the normalized h̃ values become averages of
sampled discounted rewards (see Appendix E.1). Later, we
show that paired with the right policy and glow coefficient
the h̃ values converge to the optimal q∗ values.

Instead of considering a policy function of the h-values as
in Eq. 12, here we will consider a policy function given by

pi,j = Π(h̃i,j)

ci

, ci =
∑
j

Π(h̃i,j), (20)

for a certain function Π(·). Given that the h̃-values are, in
general, not diverging with time (in fact they are bounded in
the case of bounded rewards) a linear function, as in Eq. 13,
would fail to converge to a deterministic policy. A solution
for that is to use a softmax function as in Eq. 14, where
the free coefficient β is made time dependent. By letting β

diverge with time, the policy can become deterministic in
the limit.

Similarly to Monte Carlo methods, which may be
equipped with a variety of update rules, giving rise to first-
visit or many-visit Monte Carlo methods, the choice of the
glow update rule is to some extent arbitrary but may depend
on the physical implementation of PS and the ECM. For
example, instead of Eq. 15, one could use the accumulating
glow update, given in Eq. 53. In that case, one simply needs
to change the update rule of N , given in Eq. 17 in such
a way that every visit of the edge is counted, instead of
only first visits. Intuitively, both pairs of update rules have
similar effects, in the sense that in both cases h̃(s, a) equals
an average of sampled discounted returns starting from the
time a state-action pair (s, a) was visited. However, while
for first-visit glow, we were able to prove convergence,
that is not the case for accumulating glow. Therefore, when
referring to this version of PS in the following, we assume
update rules given by Eqs. 15–17.

4.2 Convergence to the optimal policy

The convergence of h̃ values to q∗ values can be proven
by a standard approach used in the literature to prove, for
example, the convergence of RL methods like Q-learning
and SARSA, or prediction methods like TD(λ). In the
remainder of the paper, we will use interchangeably the
boldface notation e to denote a state-action pair as well as
the explicit notation (s, a) whenever convenience dictates.
Denoting by h̃m(e) the h̃-value of edge e at the end

of episode m, we define the family of random variables
Δm(e) := h̃m(e) − q∗(e). We want to show that in the limit
of large m, Δm(e) converges to zero for all e. Moreover,
it is desirable that such convergence occurs in a strong
sense, i.e., with probability 1. We show that by following the
standard approach of constructing an update rule for Δm(e)

which satisfies the conditions of the following theorem 3

Theorem 1 A random iterative process Δm+1(x) =
[1 − αm(x)]Δm(x) + αm(x)Fm(x), x ∈ X converges to
zero with probability one (w.p.1) if the following properties
hold:

1. the set of possible states X is finite.
2. 0 ≤ αm(x) ≤ 1,

∑
m αm(x) = ∞,

∑
m α2

m(x) < ∞
w.p.1, where the probability is over the learning rates
αm(x).

3. ‖E{Fm(·)|Pm}‖W ≤ κ‖Δm(·)‖W+cm, where κ ∈ [0, 1)
and cm converges to zero w.p.1

4. Var{Fm(x)|Pm} ≤ K(1 + ‖Δm(·)‖W)2, where K is
some constant.

Here Pm is the past of the process at stepm, and the notation
‖·‖ denotes some fixed weighted maximum norm.

In addition to Δm(e) meeting the conditions of the
theorem, the policy function must also satisfy two specific
requirements. First of all, it must be greedy with respect
to the h̃-values (at least in the limit of m to infinity). In
that way, provided that the h̃-values converge to the optimal
q∗ values, the policy becomes automatically an optimal
policy. Additionally, to guarantee that all Δm keep being
periodically updated, the policy must guarantee infinite
exploration. A policy that satisfies these two properties is
called GLIE (Singh et al. 2000), standing for Greedy in the
Limit and Infinite Exploration. Adapting the results from
Singh et al. (2000) for PS and episodic environments, we
can show (see Appendix G) that a softmax policy function
defined by:

πm(a|s, h̃m) =
exp

[
βmh̃m(s, a)

]
∑

a′∈A exp
[
βmh̃m(s, a′)

] (21)

is GLIE, provided that βm →m→∞ ∞ and βm ≤ C ln(m),
where C is a constant depending on η and |S|. While
the first condition on βm guarantees that the policy is
greedy in the limit, the second one guarantees that the
agent will keep exploring all state-action pairs infinitely

3 This theorem is a known result in the field of stochastic
approximation. While the first version of the theorem was presented in
Dvoretzky et al. (1956), it can be found in many forms in the literature.
The version presented here, where the contraction property has been
relaxed by allowing a noise that tends to zero, has been presented in
Singh et al. (2000).

Page 6 of 2113 Quantum Machine Intelligence (2020) 2:13

often. In this particular example, we have considered βm

to depend exclusively on the episode index. By doing so,
the policy remains local, because βm can be updated using
exclusively the signal of the environment indicating the
finalization of the episode. Note however that the choice of
the policy function, as far as it is GLIE, has no impact on
the convergence proof. We are now in a position to state our
main result about the convergence of PS-agents in the form
of the following theorem.

Theorem 2 For any finite episodic MDP with a discount
factor of γdis, the policy resulting from the new updates
converges with probability one to the optimal policy,
provided that:

1. Rewards are bounded,
2. 0 ≤ γdis ≤ 1/3 , where γdis = 1 − η,
3. The policy is a GLIE function of the h̃-values.

Note that we have restricted the range of values γdis can
take. The reason for that is related to the way the h-values
are updated in PS. In Q-learning and SARSA, where the γdis
parameter of the MDP is directly included in the algorithm,
every time an action is taken its corresponding Q-value
is updated by a sum of a single reward and a discounted
bootstrapping term. Given that the PS updates do not use
bootstrapping, that term is “replaced” by a discounted sum
of rewards. Due to this difference, the contraction property
(Condition 3 in Theorem 1) is not so straightforward to
prove forcing us to consider smaller values of γdis. However,
this condition on the γdis parameter is not a fundamental
restriction of the PS model, but merely a result of how
convergence is proven in this work.

4.3 Environments without terminal states

In Theorem 2, we have considered exclusively episodic
MDPs. However, it is still possible for these environments to
have an optimal policy which does not drive the agent to any
terminal states. This observation suggests that the scope of
problems solvable by PS can be further extended to a subset
of non-episodic MDPs.

Given any non-episodic MDP, one can construct an
episodic MDP from it by adding one single terminal state
sT and one single transition leading to it with non-zero
probability, i.e., by defining pT = Pr(sT |s, a) �= 0 for
some arbitrary pair (s, a). Thus, while the original non-
episodic MDP falls outside the scope of Theorem 2, PS
could be used to tackle the non-episodic MDP. Anyway, in
general, these two problems might have different solutions,
i.e., different optimal policies. However, given that both
the pair (s, a) for which pT �= 0 and the value of pT

are arbitrary, by properly choosing them, the difference
between the two optimal policies could become negligible

or non-existent. That could be done easily having some
useful knowledge about the solution of the original MDP.
Consider for instance a grid world, where multiple rewards
are placed randomly around some central area of grid
cells. Even without knowing the exact optimal policy, one
can correctly guess that there will be an optimal cyclic
path about the center of the world yielding the maximum
expected discounted return. Hence, adding a terminal state
in some remote corner of the world would very likely leave
the optimal policy unchanged.

4.4 Proof of Theorem 2

In this section, we discuss the core of the proof of
Theorem 2, leaving for Appendix F the most involved
calculations. Given that the policy is a greedy-in-the-limit-
function of the h̃m values, the proof of Theorem 2 follows if
we show that:

Δm(e) := h̃m(e) − q∗(e) (22)

converges to 0 with probability 1. In order to do so, we
show that Δm(e) obeys an update rule of the form given
in Theorem 1 and the four conditions of the theorem are
satisfied.

We begin by deriving an update rule for the h-values
between episodes. In the case where an edge e is not visited
during the m-th episode, its corresponding h-value is left
unchanged, i.e., hm(e) = hm−1(e). Otherwise, due to the
decreasing value of the glow during the episode, in the m-th
episode, the h(e) value will accumulate a discounted sum of
rewards given by:

Dm(e) =
Tm∑

t=tm(e)

η̄t−tm(e)λt , (23)

where tm(e) and Tm are the times at which the first visit
to e during episode m occurred and at which the episode
finished, respectively, and η̄ = 1 − η. Therefore, in general
hm(e) = hm−1(e) + χm(e)Dm(e), where χm(e) is given by

χm(e) =
{
1 if e is visited during the m-th episode,

0 otherwise.

(24)

We denote, respectively, by Nm(e) and h̃m(e) the N-
value and h̃-value associated to edge e at the end of episode
m. Thus, we have that h̃m(e) = hm(e)/[Nm(e) + 1] and it
obeys an update rule of the form:

h̃m(e) = 1

Nm(e) + 1

{[
Nm−1(e) + 1

]
h̃m−1(e)

+χm(e)Dm(e)

}
. (25)

Page 7 of 21 13Quantum Machine Intelligence (2020) 2:13

Noting that the variables Nm(e) can be written in terms of
χm(e) as the sum Nm(e) = ∑m

j=1 χj (e), it follows from
Eq. 25 that the variable Δm(e) given in Eq. 22 satisfies the
recursive relation:

Δm(e) = [1 − αm(e)]Δm−1(e) + αm(e)Fm(e), (26)

where the ratios

αm(e) := χm(e)

Nm(e) + 1
, (27)

play the role of learning rates, and Fm(e) is defined as:

Fm(e) := χm(e) (Dm(e) − q∗(e)) . (28)

The update rule in Eq. 26 is exactly of the form given
in Theorem 1. Therefore, we are left with showing that
αm(e) satisfies Condition 2 in Theorem 1, and Fm(e)

satisfies Conditions 3 and 4. Below, we describe the general
procedure to prove that, while most of the details can be
found in Appendix F.

The fact that αm(e) satisfies Condition 2 in Theorem
1 follows from noting that

∑
m αm(e) = ∑

n 1/n and∑
n α2

m(e) = ∑
n 1/n2, which are, respectively, a divergent

and a convergent series. Regarding Condition 3, note that
by tweaking the free glow parameter in such a way that η̄ =
γdis, the variable Dm(e) becomes a truncated sample of the
discounted return G(e, γdis) given in Eq. 3. Thus, h̃ values
undergo a similar update to that found in SARSA, with the
difference that instead of a bootstrapping term an actual
sample of rewards is used. Due to these similarities, we can
use the same techniques used in the proof of convergence
of RL methods (Jaakkola et al. 1994; Singh et al. 2000) and
show that:

‖E{Fm(·)|Pm}‖W ≤ f (γdis)‖Δm(·)‖W + cm, (29)

where cm converges to 0 w.p.1 and f (γdis) = 2γdis
1−γdis

.
This equation satisfies Condition 3 in Theorem 1 as far as
f (γdis) < 1, which occurs for γdis < 1/3.

Finally, Condition 4 in Theorem 1 follows from the fact
that rewards are bounded. This implies that h̃-values and,
in turn, the variance of Fm(e) are bounded as well. This
concludes the proof of Theorem 2.

5 Conclusion

In this work, we studied the convergence of a variant of PS
applied to episodic MDPs. Given that MDPs have a clear
definition of a goal, characterized by the optimal policy,
we took the approach of adapting the PS model to deal
with this kind of problem specifically. The first visit glow
version of PS presented in this work internally recovers a
certain notion of state-action values, while preserving the
locality of the parameter updates, crucial to guarantee a
physical implementation of the model by simple means.

We have shown that with this model a PS agent achieves
optimal behavior in episodic MDPs, for a range of discount
parameters. This proof and the theoretical analysis of the PS
update rules shed light on how PS, or, more precisely, its
policy, behaves in a general RL problem.

The PS updates that alter the h-values at every time
step asynchronously pose a particular challenge for proving
convergence. To deal with that, we analyzed the subse-
quence of internal parameters at the times when episodes
end, thus recovering a synchronous update. We could then
apply techniques from stochastic approximation theory to
prove that the internal parameters of PS converge to the opti-
mal q values, similarly as in the convergence proofs of other
RL methods.

We have also chosen a specific glow update rule, which we
have called first-visit glow. While other glow updates, like
accumulating or replacing glow, show the same behavior at
an intuitive level, trying to prove the convergence with those
updates has proven to be more cumbersome. Therefore,
from a practical point of view, several glow mechanisms
could be potentially utilized, but convergence in the limit is,
at the moment, only guaranteed for first-visit glow.

Although only episodic MDPs fall within the scope of
our theorem, no constraints are imposed on the nature of the
optimal policy. Hence, episodic problems where the optimal
policy completely avoids terminal states (i.e., the probability
that an agent reaches a terminal state by following that
policy is strictly zero) can also be considered. Furthermore,
the agent could be equipped with any policy, as far as the
GLIE condition is satisfied. In this paper, we provided a
particular example of a GLIE policy function, in the form of
a softmax function with a global parameter, which depends
exclusively on the episode index. In this particular case, the
policy is compatible with local updates, in the sense that the
probabilities to take an action given a state can be computed
locally.

Funding information Open access funding provided by Austrian
Science Fund (FWF). This work was supported, in part, by the
Austrian Science Fund through the projects SFB FoQus F4212, SFB
BeyondC F7102, and DK ALM W1259, and in part by the Dutch
Research Council (NWO/OCW), through the Quantum Software
Consortium programme (project number 024.003.037)

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

Page 8 of 2113 Quantum Machine Intelligence (2020) 2:13

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

Appendix A: A review of RLmethods

The following section is meant as a concise overview
of standard RL methods, which we distilled and adapted
from (Sutton and Barto 2018), to provide the necessary
background before which the PS will we be discussed in
Sections D (ref to Section D) and E (ref to Section E). For
details we refer the reader to Ref. (Sutton and Barto 2018).

Among the model-free and gradient-based approaches,
we can broadly distinguish between value function-based
methods which are gradient-descent with respect to a so-
called temporal difference (TD) error and direct policy
methods which are gradient-ascent with respect to the
expected return as shown in Fig. 2.

Fig. 2 Some types of gradient-based solution methods for RL-
problems. Value function-based methods are gradient-descent with
respect to a TD error, whereas direct policy methods are gradient-
ascent with respect to the expected return. Actor-critic methods are
depicted as their intersection since they combine both approaches.
Being understood as “parametric” methods, this figure corresponds to
the left branch of Fig. 3 in Clausen and Briegel (2018)

In what follows, we focus on actor-critic methods
because they exhibit an “all in one” structure from which
the other approaches can be deduced by simplifications. To
make it short and provide an overall picture, the so-called
update rules for a single time step are listed in Eq. 30 and
will be explained in the remainder of this section.

δ ← R + γdisu
′ − u (episodic), (30a)

δ ← R − R̄ + u′ − u (continuing), (30b)

zu ← γdisλ
u
traz

u + ∇u, (30c)

θu ← θu + αuδzu, (30d)

zπ ← γdisλ
π
traz

π + ∇ lnπ, (30e)

θπ ← θπ + απδzπ , (30f)

 ← γdis(episodic), (30g)

R̄ ← R̄ + η δ(continuing). (30h)

In Eq. 30, we have two players: an actor (the
policy π = π(A|S, θπ)) and a critic (the value function
u = u(S, θu)); hence, all corresponding quantities are
distinguished by their respective superscript. The value
function is parameterized by a weight vector θ . The vector
z is referred to as the eligibility trace.

The update equations for the actor are given by Eq. 30e–
f and the updates for the critic are Eq. 30c–d, where the
∇ := ∂

∂θ
denote the gradients with respect to the θ vectors.

These two sets of updates are identical except for the
natural logarithm lnπ of the policy taken in Eq.30e. This
logarithm is a consequence of the policy gradient theorem
and makes the gradient of the actual performance measure
to be maximized (value of the start state of an episode
or average rate of reward per time step for continuing
problems, see below) independent of the derivative of the
state distribution (that is, the effect of the policy on the
state distribution), which depends on the environment and is
unknown.

Equation (30) describes approximative methods, since
they apply function approximation as a scalable way
of generalizing from a state space much larger then the
memory capacity of the agent. The tabular case can be
recovered from this as a special exact case, in the sense
that all encountered states and actions are represented
individually. The function approximations are hidden in the
gradients ∇u and ∇ lnπ in Eqs. 30c and 30e and can be
done in linear fashion (by scalar products θ · x with feature
basis vectors x(S) or x(S, A)) or in nonlinear fashion
(e.g., by neural networks with θ as connection weights)4.
Note that the two parametrizations θu and θπ are entirely
unrelated (and hence different-dimensional in general). In
Appendix B, we show in the example of SARSA, how
tabular methods can be recovered from Eq. 30.

In Eq. 30, we can use a state value function, u=u(S, θu),
because the policy is taken care of separately. Without it,
i.e., when we only know the value u(s) of the state s we are
in, we would require an environment model p(s′, r|s, a)

to decide on an action a. To remain model-free, we would
then have to apply an action value function u=u(s, a, θu)

instead, from which could obtain the best action by search
for argmaxau.

Equation 30 contains six meta-parameters: η > 0 and
the two α > 0 are step sizes, γdis ∈ [0, 1] is the discount-
rate parameter, and the two λtra ∈ [0, 1] are trace-decay
rates that allow to vary the degree of bootstrapping, which
denotes the updating of estimates by using other existing
estimates (cf. Appendix C). In 30, these existing estimates
involve the current values u′ of subsequent (i.e., one time

4These examples are not exhaustive. In a wider sense, one may also
mention decision trees with θ defining the split points and leaf values.

Page 9 of 21 13Quantum Machine Intelligence (2020) 2:13

step later) states or state-action pairs, which enter the TD-
error δ in either (30a) or (30b) together with the reward R.
Choosing λtra is thus a possibility to interpolate between
the fully bootstrapping original one-step TD methods which
are recovered for λtra = 0, and Monte Carlo (i.e., non-
bootstrapping) methods, which are obtained in the limit
λtra = 1. Monte Carlo methods rely exclusively on actual
complete returns Gt received. In a strict sense, they update
off-line, i.e., they store a whole episode S0, A0, R1, . . . ,

ST −1, AT −1, RT , ST in a separate memory and only at
the end of an episode the respective current estimates are
updated in reverse time order t = T − 1, T − 2, . . . ,

0 making use of the fact that Gt = Rt+1 + γdisGt+1. In
contrast to the updates (30), which are are done online
(i.e., are incremental step-by-step), strict Monte Carlo
methods are thus incremental in an episode-by-episode
sense, and are consequently only defined for the episodic
case. Consequently, even for λtra=1 the online updates (30)
approximate Monte Carlo methods only for infinitesimally
small step sizes α.

In continuing problems, the interaction between agent
and environment goes on forever without termination or
start states. Discounting is here useful in the tabular case
but problematic when used with function approximation,
where the states cannot be clearly distinguished anymore.
An alternative then is to use the average rate of reward r :=
limT →∞ 1

T

∑T
t=1 E(Rt)= limt→∞ E(Rt), i.e., the average

reward per time step (assuming ergodicity). E(Rt) is the
respective expected reward and Eq. 3 is replaced with the
differential return Gt :=∑∞

k=0(Rt+k+1 − r) . In Eq. 30, we
thus set γdis=1 in such a case and apply Eqs. 30b and 30h
instead of Eqs. 30a and 30g, respectively. R̄ is the current
estimate of the average reward r .

To actually run (30), R̄ and θ can be initialized arbitrarily
(e.g., to 0). At the beginning of each episode, z is initialized
to 0, and is initialized to 1. At the end of each episode, the
value of a terminal state is set to 0.

Equation 30 are on-policy and must be distinguished
from off-policy methods (such as Q-learning) which train
on a distribution of transitions that is different from the
one corresponding to the targeted (desired) behavior and
thus free what the agent is actually doing (behavior pol-
icy) from what it should do (target policy). While this is
not fundamentally required for basic problems that can be
treated with model-free learning, it becomes essential in
(model-based) prediction and planning, where it allows par-
allel learning of many target policies from the (necessarily
one) realized behavior policy. Combining function approx-
imation, bootstrapping, and off-policy updates may lead to
instability and divergence.

At first glance, Eq. 30 looks elaborate and one might
wonder why, for instance, value function-based methods
should not suffice. The short answer is that this depends on

the type and intricacy of the problem. To be more specific,
one reason is that the expected return of state-action-
pairs, that value functions estimate, typically contains more
information than needed to make decisions. For example,
a transformation of u which leaves the order of its values
unchanged (such as multiplication with a positive constant)
has no effect on the respective optimal decision. As a
consequence, value function-based methods are too strict,
since u are well defined and one needs to separately decide
on a policy in order to convert these value estimates to action
selection probabilities. If, for example a so-called softmax
policy (14) is used, a choice and schedule (i.e., time-
dependence) of the so-called inverse temperature parameter
β has to be made. In contrast, direct policy methods,
for instance, internally work with numerical preferences
h(s, a, θπ) whose actual values do not have to represent
anything meaningful and are thus free to evolve in parameter
space.

Appendix B: Recovering SARSA from
actor-critic methods

To recover a pure action value method from the actor-critic
methods (30), we restrict attention to Eqs. 30a, 30c, and 30d,
set =1 and ignore the remaining updates. For u, we choose
an action value function u = u(S, A, θu) which we name
as q. Suppressing the superscript u but adding time step
indices, this gives for the scalar TD error signal:

δTDt = Rt+1 + γdisqt (St+1, At+1) − qt (St , At), (31)

with which the remaining updates describe SARSA(λtra)
with function approximation:

θ t+1 = θ t + αδTDt zt , (32)

zt+1 = γdisλtrazt + ∇qt+1(St+1, At+1). (33)

In the tabular case, q becomes a table (matrix) with entries
q(Si, Aj). The components of the parameter vector θ

are identified with just these entries, so that the gradient
becomes a table of Kronecker delta symbols:

∇q(S, A)|t = ∂q(S, A)

∂q(St , At)
= (δS,St δA,At) =: δt . (34)

To clarify, the bold δt has the same dimension as q (i.e., it
is a matrix) with the single entry corresponding to (St , At)

(i.e., the state-action-pair visited at time t) being equal to 1
and all other entries being 0 and must be distinguished from
the non-bold δt used throughout Section 3, which refers to a
single given state-action-pair, and is 1 (0), if this pair is (not)
visited at time t . With the bold δt , the updates (32)–(33)
reduce to tabular SARSA(λtra):

qt+1 = qt + αδTDt zt , (35)

zt+1 = γdisλtrazt + δt+1, (36)

Page 10 of 2113 Quantum Machine Intelligence (2020) 2:13

where z is here called an accumulating eligibility trace and
also has the same dimension as q (i.e., it is also a matrix).
Hence, (35) updates all entries of q. For λtra = 0, only the
respective (i.e., visited) single entry of q is updated:

qt+1(St , At) = qt (St , At) + αδTDt , (37)

which corresponds to conventional one-step SARSA.

Appendix C: Notes on eligibility trace vectors

We can here only outline a sketch. Let us focus on value
function methods, where for simplicity of notation we
restrict attention to state values. Action value methods can
be covered analogously by referring to (s, a)-pairs instead
of states s. We may consider the mean squared value error:

V E(θ) :=
∑

s

μ(s)
[
u(s) − v̂(s, θ)

]2 (38)

between the true value function u(s) and a current estimate
v̂(s, θ) of it. μ(s) can be any probability distribution, but
is typically chosen to be the fraction of time spent in s

under on-policy training in which case it is called on-policy
distribution (or stationary distribution in continuing tasks).
Ideally, one would find a global optimum θ∗ such that
V E(θ∗)≤V E(θ) ∀θ . The problem is that u(St) is unknown;
hence, we substitute a so-called update target (“backed-up”
value) Ut as a random approximation of the true value u(St)

and apply stochastic gradient descent:

θ t+1 = θ t − 1

2
αt∇

[
Ut − v̂(St , θ t)

]2 (39)

= θ t + αt

[
Ut − v̂(St , θ t)

]∇v̂(St , θ t). (40)

If Ut is an unbiased estimate of u(St), i.e., E [Ut |St = s]=
u(s) ∀t , then convergence to a local optimum (i.e., the above
inequality holds in a neighborhood of θ∗) follows under
the stochastic approximation conditions for the step-size
parameter αt >0:
∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞. (41)

One possible choice for Ut is the λ-return:

Gλ
t := (1 − λ)

∞∑
n=1

λn−1
tra Gt :t+n (42)

as a mixture (λtra∈[0, 1]) of n-step returns at time t :

Gt :t+n :=
n−1∑
k=0

γ k
disRt+k+1 + γ nv̂(St+n, θ t+n−1). (43)

Referring to episodic tasks with (random) termination time
T , i.e., t ≤ T −n in Eq. 43, and Gt :t+n=Gt :T =Gt for n ≥

T − t , one can decompose:

G
λtra
t = (1 − λtra)

T −t−1∑
n=1

λn−1
tra Gt :t+n + λT −t−1

tra Gt, (44)

in order to demonstrate the TD(0)-limit Gλ
t

λtra→0→ Gt :t+1 of
recovering the one-step return and the Monte Carlo limit Gλ

t
λtra→1→ Gt of recovering the conventional (full) return (3).

The incremental updates (40) refer to time t but involve
via (43) information that is only obtained after t . Thus, we
must rearrange these updates such that they are postponed
to later times following a state visit. This is accomplished
by eligibility trace vector updates such as (30c). To see this,
one may sum up all increments (30d) over an episode (with
(30c) substituted in explicit form) and compare this with the
sum of all increments (40) (with Ut =Gλ

t) over an episode.
Both total increments are equal if we neglect the influence
of the change of θ on the target Ut . This approximation
holds for sufficiently small αt , but strictly speaking, the
bootstrapping involved in Gλ

t , namely its dependence on θ

via v̂(St+n, θ t+n−1) renders the transition from Eqs. 39 to
40 only a (“semi-gradient”) approximation.

While a Monte Carlo target Ut = Gt is by definition
unbiased, Monte Carlo methods are plagued with high vari-
ance and hence slow convergence. In contrast, bootstrapping
reduces memory resources, is more data-efficient, and often
results in faster learning, but introduces bias. This is rem-
iniscent of the “bias-variance tradeoff” which originally
refers to supervised learning. While in the latter case the
“trading” is realized by methods such as “regularization” or
“boosting” and “bagging,” in the context of RL considered
here, choosing λtra serves a similar function.

Appendix D: Choice of glow update

In the following, different types of glow updates are
discussed, which are useful for the comparison with other
RL methods in Appendix E. We will focus on two types
of glow, which we refer to as replacing and accumulating
glow, motivated by the respective eligibility traces of the
same name, which were originally introduced as tabular
versions of the vector z and represent in the methods
discussed in Appendix A the counterpart of glow introduced
in Section 3. While replacing glow defined in Eq. 11 is
the version applied in all works on PS so far, accumulating
glow defined in Eq. 53 and first-visit glow defined in
Eq. 15 are introduced to simplify the expressions and
analysis. From the perspective of the methods considered
in Appendix A, accumulating glow is more similar to the
z-updates (30c) and (30e) than replacing glow, for which

Page 11 of 21 13Quantum Machine Intelligence (2020) 2:13

such a generalization is not clear. As far as the choice of
an eligibility trace in tabular RL methods is concerned, the
tabular case of Eq. 30 yields accumulating traces as is shown
in Eqs. 35–36 in the example of SARSA.

D.1 Replacing glow

In what follows, we discuss the update rules for replacing
glow, which is helpful for the comparison with other RL
methods. We consider the h-value of an arbitrarily given
single (s, a) pair at time t . It is determined by the sequence
of rewards λj+1 (j = 0, . . . , t − 1) and times of visits,
which can be described using the sequence of Kronecker
delta symbols δj . It is convenient to define the parameters:

η̄ := 1 − η, (45a)

γ̄ := 1 − γ, (45b)

χ := η̄

γ̄
. (45c)

With them, we can express the recursion Eq. 10 combined
with Eq. 11 in explicit form at time step t (see Appendix D.3
for details):

ht = hrest + h
exp
t . (46)

The first term:

hrest = γ̄ th0 + (1 − γ̄ t
)
heq (47)

describes a transition from the initial h0 to the asymptotic
value heq. In particular, hrest =h0 holds exactly for γ̄ =1 or
for h0 =heq, and otherwise hrest ≈heq holds asymptotically
for times long enough such that γ̄ t � 1. This reward-
independent term hrest is always present in Eq. 46, and Eq. 46
reduces to it if the agent never receives any reward, i.e., if the
agent is at “rest”. (Note that in case of an exponential policy
function (14), hrest has no effect on the policy, but this is not
of concern for the present discussion.) The second term in
Eq. 46 encodes the agent’s “experience” and is determined
by the history of visits and rewards. Let us refer to time step
t +1 for convenience:

h
exp
t+1 =

t∑
k=l1

[
γ̄ t−kη̄k−l(k)

]
λk+1 (48a)

=
jt∑

j=1

γ̄ t−lj G
[
lj : min(lj+1 − 1, t), χ

]
(48b)

=
⎛
⎝ jt∑

j=1

γ̄ t−lj −
jt∑

j=2

χlj −lj−1

⎞
⎠G(lj : t, χ). (48c)

Here, lj , j =1, . . . , jt , are the times at which the respective
edge is visited, i.e., 1≤ l1 ≤ l2 ≤ . . .≤ ljt ≤ t , and jt is thus
the number of visits up to time t . In Eq. 48a, l(k) is the time
of the last visit with respect to time step k, i.e., if lj ≤ k <

lj+1, then l(k)=lj . Consequently, k − l(k) is the number of
steps that have passed at time k since the last visit occurred.
In Eq. 48b, we have defined a truncated discounted return:

G (t : t + T , χ) :=
T∑

k=0

χkλt+k+1, (49)

which obeys

G(t1 : t2, χ) = λt1+1 + χG(t1 + 1 : t2, χ) (50)

and more generally

G(t1 : t3, χ) = G(t1 : t2 −1, χ)+χt2−t1G(t2 : t3, χ). (51)

Note that in Eq. 49, discounting starts at the respective t and
not at t =0; hence,

t2∑
k=t1

χkλk+1 = χt1G(t1 : t2, χ). (52)

D.2 Accumulating glow

In the following, we introduce accumulating glow, which is
defined by the following update:

gt+1 = (1 − η)gt + δt+1, (53)

where each visit adds a value of 1 to the current glow
value of the respective edge. Writing the recursion Eq. 10
combined with Eq. 53 instead of Eq. 11 in explicit form
yields:

h
exp
t+1 =

t∑
k=0

⎡
⎣γ̄ t−k

(lj ≤k)∑
j=1

η̄k−lj

⎤
⎦ λk+1 (54a)

=
jt∑

j=1

γ̄ t−lj G(lj : t, χ) (54b)

instead of Eq. 48. The difference is that the subtracted sum
in Eq. 48c, which represents “multiple re-visits,” is not
included in Eq. 54b.

D.3 Derivation of the explicit expressions for the
h-value

Writing the recursion Eq. 10 in explicit form gives:

hn = hresn + h
exp
n , (55)

which corresponds to Eq. 46 with hresn given by Eq. 47 and

h
exp
n =

n−1∑
k=0

γ̄ n−k−1gkλk+1. (56)

Page 12 of 2113 Quantum Machine Intelligence (2020) 2:13

D.3.1 Replacing glow

The recursion (11) for replacing glow yields the explicit
expression:

gn = η̄ng0

n∏
j=1

δ̄j +
n∑

k=1

η̄n−kδk

n∏
j=k+1

δ̄j , (57)

where we have defined

δ̄j := 1 − δj (58)

for convenience. Setting g0=0 gives

gn =
n∑

k=1

η̄n−kΔ(k, n), (59)

where

Δ(k, n) := δk

n∏
j=k+1

δ̄j (60)

is 1 if the last visit occurred at step k (k≤n, i.e., by definition
Δ(n, n):= 1) and 0 otherwise. Together with Eq. 56, we
obtain after renaming n as t +1:

h
exp
t+1 =

t∑
k=0

γ̄ t−kgkλk+1 (61)

=
t∑

k=0

k∑
l=1

γ̄ t−kη̄k−lΔ(l, k)λk+1. (62)

Rearranging summation (
∑t

k=0
∑k

l=1 = ∑t
l=1
∑t

k=l),
applying (49) together with Eqs. 51 and 52, and resolving
the Kronecker delta symbols then gives Eq. 48.

D.3.2 Accumulating glow

Similarly, the recursion (53) for accumulating glow yields
the explicit expression:

gn = η̄ng0 +
n∑

k=1

η̄n−kδk, (63)

where we set again g0=0. Together with Eq. 56, we obtain
after renaming n as t + 1 the same expression as (61),
from which Eqs. 76) and Eq. 77 follow. In Eq. 77, we have
again rearranged summation and applied (49) together with
Eq. 52. Resolving the Kronecker delta symbols then gives
Eq. 54.

D.4 Order in glow updating

Note that in the updating of the replacing edge glow applied
in Mautner et al. (2015), the glow value of visited edges
is first reset to 1, followed by a damping of all edges by
multiplying g with η̄. In contrast, the recursion (11) for
replacing glow applies the damping first and then resets

the glow value of visited edges to 1. We may understand
(11) as first making up for the damping of the previous
step and then do the actual resetting of the present step.
As an embedding description, we may define an s-ordered
replacing glow update:

gt+1 = sδt+1 + η̄δ̄t+1gt (64)

generalizing (11), where s is a real valued ordering
parameter. s = η̄ describes the case of (1) resetting and (2)
damping as done in Mautner et al. (2015) and Melnikov
et al. (2018), whereas s=1 describes the case of (1) damping
and (2) resetting as done in Eq. 11. In explicit form, Eq. 64
yields:

gn = η̄ng0

n∏
j=1

δ̄j + s

n∑
k=1

η̄n−kδk

n∏
j=k+1

δ̄j (65)

instead of Eq. 57. Analogously, an s-ordered accumulating
glow update:

gt+1 = sδt+1 + η̄gt (66)

generalizes Eq. 53 by describing (1) incrementing and (2)
damping for s=η̄ and (1) damping and (2) incrementing for
s=1 as done in Eq. 53. The explicit form of Eq. 66 is:

gn = η̄ng0 + s

n∑
k=1

η̄n−kδk (67)

instead of Eq. 63. The only difference is the extra factor
s in the second term in Eq. 65 and (67) compared with
Eq. 57 and (63), respectively, with which the h

exp
t+1 in Eq. 61

(which holds for both types of glow) and hence in Eq. 48
and Eq. 54 would have to be multiplied. The difference is
therefore minor and irrelevant for our considerations.

Appendix E: Comparative analysis of
projective simulation and other RLmethods

A specific contribution, which the PS updates have to
offer to RL consists in supplementing the usual forward
discounting with a backward discounting enabled by the
damping of the (s, a) pair values, which amounts to a
generalization of the standard notion of return. On the
other hand, the incompatibility of discounting with function
approximation mentioned in Appendix A may also extend
to damping.

In the following discussion, we want to analyze the
difference between PS and other RL methods. The first
observation is that neither Eq. 48 nor 54 updates averages,
instead they add “double-discounted” rewards. In what
follows, first we show in Appendix E.1 how averaging
can be implemented before we show in Appendix E.2
some simple effects of forward and backward discounting,
assuming that averaging is carried out. Averaging will not

Page 13 of 21 13Quantum Machine Intelligence (2020) 2:13

be integrated into the PS, as we do not want to give up the
simplicity of the PS updates. This discussion merely serves
as a thorough analysis of the differences between PS and
methods that use averaging.

In the language of Appendix A, the basic PS updates
Eq. 10 constitute a tabular model-free on-policy online
learning method. In the analysis in Appendix E.4, we show
that among the *methods in Appendix A, it is tabular
SARSA(λ) defined in Eqs. 35–36, which comes closest to
Eq. 10, because it has an eligibility value z(s, a) ascribed to
each (s, a) pair that is the counterpart of the respective glow
value g(s, a) and a trace decay parameter λ, which may
be “meta-learned” (i.e., optimized). Thus, in Appendix E.4,
we analyze the differences and similarities between PS and
SARSA.

E.0.1 Implementing a temporal averaging

In this section, we show how temporal averaging can be
integrated by adding to the h- and g-value a third variable
N =N(s, a) to each (s, a) pair, which counts the number of
visits by updating it according to:

Nt+1 = Nt + δt+1, (68)

which is formally the same update as Eq. 53 for
undamped accumulating glow. With it, we could consider
the normalized h̃t =ht/Nt and initialize withN0=1 to avoid
division by zero, so that explicitly Nt =N0 +∑t

k=1 δk = jt

+ 1. Alternatively, we can integrate the normalization into
the update rule f , ht+1 =Nt+1h̃t+1 =f (ht)=f (Nt h̃t) by
replacing Eq. 10 with:

h̃t+1 = αt+1

αt

h̃t − γ

(
αt+1

αt

h̃t − αt+1h
eq
)

+ αt+1gtλt+1

≈ h̃t − γ (h̃t − αth
eq) + αtgtλt+1, (69)

αt+1 = αt

1 + αtδt+1
, (70)

where the approximation (69) holds as soon as αt � 1.
Instead of N , we thus then keep for each (s, a) pair a
separate time-dependent learning rate αt = N−1

t = αt (s, a)

and update it according to Eq. 70.
For accumulating glow, Eq. 54b sums over all visits j the

backward-discounted returns that follow these visits up to
the present t , and h̃

exp
t+1 thus becomes (for large t) an estimate

of the average backward-discounted return that follows a
visit. In contrast, the first-visit counterpart (15) only depends
on the time l1 of the first visit, which is analytically more
easily analyzed in an episodic environment, where after each
episode, the glow values of all (s, a) pairs are reset to 0.

The updates involving (68) or (70) may be read as a
laborious reinvention of an online approximation of an
every-visit Monte Carlo method, but provide the following
insight: For the action value methods in the context of

Appendix ??, the learning rate can in practice (especially
when dealing with deterministic environments) often be
kept constant rather than gradually decreasing it, where
the precise value of this constant does not matter. For our
updates of h̃, omitting the correction by N or α and working
with the original h should work reasonably well, too, in such
problems.

E.0.2 Effect of double discounting on a temporal
average

As an elementary illustration of the effect of forward
discounting via η̄ and backward discounting via γ̄ on agent
learning consider a weighted arithmetic mean:

x̄(t) =
∑t

k=1 wkxk∑t
k=1 wk

(71)

of random samples xk with variable but known weights wk

≥0 (w1>0). If the samples are drawn in succession x1,x2,

. . ., then the average can be updated incrementally:

x̄(t) = (1 − αt)x̄
(t−1) + αtxt , (72)

with a “learning rate”

αt = wt∑t
k=1 wk

, (73)

which in general fluctuates within αt ∈[0, 1) depending on
the weight sequence w1,w2, (Note that an incremental
formulation:

αt+1 =
(
1 + wt

wt+1αt

)−1

(74)

would require that wk >0 holds ∀ k.) Of particular interest
for our discussion is an exponential choice of weights:

wk = wk, αt = 1 − w−1

1 − w−t
. (75)

In Eq. 75, we can distinguish the following cases:

(a) For w = 1 all samples are given equal weight and

the learning rate αt = t−1 t→∞→ 0 decays to 0 in a
manner of Eq. 41. In the special case, when the xk

are drawn from i.i.d. random variables Xk ≡ X with
variance σ 2(X)=σ 2, the total variance σ 2

(t)=t−1σ 2 of∑t
k=1 wkXk∑t

k=1 wk
vanishes with growing t and x̄(t) converges

to the expectation value E(X). In the context of
agent learning, we may interpret x̄(t) as the agent’s
experience (e.g., a current value estimate of some given
state-action pair). If after some longer time t � 1,
the environment statistics changes (Xk ≡X no longer
holds), the average x̄(t) will start to change only slowly.

(b) The case w <1 in Eq. 75 corresponds to the effect of
a discounting from the beginning of learning towards
the present t by the factor η̄k . The learning rate αt

Page 14 of 2113 Quantum Machine Intelligence (2020) 2:13

t�1≈ (w−1 − 1)wt t→∞→ 0 decays to 0 exponentially and
the agent will cease to learn anything after some finite
time period of the order Δt ≈−(lnw)−1 due to decay
of the weights in Eq. 75. After that time, the agent
will behave solely according to this early experience
“imprinted” into it.

(c) The case w > 1 in Eq. 75 corresponds to the effect
of discounting from the present t toward the past by

a damping factor γ̄ t−k . The learning rate αt
t→∞→ 1 −

w−1 converges to a positive constant and the agent
remains “fluid” in its ability to react to changes in
the environment statistics. On the other hand, since its
remembered experience reaches only a time period of
the order Δt ≈(lnw)−1 from the present into the past,
such an agent will just “chase the latest trend” without
learning anything properly.

In the special case, when the xk are drawn from i.i.d.
random variables Xk ≡ X with variance σ 2(X) = σ 2, the

total variance σ 2
(t)

t�1≈ |w−1|
w+1 σ 2 of

∑t
k=1 wkXk∑t

k=1 wk
converges to a

positive constant in both cases (b) and (c), that is, when w �=
1. The difference is that in case (c), the weighted mean x̄(t)

keeps fluctuating, whereas in case (b), this variance has been
“crystallized” into a bias x̄(t)−E(X) of the early experience
x̄(t) which is fixed by the samples in (71) with respect to the
actual E(X).

E.0.3 Description of a formal ensemble average

We restrict attention to the simpler accumulating glow (54),
which we rewrite with the Kronecker delta symbols kept
explicitly:

h
exp
t+1 =

t∑
k=0

k∑
l=1

γ̄ t−kη̄k−lλk+1δl (76)

=
t∑

l=1

γ̄ t−lG(l : t, χ)δl (77)

(see Appendix D.3.1 for the corresponding expressions
describing replacing glow). Each δl samples the “occupa-
tion” of the given (s, a) pair at time l, whose probability is
given by pl(s, a). For an ensemble of independent agents
running in parallel, we can thus replace the δl with these
probabilities and write:

〈
h
exp
t+1

〉
ens

=
t∑

l=1

γ̄ t−lG(l : t, χ)pl (78)

=
〈
γ̄ t−lG(l : t, χ)

〉
l=1,...,t

. (79)

While Eq. 77 sums for all times l the respective backward-
discounted return γ̄ t−lG(l : t, χ) from that time under the
condition that the edge was visited, the ensemble average

(78) performs an average with respect to the pl over all
times l up to the present t . The problem is that we do not
know the distribution pl , which itself is affected by both the
environment and the agent’s policy.

What we can do, however, is to consider the average
return that follows a visit at given time l. The average
number nl = Npl of visits per unit of time at time l is for
an ensemble of size N just given by pl , with which we
normalize each summand in Eq. 78. The sum over all times
l of these average returns per visit with respect to time l can
then be written as:

〈̃
h
exp
t+1

〉
ens

= 1

N

t∑
l=1

γ̄ t−lG(l : t, χ)pl

pl

(80)

= 1

N

t∑
l=1

γ̄ t−lG(l : t, χ) (81)

= 1

N

γ̄ t

1 − η̄

[
G(0 : t, γ̄ −1) − G(0 : t, χ)

]
. (82)

The normalization in (80) is analogous to the one that
motivated the logarithm in (30e) as discussed in Appendix A
and E: it makes the expression independent of the state
distribution pl . It also reveals that what we have called
“double discounting,” i.e., the convolution (81) of the return
G(l : t, χ) with the exponential γ̄ l amounts to the difference
(82) between two returns from the beginning t =0.

For a single agent in Appendix E.1, there cannot be more
than one visit at each time l. We therefore had to take the
sum h

exp
t+1 at time t , and divide it by the total (cumulative)

number of visits Nt that occurred up to this time, to get
an estimate h̃t =ht/Nt of the average return per visit. One
possibility to implement (80) for a single agent consists in
training the agent “off-policy” by separating exploration and
exploitation, which can be done by choosing the softmax
policy (14). During periods of exploration (e.g., if the
agent is not needed), we choose a small β, whereas for
exploitation, we temporarily disable the updating Eq. 10
and switch to a large β. By large (small) we mean values
of β such that for all x = hij encountered in Eq. 14, the
argument of the exponential obeys βx � 1 (βx � 1). For
graphs that have for symmetry reasons the property that pl

≡p for a random walker (note that for ergodic MDPs the pl

eventually becomes independent of the initial conditions),
we should be able to realize (80) during the periods of
exploration. It is clear that this is impractical for all but small
finite MDPs.

E.0.4 Relation of the PS updates to other RLmethods

In this section, we compare PS to the standard RL methods
presented in Appendix A. One may interpret the PS updates
Eq. 10 as implementing a direct policy method. On the

Page 15 of 21 13Quantum Machine Intelligence (2020) 2:13

other hand, these updates do not involve gradients. To draw
connections between PS and direct policy methods, we
consider the gradient ∇p of the probability pij =p(aj |si)
of selecting action aj in state si , i.e., one element of the

policy π and restrict to our case (12), i.e., pij = Π(hij)

κi
. As

in the derivation (34) of tabular SARSA, we identify the
components of the parameter vector θ (with respect to which
we want to determine the gradient) with the edges hkl . The
gradient of p thus becomes a matrix, whose element kl

reads:

(∇pij)kl = ∂pij

∂hkl

= Π ′(hil)

κi

[
δkiδlj − Π(hij)

κi

δki

]
, (83)

whereΠ ′(x)= dΠ(x)
dx

. To obtain∇ lnp, we just multiply this

with the factor p−1
ij = κi

Π(hij)
. The term δkiδlj is also present

in the PS update, where it corresponds to the strengthening
of a visited edge. The subtracted second term proportional to
δki represents a weakening of all edges connecting si , which
is not present in the PS update.

With Eq. 83, we can now compare the PS updates
Eq. 10 with the methods in Fig. 2. Among the action value
methods, it is tabular SARSA(λ) defined in Eqs. 35–36,
which resembles the PS updates most. Let us rewrite the
SARSA updates in the notation used within this. After
renaming the reward R as λ, the action value function q as
h, the eligibility vector z as (matrix) g, the discount rate γ

as γdis, and the trace-decay rate λ as λtra for clarity, the TD
error (31) reads:

δTDt = λt+1 + γdisht (st+1, at+1) − ht (st , at), (84)

with which (35)–(36) for SARSA(λtra) become:

ht+1 = ht + αδTDt gt , (85)

gt+1 = γdisλtragt + δt+1, (86)

where δt is a matrix of Kronecker deltas describing which
of the (s, a) pairs has been visited at time t . A tabular
direct policy method follows in the same way from (30a),
(30e), and (30h) (setting again =1): (84) and (85) remain
identical, merely (86) is replaced with:

gt+1 = γdisλtragt + (∇ lnp)t+1, (87)

where for ∇ lnp we substitute (83) together with the
extra factor as explained in the text following (83). While
(86) recovers the update (53) for accumulating glow ((53)
considers a given (s, a) pair, Eq. 86 the whole matrix),
Eq. 87 is in fact even more complex than (86).

One important difference is the presence of the term
ht (st+1, at+1) in Eq. 84 which persists even if we disable
bootstrapping by setting λtra = 1. We can also rewrite
SARSA in the “local” fashion of the PS updates (10), which
we here repeat as:

ht+1 = ht + λt+1gt − γ ht + γ heq (88)

for convenience. To rewrite SARSA(λtra) in the form of
(88), we proceed as in the justification of accumulating
traces outlined in Appendix C. First, we sum all increments
in (85) up to some time T , i.e., hT = h0 + α

∑T −1
t=0 δTDt gt ,

then rewrite the term involving ht (st+1, at+1) in δTDt

as
∑T −1

t=0 ht (st+1, at+1)gt = ∑T
t=1 ht−1(st , at)gt−1 and

substitute gt−1 = gt−δt

γdisλtra
. If we now ignore (a) the change

of the h-values over a single time step (which holds for
small α), ht−1(st , at) ≈ ht (st , at), and (b) ignore the shift
of argument in the summation (i.e., ignore the first and last
sum terms), then identifying each term referring to a given
t in the sum over all increments with an individual update
leads to a “PS-style” form of SARSA(λtra):

ht+1 = ht +αλt+1gt −αht (st , at)
[
λ−1
tra δt + (1 − λ−1

tra)gt

]
,

(89)

in which γdis no longer appears (it remains in (86)).
We can simplify Eq. 89 if we disable bootstrapping by

setting λtra = 1, so that it becomes even more similar to
PS. On the other hand, if we take into account that PS
does not use averaging, PS carries some similarities to (an
online approximation of) Monte Carlo approaches. The type
of glow then determines the corresponding type of Monte
Carlo method. For example, using replacing glow relates it
more to first-visit Monte Carlo, whereas accumulating glow
relates it more to every-visit Monte Carlo.

Appendix F: Mathematical details of the
convergence proof

In this appendix, we provide the mathematical details we
skipped during the proof of Theorem 2 in Section 4. We
are left with showing that αm(e), given in Eq. 27 satisfies
Condition 2 in Theorem 1, and Fm(e), given in Eq. 28,
satisfies Conditions 3 and 4. From these, Condition 3 is
the most involving, and to some extent is the core of the
proof. Condition 4 follows trivially under our assumption of
bounded rewards. One can easily see that bounded rewards
imply that h̃ values are upper and lower bounded. Given
that optimal Q-values are bounded as well it follows that
Var{Fm(e)|Pm} ≤ K ′ for some constant K ′. The remaining
two properties are proven in the following.

F.1 Proving that αm(e) satisfies Condition 2 in
Theorem 1

Let us recall that:

αm(e) := χm(e)

Nm(e) + 1
= χm(e)∑m

j=1 χj (e) + 1
, (90)

Page 16 of 2113 Quantum Machine Intelligence (2020) 2:13

where the χm(e) are given by:

χm(e) =
{
1 if e was visited during the mth episode,

0 otherwise.

(91)

Due to the fact that the policy guarantees infinite explo-
ration, we know that the number of non-zero terms from
the sequence Q1 := {αm(e)}1≤m<∞ is infinite. Thus, let
Q2 := {α̃n(e)}1≤n<∞ be the subsequence of Q1 obtained
by removing all zero elements, and relabeling the remaining
ones as 1,2,3, etc. Clearly, we have that:

∞∑
m=1

αm(e) =
∞∑

n=1

α̃n(e), (92)

∞∑
m=1

[αm(e)]2 =
∞∑

n=1

[α̃n(e)]2. (93)

Furthermore, it is trivial to see that the non-zero terms
α̃n(e) = 1/(n + 1). Given that

∑
n 1/n = ∞ and∑

n 1/n2 < ∞, it follows that:
∞∑

m=1

αm(e) = ∞, (94)

∞∑
m=1

α2
m(e) < ∞, (95)

as we wanted to prove.

F.2 Contraction of Fm(e)

In this part of the appendix, we show that in the case where
the glow parameter of the PS model η̄ is set equal to the
discount parameter γdis associated to the MDP, Fm(e) :=
Dm(e) − q∗(e) satisfies:

‖E{Fm(·)|Pm}‖W ≤ f (γdis)‖Δm(·)‖W + cm, (96)

where Δm(e) := h̃m(e) − q∗(e), f (γdis) = 2γdis
1−γdis

and cm

converges to 0 w.p.1.
In the update rule for Δm(e) given in Eq. 26, Fm(e)

appears multiplied by the learning rate coefficient αm(e).
Given that αm(e) = 0 in the case where χm(e) = 0, we
can, w.l.o.g., define Fm(e) = 0 for that case. This is made
explicit by the factor χm(e) in the definition of Fm(e) given
in Eq. 28, which for η̄ = γ leads to:

Fm(e) = χm(e)

⎛
⎝Tm−tm(e)∑

j=0

γ jλtm(e)+j − q∗(e)

⎞
⎠ . (97)

Following this definition of Fm(e), we have that:

E{Fm(e)|Pm} = E{Fm(e)|χm(e) = 1, Pm}. (98)

To simplify the notation, in the following, we will always
assume that e has been visited at least once during episode

m, but for simplicity in our notation we omit writing the
condition on χm(e) = 1 in the expected value.

The past of the process at episode m, Pm, includes every
state, action, and reward received by the agent from t =
0 until the beginning of the episode m. In particular, it
determines the set of h̃m values, which in turn determines
the policy at the beginning of themth episode. For the clarity
of this proof, we will first consider the case where the policy
is kept unchanged during episodes and only updated at the
beginning of a new episode, showing that Eq. 96 holds under
those assumptions. Later on, we relax that condition and
show that the differences accumulated by the policy during
the episode converge to 0 with probability 1. This allows us
to prove Eq. 96 also in the case where the policy is updated
every time step.

F.2.1 Constant policies during the episodes

Given that the number of time steps required by an agent
to hit a terminal state is unbounded, the number of terms in
Fm(e) could be arbitrarily large. Therefore, we construct a
family of truncated versions of Fm(e), where the maximum
number of terms is upper bounded. Let us define:

F (k)
m (e) :=

k∑
j=0

�(Tm − tm(e) − j)γ
j

disλtm(e)+j

+�(Tm − tm(e) − k)γ t+1
dis h̃m(Sk+1, Ak+1) − q∗(e),

(99)

where �(l) = 1 for l ≥ 0 and it is 0 otherwise, and we have
defined h̃(sT , a) = 0, for all terminal states sT

5. Comparing
Eqs. 97 and 99, one can see that F

(k)
m (e) = Fm(e) in the

case where the agent takes less than k time steps to finish
the episode since e is visited for the first time during themth
episode, i.e., whenever Tm−tm(e) < k. Considering that the
policy guarantees infinite exploration, the probability of not
reaching a terminal state after k time steps (during a single
episode) decays exponentially with k, and therefore:

E{Fm(e)|Pm} = lim
k→∞E{F (k)

m (e)|Pm}. (100)

In the following, we construct an upper bound for
E{F (k)

m (e)|Pm} that holds for all k, and hence due to Eq. 100
it also bounds E{Fm(e)|Pm}. We can write F

(k)
m (e) in the

5Since episodes end when a terminal state is reached, the PS agent
does not need to store h-values associated with terminal states; thus,
we can define them equal to 0.

Page 17 of 21 13Quantum Machine Intelligence (2020) 2:13

following form:

E{F (k)
m (e)|Pm} = r(e)

+
k∑

l=1

∑
e(1),...e(l)

Pr
[
e, e(1), . . . , e(l)|Pm

]
γ l
disr(e

(l))

+
∑

e(1),...,e(k+1)

Pr
[
e, e(1), . . . , e(k+1)|Pm

]
γ k+1
dis h̃m(e(k+1))

− q∗(e),
(101)

where we used the short-hand notation Pr
[
e, e(1) , . . . ,

e(l)|Pm

]
to denote the probability of an agent following the

sequence of state-action pairs e, e(1), . . . , e(l). Given that,
for the moment, we are considering constant policies during
episodes, these probabilities only depend on the episode
index m. In addition, in order to have a simpler expression,
w.l.o.g. we assume that transitions from a terminal state
return with probability 1 to a terminal state with zero
reward. Note that this assumption together with the fact that
h̃m(sT , a) = 0 for all terminal states sT allows us to write
the summations in Eq. 101 over all edges, including those
associated to terminal states.

The following step consists in writing E{F (k)
m (e)|Pm} as

a recursive relation in k. Given that the policies are kept
constant during episodes they satisfy that:

Pr
[
e, e(1), . . . e(k+1)|Pm

]
=

Pr
[
e, e(1), . . . , e(k)|Pm

]
Pr
[
e(k), e(k+1)|Pm

]
.

(102)

Plugging this equation into Eq. 101 and adding canceling
terms, we end up with the expression:

E{F (k)
m (e)|Pm} = r(e)

+
k−1∑
l=1

∑
e(1),...,e(l)

Pr
[
e, e(1), . . . , e(l)|Pm

]
γ l
disr(e

(l))

+
∑

e(1),...,e(k)

Pr
[
e, e(1), . . . , e(k)|Pm

]
γ k
dish̃m(e(k)) − q∗(e)

+
∑

e(1),...,e(k)

Pr
[
e, e(1), . . . , e(k)|Pm

]
γ k
dis

{
−h̃m(e(k))

+ q∗(e(k)) + r(e(k))

+
∑

e(k+1)

Pr[e(k), e(k+1)|Pm]γdish̃m(e(k+1)) − q∗(e(k))

⎫⎬
⎭ .

(103)

Comparing Eqs. 101 and 103, one can see that the first
two lines in the previous equation equal E{F (k−1)

m (e)|Pm}.
Furthermore, in the third and fourth lines, the quanti-
ties within curly brackets correspond to the definition
of Δm(e(k)) and E{F (0)

m (e(k))|Pm} respectively. Hence,

|E{F (k)
m (e)|Pm}| obeys the following recursive relation:∣∣∣E{F (k)
m (e)|Pm}

∣∣∣ ≤ ∣∣∣E{F (k−1)
m (e)|Pm}

∣∣∣
+ γ k

dis‖Δm(·)‖W
+ γ k

dis‖E{F (0)
m (·)|Pm}‖W.

(104)

By iterating the previous equation, we achieve the following
bound:∣∣∣E{F (k)

m (e)|Pm}
∣∣∣

≤
k∑

l=0

γ l
dis‖E{F (0)

m (·)|Pm}‖W +
k∑

l=1

γ l
dis‖Δm(·)‖W

≤ 1

1 − γdis

(
‖E{F (0)

m (·)|Pm}‖W + γdis‖Δm(·)‖W
)

,

(105)

where we have used the relation
∑∞

l=0 γ l
dis = 1

1−γdis
to

obtain a bound that is independent of both e and k.
Notice that F

(0)
m (e) corresponds to the kind of update

term encountered in the single-step algorithm of SARSA.
It has been proven in Singh et al. (2000) as part of the
convergence proof of the SARSAmethod that F (0)

m satisfies:

‖E{F (0)
m (·)|Pm}‖W ≤ γdis‖Δm(·)‖W + dm, (106)

where dm converges to 0 w.p.1. as m → ∞. Here, we
recall from Singh et al. (2000) the main mathematical steps
to prove Eq. 106 as they will be useful later, when we
consider the general scenario with time-dependent policies.
The expected value of F

(0)
m (e) can be written explicitly as:

E{F (0)
m (s, a)|Pm}

= r(s, a) + γdis
∑
s′

Pr(s′|s, a)
∑
a′

Pr
(
a′|s′, Pm

)
h̃m(s′, a′)

− q∗(s, a)

= fm(s, a) + γdis
∑
s′

Pr(s′|s, a)gm(s′),

(107)

where we have defined:

fm(s, a) = r(s, a) + γdis
∑
s′

Pr
(
s′|s, a)max

b
{h̃m(s′, b)}

− q∗(s, a),

gm(s′) =
∑
a′

Pr
(
a′|s′, Pm

)
h̃m(s′, a′) − max

b
{h̃m(s′, b)}.

(108)

The first term given above corresponds to the update term
encountered in Q-learning algorithms and it has been proven
to be bounded by:

|fm(s, a)| ≤ γdis‖Δm(·)‖W, ∀s, a. (109)

In order to bound gm(s), let us recall that the policy
(under the assumption that it is kept constant during an

Page 18 of 2113 Quantum Machine Intelligence (2020) 2:13

episode) is given by:

Pr(a|s, Pm) = exp[βmh̃m(s, a)]∑
b exp[βmh̃m(s, b)] . (110)

By simple algebraic manipulation, one can see that:

gm(s) <
na

βm

, ∀s, (111)

where na = ||A|| is the number of actions (assumed finite).
Due to the fact that βm → ∞ as m → ∞ it follows
that gm(s) converges to 0 w.p.1. Equation 106 is recovered
by plugging Eqs. 111 and 109 into Eq. 107 and defining
dm = γ dis na/βm. Finally, replacing Eq. 106 into Eq. 105,
we obtain the desired bound:

‖E{F (k)
m (·)|Pm}‖W ≤ 2γdis

1 − γdis
‖Δm(·)‖W + cm ∀k, (112)

where cm ≡ 1
1−γdis

dm also converges to 0 w.p.1.
Equation 112 proves the contraction property for the case

where the policy is not updated during episodes. Below, we
discuss the general case, where the policy may change every
time step. As we will see, the only difference with respect to
the case discussed above is that an additional term must be
added to the right-hand side of Eq. 112. Since this additional
term converges to 0 w.p.1, the contraction property also
holds in that case.

F.2.2 Policy update at every time step

When online updates are considered, the policy might
change every time step. Therefore, the probabilities in
Eq. 103 no longer depend exclusively on Pm but rather also
on the rewards received by the agent during the episode.
However, since most of these probabilities are taken as
common factors and upper bounded by 1, one can verify that
most of the previous derivations still hold in the case where
policies are changed every time step. In fact, the only point
where the previous derivations have to be generalized is in
Eq. 107. A time-dependent generalization of gm(s) can be
defined by:

g′(t)
m (s) =

∑
a

π(t)
m (a|s)h̃m(s, a) − max

b
{h̃m(s, b)}, (113)

where t could be any time step in the interval Im =
[Tm + 1, Tm+1]: i.e., the interval of time steps between the
beginning and the end of episode m, and the policy is now
given by:

π(t)
m (a | s) = exp[βmh̃(t)(s, a)]∑

b∈A exp[βmh̃(t)(s, b)] . (114)

It is easy to verify that, similarly as in Eq. 111, if ∀t ∈ Im,
g

′(t)
m (s) is upper bounded by a sequence converging to 0,

Eq. 106 also holds for time-dependent policies and hence
Eq. 112 too.

Note that the only difference between Eqs. 110 and 114
is that in the former, the policy depends on the h̃m values
while in the latter on the h̃(t), with t ∈ Im. The difference
between these two, however, tends to 0 w.p.1 as the number
of episodes increase. Given that rewards are bounded in the
sense that R(t) ≤ BR , ∀t for certain constant BR , we have
that:

|h̃t (e)−h̃m(e)| ≤ 1

Nm + 1

[
|h̃m(e)| + BR

1 − γdis

]
≤ C

Nm + 1
,

(115)

where C is a constant. Since Nm → ∞ w.p.1, the previous
difference converges to 0.

To exploit Eq. 115, we bound |g(t)
m (s)| in the following

way:

|g(t)
m (s)| ≤|max

a
{h̃m(s, a)} − max

a
{h̃(t)(s, a)}|

+ |max
a

{h̃(t)(s, a)} −
∑
a

π(t)(a|s)h̃(t)(s, a)|

+
∑
a

π(t)(a|s)|h̃(t)(s, a) − h̃m(s, a)|.

(116)

It follows from Eq. 115 that the first and third lines in the
equation above are each upper bounded by C/(Nm + 1).
Furthermore, the second term can be upper bounded by
na/βm in the exact same way as in Eq. 111. Thus,

|g′(t)
m | ≤ na

βm

+ 2
C

Nm + 1
, (117)

which converges to 0 w.p.1. This implies that Eq. 107 also
holds in the general case where the policy is updated every
time step. This completes the proof of Eq. 112.

Appendix G: GLIE policy

In this appendix, we consider a policy given by the
probabilities:

Pr(t)m (a | s) = exp[βmh̃(t)(s, a)]∑
b∈A exp[βmh̃(t)(s, b)] , (118)

and derive conditions on the coefficients βm in order to
guarantee that this policy is GLIE on the h̃-values. We
closely follow the derivation provided in Singh et al. (2000),
and therefore will omit most of the details. Here, however,
we focus on episodic tasks, in contrast to the continuous
time tasks considered in Singh et al. (2000). Moreover,
the coefficients βm will depend exclusively on the episode
index m, instead of the state s. In this way, we preserve
a local model in the sense defined in the main text,
where the β coefficient can be updated using exclusively
environmental signals (in this case, the end of an episode).

Page 19 of 21 13Quantum Machine Intelligence (2020) 2:13

Letting βm → ∞ is enough to guarantee that the policy
is greedy in the limit. However, the speed at which βm

grows as a function of m must be upper bounded in order to
additionally guarantee infinite exploration. In the following,
we derive such a bound.

Let us denote as Prm(s, a) the probability that during
episode m the state-action pair (s, a) is visited at least once.
Hence, infinite exploration occurs if ∀s, a

∞∑
m=1

Prm(s, a) = ∞. (119)

Considering that
∑∞

m=1 c/m = ∞ for any constant c, as
a consequence of the Borel Cantelli lemma we have that a
sufficient condition for Eq. 119 is given by:

Prm(s, a) ≥ c/m, (120)

for some constant c. Therefore we would like to pick a
bound on βm in such a way that Eq. 120 is satisfied.

Let us denote by Prm(s) the probability that during
episode m state s is visited at least once and let:

pmin(m) = min
a,s,t∈Im

{
Pr(t)m (a|s)

}
(121)

be the minimum probability to take any action at any time
step during the mth episode. It follows that:

Prm(s, a) ≥ Prm(s)pmin(m). (122)

The first factor can in turn be bounded by a function of
pmin(m) by noting the following. In a communicating MDP,
any state can be reached from any other non-terminal state
with nonzero probability. That means that independently
of the initial state of the mth episode, there exists a
sequence of actions that lead to any state s with some
nonzero probability p0. Such probability is constant and
it is given by a product of transition probabilities of the
MDP. In the worst case scenario, it could happen that s can
only be reached by taking a specific sequence of actions
that leads the agent to visit all nonterminal states before
reaching s. Hence, Prm(s) can be bounded by the product of
probabilities to pick those actions weighted by the transition
probabilities of such a sequence. Given that the probability
to take any action is in turn lower bounded by pmin(m), we
conclude that:

Prm(s) ≥ p0 [pmin(m)]ns−1 , (123)

where ns = ||S|| − ||ST || is the number of nonterminal
states.

In order to bound pmin(m) note that:

Pr(t)m (a|s) ≥ 1

na

exp

[
−max

a,b

{
h̃(t)(a|s) − h̃(t)(b|s)

}
βm

]

≥ 1

na

exp
[−2B

h̃
βm

]
,

(124)

where B
h̃

≥ h̃(t)(s, a), ∀s, a is an upper bound that exists
because the rewards are bounded. Hence, it follows that
pmin(m) ≥ exp

[−2B
h̃
βm

]
/na . Replacing this inequality in

Eq. 123 and using Eq. 122, we get that:

Prm(s, a) ≥ p0p
ns

min(m)

≥ p0

n
ns
a

exp
[−2nsBh̃

βm

]
.

(125)

Therefore, by choosing βm in such a way that:

βm ≤ 1

2nsBh̃

ln(m), (126)

Equation 120 holds; and thus the policy is guaranteed to
preserve infinite exploration of all state-action pairs.

References

Bennett CH, DiVincenzo DP (1995) Towards an engineering era?
Nature 377:389–390

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S
(2016) Quantum machine learning 549:11

Briegel HJ (2012) On creative machines and the physical origins of
freedom. Sci Rep 2:522

Briegel HJ, las Cuevas GD (2012) Projective simulation for artificial
intelligence. Sci Rep 2:400

Clausen J, Briegel HJ (2018) Quantum machine learning with glow for
episodic tasks and decision games. Phys Rev A 97:022303

Dayan P, Sejnowski TJ (1994) TD (λ) converges with probability 1.
Mach Learn 14(3):295–301

Dunjko V, Briegel H (2018) Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Rep Prog Phys
81:7

Dunjko V, Taylor JM, Briegel HJ (2016) Quantum-enhanced machine
learning. Phys Rev Lett 117:130501

Dvoretzky A et al (1956) On stochastic approximation
Hangl S, Ugur E, Szedmak S, Piater J (2016) Robotic playing for

hierarchical complex skill learning. In: Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., pp 2799–2804. https://doi.org/10.1109/IROS.
2016.7759434

Hangl S, Dunjko V, Briegel HJ, Piater J (2020) Skill learning by
autonomous robotic playing using active learning and explora-
tory behavior composition. Frontiers in Robotics and AI 7:42.
https://doi.org/10.3389/frobt.2020.00042. https://www.frontiersin.
org/article/10.3389/frobt.2020.00042

Jaakkola T, Jordan MI, Singh SP (1994) Convergence of stochastic
iterative dynamic programming algorithms. In: Advances in neural
information processing systems, pp 703–710

Makmal A, Melnikov AA, Dunjko V, Briegel HJ (2016) Meta-learning
within projective simulation. IEEE Access 4:2110

Mautner J, Makmal A, Manzano D, Tiersch M, Briegel HJ
(2015) Projective simulation for classical learning agents: A
comprehensive investigation. New Gener Comput 33:69

Melnikov AA,Makmal A, Briegel HJ (2018) Benchmarking projective
simulation in navigation problems. IEEE Access 6:64639–64648

Melnikov AA, Makmal A, Dunjko V, Briegel HJ (2017) Projective
simulation with generalization. Sci Rep 7:14430

Melnikov AA, Poulsen Nautrup H, Krenn M, Dunjko V, Tiersch M,
Zeilinger A, Briegel HJ (2018) Active learning machine learns
to create new quantum experiments. Proc Natl Acad Sci U.S.A
115:1221

Page 20 of 2113 Quantum Machine Intelligence (2020) 2:13

https://doi.org/10.1109/IROS.2016.7759434
https://doi.org/10.1109/IROS.2016.7759434
https://doi.org/10.3389/frobt.2020.00042
https://www.frontiersin.org/article/10.3389/frobt.2020.00042
https://www.frontiersin.org/article/10.3389/frobt.2020.00042

Nielsen MA, Chuang IL (2000) Quantum computation and quantum
information. Cambridge University Press, Cambridge

Nautrup HP, Delfosse N, Dunjko V, Briegel HJ, Friis N (2019) Opti-
mizing quantum error correction codes with reinforcement learn-
ing. Quantum 3:215. https://doi.org/10.22331/q-2019-12-16-215

Paparo G, Dunjko V, Makmal A, Martin-Delgado MA, Briegel HJ
(2014) Quantum speed-up for active learning agents. Phys Rev X
4:031002

Schuld M, Sinayskiy I, Petruccione F (2014) The quest for a quantum
neural network. Quantum Inf Process 13:2567–2586

Singh S, Jaakkola T, Littman ML, Szepesvári C (2000) Conver-
gence results for single-step on-policy reinforcement-learning
algorithms. Mach Learn 38(3):287–308

Sriarunothai T, Wölk S, Giri GS, Friis N, Dunjko V, Briegel
HJ, Wunderlich C (2017) Speeding-up the decision making
of a learning agent using an ion trap quantum processor.
arXiv:1709.01366

Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduc-
tion, 2nd edn. MIT Press, Cambridge, MA

Watkins CJCH, Dayan P (1992) Q-learning. Machine learning 8(3-
4):279–292

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Quantum Machine Intelligence (2020) 2:13 Page 21 of 21 13

https://doi.org/10.22331/q-2019-12-16-215
https://arxiv.org/abs/1709.01366

	On the convergence of projective-simulation–based reinforcement learning in Markov decision processes
	Abstract
	Introduction
	Markov decision processes
	Policy and discounted return
	Value functions and optimal policy
	Q-Learning and SARSA

	Projective simulation
	Convergence of PS in episodic MDPs
	Projective simulation for solving MDPs
	Convergence to the optimal policy
	Environments without terminal states
	Proof of Theorem 2

	Conclusion
	Appendix A A review of RL methods
	 Recovering SARSA from actor-critic methods
	Appendix B Recovering SARSA from actor-critic methods
	 Notes on eligibility trace vectors
	Appendix C Notes on eligibility trace vectors
	 Choice of glow update
	Appendix D Choice of glow update
	D.1 Replacing glow
	D.2 Accumulating glow
	D.3 Derivation of the explicit expressions for the h-value
	D.3.1 Replacing glow
	D.3.2 Accumulating glow
	D.4 Order in glow updating
	 Comparative analysis of projective simulation and other RL methods
	Appendix E Comparative analysis of projective simulation and other RL methods
	E.0.1 Implementing a temporal averaging
	E.0.2 Effect of double discounting on a temporal average
	E.0.3 Description of a formal ensemble average
	E.0.4 Relation of the PS updates to other RL methods
	 Mathematical details of the convergence proof
	Appendix F Mathematical details of the convergence proof
	F.1 Proving that m(e) satisfies Condition 2 in Theorem 1
	F.2 Contraction of Fm(e)
	F.2.1 Constant policies during the episodes
	F.2.2 Policy update at every time step
	 GLIE policy
	Appendix G GLIE policy
	References

