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SUMMARY

The reproducibility crisis is a multifaceted problem involving ingrained practices
within the scientific community. Fortunately, some causes are addressed by the
author’s adherence to rigor and reproducibility criteria, implemented via check-
lists at various journals. We developed an automated tool (SciScore) that evalu-
ates research articles based on their adherence to key rigor criteria, including
NIH criteria and RRIDs, at an unprecedented scale. We show that despite steady
improvements, less than half of the scoring criteria, such as blinding or power
analysis, are routinely addressed by authors; digging deeper, we examined the
influence of specific checklists on average scores. The average score for a journal
in a given year was named the Rigor and Transparency Index (RTI), a new journal
quality metric. We compared the RTI with the Journal Impact Factor and found
there was no correlation. The RTI can potentially serve as a proxy for methodo-
logical quality.

INTRODUCTION

The National Institutes of Health (NIH) have designed and adopted a set of rigor and reproducibility guide-

lines expected to be addressed in grant proposals submitted to the NIH that cover the aspects of study

design most likely to impact a study’s reproducibility (for NIH Guidelines see NOT-OD-15-103 [National

Institutes of Health, 2015]; see also EU Report Open Science Monitoring [RAND Europe, 2017]); for their

intellectual underpinning [Landis et al., 2012]; for examples, Hackam and Redelmeier, 2006; van der

Worp et al., 2010. Multiple journals have adopted similar guidelines in their instructions to authors [e.g.,

Nature Checklist (Nature Team, 2013)]).

The NIH guidelines, which list the most common components of other guidelines, are part of a growing list

of recommendations and requirements designed to address different aspects of rigor and reproducibility

in the scientific literature, e.g., the ARRIVE (Kilkenny et al., 2010), CONSORT (Schulz et al., 2010), STAR (Mar-

cus, 2016), and RRID (Bandrowski et al., 2015) standards (for a full list of applicable standards please see the

EQUATORNetwork, https://www.equator-network.org/). The Animal Research: Reporting of In Vivo Exper-

iments (ARRIVE) guidelines are a highly comprehensive and universally accepted set of criteria that should

be addressed in every animal-based experiment. The guideline contains 39 items (20 primary questions

and 19 subquestions). The Consolidated Standards of Reporting Trials (CONSORT) statement consists

of a 25-item checklist along with a flow diagram governing how clinical trials should be reported. STAR

methods (structured transparent accessible reporting) is a reporting framework developed by Cell Press

aimed at improving reproducibility through, among other things, a standardized key resources table.

The RRID Initiative, another reproducibility improvement strategy, asks authors to add persistent unique

identifiers called research resource identifiers (RRIDs) to disambiguate specific assets used during exper-

imentation. RRIDs can be considered as universal product codes (UPC) that identify the ingredients needed

for an experiment. The initiative covers a wide variety of resources, including (but not limited to) antibodies,

plasmids, cell lines, model organisms, and software tools. The initiative was started because antibodies

were notoriously difficult to identify unambiguously in the published literature (Vasilevsky et al., 2013).

Unfortunately, studies of publishing practices generally find poor compliance by authors and enforcement

by reviewers, even with the availability of checklists and instructions to authors; although, some journals do

not even mention these guidelines to authors at all (Hirst and Altman, 2012). And even when authors assert
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that they follow ARRIVE, the evidence still shows that the guidelines are not followed (Hair et al., 2019; Kil-

kenny et al., 2009; Leung et al., 2018). This is not to say that authors and journals are the sole source of the

problem as many research stakeholders contribute, including institutions who could improve guideline

adherence as well as overall research quality by more effectively leveraging their influence on researchers

(Moher et al., 2020; Rice et al., 2020). For example,Nature, one of the most prestigious and influential jour-

nals, through the work of the NPQIP collaborative group (Nature Publication Quality Improvement Project)

verified that asking authors to use the Nature Checklist produced an improvement in rigor criteria (NPQIP

collaborative group, 2020). In the case of RRIDs, the guidelines were not routinely followed when authors

were asked by journals through instructions to authors or by checklists, but a direct request from the editors

for RRIDs during the publication process proved highly effective in improving author compliance (Ban-

drowski et al., 2015). It might be an overgeneralization to say that authors do not follow guidelines unless

they are prompted to do so; however, based on our anecdotal evidence, author compliance with guidelines

is generally lower if there is no mechanism to verify compliance with the guideline.

In order to reduce confusion around the proliferation of guidelines and to improve author compliance, the

above guidelines were incorporated into theMaterials Design, Analysis, and Reporting (MDAR) framework,

a recently released pan-publisher initiative enacted to create a consistent, minimum reporting standard

that spans across all life sciences (Chambers et al., 2019). The MDAR checklist includes many of the ele-

ments that are present in the NIH, ARRIVE, CONSORT, and RRID standards. The checklist is not intended

to supplant more granular reporting of information but rather is to be used as a generalist instrument

across the biological research community to ensure that the minimum required reporting is met. However,

if we are correct, on its own, the MDAR checklist will likely also have spotty author compliance unless it is

enforced, a problem that could significantly benefit from automated text mining (Kilicoglu, 2017).

Studies that seek to investigate the degree to which authors comply with various guidelines have been

limited to manual review of a few criteria because the task is highly labor intensive (Schulz et al., 1995;

Sena et al., 2007). Prior work has explored the use of NLP techniques to automate clinical trial characteristic

extraction and assessment (Kiritchenko et al., 2010; Marshall et al., 2015). Here we broaden and continue

that work by introducing SciScore, an automated tool using natural language processing (NLP) and ma-

chine learning, which can be used by journals and authors to aid in compliance with the NIH rigor and

RRID guidelines. The tool currently evaluates compliance with six key recommendations, largely shared be-

tween most guidelines and listed in Table 1, and checks for key resource identifiability for a variety of

resource types. Here we show how this tool can be used to assess the impact of these shared rigor and

reproducibility reporting recommendations comprehensively across the open access scientific literature.

It is now possible to create a Rigor and Transparency Index (RTI) across journals that can be compared

with current metrics such as the Impact Factor.

RESULTS

Classifier Performance Analysis

We obtained data from the PubMed Central (PMC, RRID:SCR_004166) Open Access (OA) subset, 1,578,964

articles (4,686 unique journals) and we analyzed the methods sections of these articles using SciScore. Of

the 1,578,964 articles analyzed, 197,892 articles were considered not applicable (SciScore = 0). In total,

1,381,072 papers were scored, giving a score rate of 87.5% for articles with accessible methods sections.

For information on the construction of individual SciScore classifiers, the reproducibility features detected

by the tool (Table 1), example sentences that are found by the classifier (Table 1), raw classifier performance

(Table S1), and classifier validation methods, please see the Transparent Methods section of this

manuscript.

To validate the functioning of the complete tool, as opposed to individual classifiers (individual classifier

performance is detailed in Table S1), we sampled two different groupings of 250 papers to determine

the quality of our annotations and test our classifier performances (SciScore >0 and SciScore = 0; see Trans-

parent Methods). For the 250 scored papers, the curator-SciScore agreement rate for each entity type is

shown in Table S2. In every case, the entity type had an agreement rate above 80%; most were over

90%. The false-negative values and false-positive values for each entity type are listed in Table S1. The over-

all curator-SciScore agreement should represent additive probability if more than one sentence in the

manuscript describes the item. For example, two cell lines are used in the average paper (Babic et al.,

2019), so the probability of finding either is generally more likely compared with finding just one. In all
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Entity Type Source What is This?

Rigor Criteria (5 Total Points)

Institutional Review Board Statementa MDAR A statement (usually a single sentence) addressing IRB approval for biomedical

research involving human subjects (or why IRB approval was not required)

Example: All human work was conducted under human subjects protocols approved by the Stanford Institutional Review Board (IRB), the University of

Michigan UM-IRBMED, and the ethical committee of d’Ile de France II.

Example: The trial was approved by the NRES committee London—South East.

Consent Statementa MDAR A statement (usually a single sentence) addressing subject/patient consent in

human research (or why consent was not required)

Example: Written informed consent was obtained from parents of all participating children and oral assent was obtained from 7-year-olds.

Example: All infants were enrolled with informed parental permission under a protocol that was reviewed and approved by the Institutional Review Boards

of the respective study sites.

Institutional animal care and use

committee statement

MDAR, ARRIVE A statement (usually a single sentence) addressing IACUC ethical approval for

research involving vertebrate organisms

Example: All animal experiments were performed in accordance with relevant guidelines and regulations and were approved by the University of

Pennsylvania Institutional Animal Care and Use Committee (IACUC).

Example: All animals used in this study were treated in accordance with UK animal (scientific procedures) legislation and under the appropriate project

licenses, national and local ethical approval.

Randomization of subjects into groups MDAR, NIH, CONSORT,

ARRIVE

Considered addressed when a statement describing whether randomization was

used (e.g., assigning subjects to experimental groups, positions in a multiwell

device, processing order, etc.)

Example: Animals were assigned to experimental groups using simple randomization.

Example: Communication with schools, and elicitation of willingness to participate, was conducted before the village-level randomization took place.

Blinding of investigator or analysis MDAR, NIH, CONSORT,

ARRIVE

A statement discussing the degree to which experimenters were unaware (or

blinded) of group assignment and/or outcome assessment

Example: Responses were then scored by an experimenter blinded to injection condition and experimental cohort.

Example: All the analysis was performed by a person unaware of the experimental question.

Power analysis for group size MDAR, NIH, CONSORT,

ARRIVE

A statement addressing how (and if) an appropriate sample size was computed

Example: Sample size was based on estimations by power analysis with a level of significance of 0.05 and a power of 0.9.

Example: Sample size calculation was done for the primary aim of this study, i.e., FMD, as reported previously.

Sex as a biological variable MDAR, NIH, CONSORT,

ARRIVE

Reporting the sex of any and all organisms, cell lines, and human subjects

Example: Six healthy adult rhesus macaques (Macaca mulatta) of Chinese origin (4–8 kg, three males and three females, 4–8 years old) were inoculated

intramuscularly (i.m.) with 1,000 pfu of EBOV Makona strain.

Example: In each session, the behavior of each mother was recorded every 2 min.

Cell Line Authenticationb MDAR, NIH A statement detailing how the cell lines used were authenticated (e.g., short

tandem repeat analysis). This is only required when cell lines are detected

Example: MOLM-14 cells were authenticated by STR profiling and flow cytometry.

Example: All cell lines were obtained from ATCC, tested negative for mycoplasma, and their identity was verified by short tandem repeat analysis

(Promega GenePrint 10 system).

Cell Line Contamination Checkb MDAR, NIH A statement addressing the mycoplasma contamination status of the cell lines

used. This is only required when cell lines are detected

Example: All cell lines were obtained from ATCC and tested negative for mycoplasma contamination.

Example: All cell lines were confirmed to be mycoplasma free using a PCR-based detection strategy with positive and negative controls.

Table 1. Rigor Criteria with Applicable Guideline Source and Brief Description Listed

(Continued on next page)
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Entity Type Source What is This?

Key Biological Resources (5 Total Points)

Antibody MDAR, NIH, STAR, RRID SciScore attempts to find all antibody entities within the methods section.

‘‘Identifiable’’ antibodies are reported with any metadata required to uniquely

identify the antibody used such as vendor, catalog number, clone ID, batch

number, or RRID

Example: ATF3 antibody (Santa Cruz Biotechnology) was used at 1:2000.

Example: Slices were then washed (3x) and placed in PBS containing the following: 1% (vol/vol) normal goat serum, 1% (vol/vol) BSA, 0.25% (vol/vol) Triton

X-100, and mouse monoclonal anti-5.8S rRNA, clone Y10b at 1:500 (Abcam, ab37144, RRID: AB_777714) overnight at 4�C.

Organism MDAR, NIH, RRID, STAR,

ARRIVE

SciScore attempts to find all organism entities within the methods section.

‘‘Identifiable’’ organisms are reported with any metadata required to uniquely

identify the organism used such as vendor, catalog number, or RRID

Example (mouse): Adult (10–12 weeks; 25–30g) male C57BL/6 and TH-Cre mice were group-housed until surgery.

Example (fly): To generate PIP821bpD the following sgRNA was generated 50-GCAGGAGGAGGTACAGCGGG-30 and cloned into pU6-2-BbsI-gRNA

(DGRC #1363) and then subsequently injected into w1118; vas-Cas9 (RRID:BDSC_51324, rainbow transgenics).

Example (fish): The transgenic lines used in this study were Tg(kdrl:EGFP)s843 (Jin et al., 2005), Tg(lyve1b:dsRed2)nz101, Tg(lyve1b:EGFP)nz150 (Okuda

et al., 2012), Tg(mpeg1:EGFP)gl22, Tg(mpeg1:Gal4FF) gl25 (Ellett et al., 2011), Tg(lyz:EGFP)nz117 (Hall et al., 2007), Tg(i-fabp:RFP)as200 (Her et al.,

2004), Tg(UAS-E1b:nfsB-mCherry)c264 (Davison et al., 2007) and Tg(-8.mpx:KalTA4)gl28.

Cell line MDAR, NIH, STAR, RRID SciScore attempts to find all cell line entities within the methods section.

‘‘Identifiable’’ cell lines are reported with any metadata required to uniquely

identify the cell line used such as vendor, catalog number, or RRID

Example: The lung cancer cell line, H1299, was obtained from the American Tissue Culture Collection (Manassas, VA).

Example: J774A.1 murine monocytes and macrophages (ATCC, number TIB-67) were cultured at 37�C in a humidified air/carbon dioxide (CO2) (19:1)

atmosphere in RPMI medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum, penicillin (100 IU/mL), streptomycin (100 mg/mL), and

amphotericin B (250 ng/mL).

Plasmidc STAR, RRID SciScore attempts to find all plasmid entities within themethods section. Plasmids

were not used in this analysis

Example: The constructions were prepared using the vector pSpCas9(BB)-2A-Puro (PX459) V2.0, which was a gift from Feng Zhang (Addgene plasmid

#62988; RRID: Addgene_62988).

Example: For expression in HEK293 cells, INF2 was first subcloned into pGADT7.3 (BspEI/XmaI-XhoI) and then into pEGFP-C3 (EcoRI-SalI).

Oligonucleotidec STAR SciScore attempts to find all oligonucleotide entities within the methods section.

Oligonucleotides do not impact score and were not used in this analysis

Example: Activating Notch1 mutations in mouse models of T-ALL (Blood 2006,107:781–785), including one new oligonucleotide primer pair: Ex34B-f: 50-

GCCAGTACAACCCACTACGG-30; Ex34B-r: 50-CCTGAAGCACTGGAA-AGGAC-30.

Example: Primers used were GRHL2-1-424-F (TATATAGGATCCATGTCACAAGAGTCGGACAA), GRHL2-1-424-R (ATATAAAGATCTT-

TTTCTTTCTGCTCCTTTGT), GRHL2-438-625-F (TAAATTAGATCTAAAGGCCAGGCCTCCCAA-AC), and GRHL2-438-625-R

(TTATATGTCGACCTAGATTTCCATGAGCGTGA).

Software Project/Tool STAR, RRID SciScore attempts to find all software tools within the methods section.

‘‘Identifiable’’ tools are reported with an RRID or are able to be uniquely identified

through a distinct name/URL

Example: ImageJ was used to process and analyze raw images.

Example: All simulations were performed using the NEURON simulation environment (Carnevale and Hines, 2006).

Table 1. Continued

SciScore was trained to recognize each of these criteria, with the training dataset size and classifier performance listed in Table S1. Example sentences recognized

by SciScore are listed for each criterion, and we have underlined the entity that was likely to be recognized by the tool. These types of entities were annotated by

curators to train individual classifiers.
aInstitutional Review Board and consent statements are scored together as a block where detection of one ormore of these entities will give the full point value for

this section.
bCell line authentication and contamination statements are only scored when a cell line is detected in the key resources table and they are scored together, either

of these will provide the full points for this section.
cEntity type not used for analysis in the current paper.
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cases, the agreement rate was measured above the raw classifier F1 rate as would be expected, except for

software tools, which had an agreement rate that was lower than expected based on our previous training

data (Table S1).

Reproducibility Criteria over Time

Rigor Adherence and Key Resource Identification

We scored PMC data and grouped the data by journal and year showing the average SciScore, RTI. We also

report the proportion of papers addressing specific rigor criteria and the proportion of uniquely identifi-

able resources. In total, only 8 papers in 1,578,964 received the maximum score of 10. Data are included

in the supplemental file for this paper (Data S1; also found here). Summary data are presented to preserve

author anonymity.

Between 1997 and 2019, the average annual score has more than doubled from 2.0G 0.9 to 4.2G 1.7 (Fig-

ure 1A). This increase in score coincides with increased levels of both rigor criteria inclusion and key

resource identifiability. The year 1997 was chosen as the starting point as years prior to this did not

meet our minimum required sample size (e.g., 1996 [n = 73] versus 1997 [n = 1,024]). For rigor criteria inclu-

sion, adherence levels largely increased for the following criteria: sex (21.6%–37.0%) and randomization of

group selection (9.8%–30.1%). Levels of inclusion of statements about blinding (2.9%–8.6%) and power

analysis (2.2%–9.9%) increased but remained relatively low (Figure 1B). For key resource identifiability, an-

tibodies (11.6%–43.3%) and software tools (42.1%–86.7%) were increasingly found to be uniquely identifi-

able in the methods section, whereas organisms (21.1%–22.0%) and cell lines (36.8%–39.3%) remained at

low levels of identifiability (Figure 1C).

The PubMed Central papers that we analyzed might not be preclinical studies, in which case many of the

rigor criteria may not apply. For example, some chemistry papers were certainly analyzed, but we cannot be

certain what percentage of the papers analyzed fit these criteria. Therefore, we reran the analysis with pa-

pers that used vertebrate animals, which should exclude most clinical or chemistry studies and the propor-

tion of papers using the criteria should be more reflective of the animal, pre-clinical literature where rigor

criteria are most relevant. Papers containing IACUC statements in 2018, the most recent full year,

comprised about a quarter of the OA subset (51,312 of 208,963). These animal papers showed the following

rates of rigor criteria: sex 55.82% (compared with 37.54% in the total set), blinding 12.33% (8.74%), random-

ization 36.26% (30.30%), and power 7.34% (9.57%). Of 62,652 organisms detected in the total literature,

Figure 1. Overall Scores and Their Breakdown Shown between 1997 and 2019

(A) Average score of the dataset representative of the biomedical corpus showing a relatively steady increase over time.

(B) Percentage of papers mentioning the use of sex, blinding, randomization of subjects, and power analysis. Sex and

randomization have increased significantly, whereas blinding and power analysis have increased but are still at relatively

low rates.

(C) Percentages of key resources (antibodies, organisms, cell lines, and software tools) that are considered uniquely

identifiable. Rates of software tools and antibodies have increased, whereas organisms and cell lines have remained

relatively stagnant. Data underlying these graphs are available in Data S2.
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51,134 were represented in the subset. Identifiability of organisms was 21.71% versus 20.81% in the total

set. These numbers suggest a trend in that the vertebrate animal subset of the literature is somewhat

more transparent than the total literature especially when looking at sentences describing the sex of the

animal, group selection criteria and blinding, however, it remains far from ideal.

Antibody Identification

In just the last few years, antibody identification has made considerable improvements going from the least

identifiable key resource to the second most identifiable one, although antibody identification still remains

under 50% overall. Some journals have made significant changes, leading to amore dramatic improvement

compared with others (Figure 2). For example,Cell, a STARmethods journal, improved their antibody iden-

tifiability rates from 11.1% to 96.7% from 2014 to 2019. eLife, a participant in the RRID Initiative, increased

their antibody identifiability rates from 27.2% to 89.6% from 2014 to 2019. On the other hand, Oncotarget

(21.6%–36.4%) and PloS One (22.7%–32.2%) have each improved, but their absolute rates remain relatively

low, with each falling below the overall average during that time frame (21.8% in 2014; 43.3% in 2019).

Table 2 shows the top 15 journals with the highest antibody identification rates for 2019 along with the num-

ber of antibodies detected in each. Seven (46.7%, Cell Stem Cell, Immunity, Cell,Molecular Cell, Develop-

mental Cell, Cell Metabolism, Current Biology, and Cell Reports) have implemented the STAR methods re-

agent reporting format. Fourteen (93.3%, see Table 2) participated in the RRID Initiative and continue to

enforce the use of RRIDs as of 2019. Therefore, these two drivers (STAR methods implementation and

RRID Initiative participation) appear to have meaningfully contributed to improving the rate of identifiabil-

ity in a majority of the best antibody identifying journals.

Cell Line Identification and Authentication

All cell lines should be authenticated according to the international cell line authentication committee

(ICLAC) guidelines because cell lines often become contaminated during experiments (Capes-Davis

et al., 2010). Authentication of cell lines is usually accomplished by short tandem repeat (STR) profiling.

This procedure is recommended at the outset of the experiment, at the conclusion of the experiment,

and at a random time during the experiment. If this important control is completed, it should be stated

in the manuscript. Similarly, authors should also test whether mycoplasma has contaminated their cell lines.

For our purposes, we treated checking for mycoplasma contamination and authentication assessment like

STR profiling as evidence that authors checked at least some aspect of cell line authenticity. Table 3 shows

the journals that have the highest rates of authentication or contamination and the identifiability of cell lines

in those journals. The percent of authentication is calculated as the percent of papers that contain a

contamination or authentication statement in papers where at least one cell line is found.

Nature’s Rigor Adherence

Checklists may assist authors in finding aspects of their manuscript that were not addressed, but until now it

has been very difficult to determine if these checklists are effective. Most studies that addressed this issue

looked at a relatively limited sample of journal articles (Leung et al., 2018). We consider below a use case, in

which the implementation of a checklist system appeared to be effective in improving the number of rigor

criteria addressed by authors. In 2013 to 2014,Naturemade a significant push with authors to address rigor

criteria. We plotted the average score along with its components over this period (Figure 3) and found that

the average score rose by nearly two points over just a few years. This is based largely on a concomitant rise

Figure 2. Percentage of Antibodies That Are Able to

Be Uniquely Identified Shown by Journal with the

Overall Trend across the Biomedical Literature

Shown in Blue

A significant improvement can be seen starting in 2016

for Cell and eLife when STAR methods formatting and

RRIDs were first implemented in their respective

journals contributing to a noticeable improvement in

antibody identifiability for the entire biomedical

literature. Data underlying this graph are available in

Data S3.
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of authors addressing blinding, randomization, and sex of subjects. To a smaller degree, antibodies

became more identifiable and power analysis was described in a larger proportion of papers. In stark

contrast, the Proceedings of the National Academy of Sciences of the United States of America (PNAS),

which put out several reports advocating for the need for increased rigor (Allison et al., 2018), showed

no sizable change in composite score: 3.33 in 2015 to 3.42 in 2019.

A Comparison of the Rigor and Transparency Index with the Journal Impact Factor

In total, we included data from 490 journals (totaling 243,543 articles) for the Journal Impact Factor (JIF)

versus Rigor and Transparency Index (average SciScore) comparisons. The comparison between the raw

JIFs and the Rigor and Transparency Index (Figure 4A) showed a slight negative relationship; however,

the correlation coefficient (Rs = �0.1102) suggests that this is not a significant relationship. Similarly, the

JIF percentile versus SciScore percentile relationship showed no significant correlation (Rs = �0.1541;

Figure 4B).

DISCUSSION

In this study, we introduce an automated tool, SciScore, that evaluates the materials and methods sec-

tions of scientific papers for adherence to several key reporting guidelines introduced by funding

agencies and journals over the past decade. The reason that we focus on the methods section is that

the methods section is the bedrock of the scientific study on which all results and conclusions rest

and is also almost completely knowable. In this section of the scientific paper there are absolute facts,

such as which reagents were used, how long a rat was exposed to a drug, or how many zebrafish

were male or female. This also enables us to not consider statements that authors make about reagents

that they did not use because the methods section of a paper typically states where a reagent was pur-

chased and how it was treated. Because the tool is automated, it provides us the opportunity to look at

overall trends in adherence to these guidelines across the breadth of the scientific literature for the first

time at an unprecedented scale.

Papers

Analyzed

Year Journal Antibodies

Detected

Identifiable % Identifiable

13 2019 Cell Stem Cella 242 236 98%

16 2019 Immunitya 430 419 97%

24 2019 Cella 362 350 97%

42 2019 Molecular Cella 548 524 96%

11 2019 ASN Neuroa 84 80 95%

13 2019 Developmental Cella 123 117 95%

12 2019 Cell Metabolisma 181 171 94%

17 2019 Current Biology: CBa 132 123 93%

14 2019 The Journal of Neurosciencea 91 84 92%

11 2019 Particle and Fibre Toxicology 11 10 91%

240 2019 Cell Reportsa 1,458 1,312 90%

491 2019 eLifea 2,476 2,218 90%

75 2019 eNeuroa 344 308 90%

18 2019 BMC Biologya 62 55 89%

21 2019 Journal of the Endocrine Societya 69 58 84%

Table 2. Top 15 Journals Sorted by Percent of Antibodies that Were Identifiable in 2019

For this analysis, there were 682 journals in which more than 10 antibody containing articles were accessible in our dataset.
aIndicates participation by the journal in the RRID initiative as of 2019. The complete dataset is available as Data S7.
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Analysis of Reporting Trends

Since the early 2000s, there have been multiple calls to improve scientific reporting and increase the

specificity within methods sections because of irreproducible research (Ioannidis, 2005; Open Science

Collaboration, 2015). In 2007, Sena and colleagues used meta-analysis to assess the presence of various

rigor criteria in the scientific literature about different diseases (Sena et al., 2007). Although we were not

able to exactly replicate those findings, our results can be compared. In their study, a human curator

scored the presence of rigor criteria in 624 papers, a tremendous amount of human effort. Rigor criteria

prevalence were broken down into disease groups, including stroke, multiple sclerosis, and Parkinson’s

disease. In this set of the literature, authors addressed randomization of subjects into groups between

1% and 10% of the time depending on the disease group. In our data, randomization is addressed in

8%–27% of papers between 1997 and 2007 with a steady rise over time. In the Sena paper, blinding

was addressed 2%–13% of the time, whereas our data show a range of 3%–7% of papers. Power analysis

calculations were not detected in any study by Sena and our data show a detection rate of 2%–7%. How-

ever, our data include pre-clinical and clinical studies, whereas Sena’s study only included the former,

making a direct comparison a little more tenuous. Although reasonable people may argue that different

techniques were used in performing these studies, including study selection and the criteria for inclu-

sion, there is a striking similarity in this very cursory comparison suggesting that the overwhelming ma-

jority of studies published in 1997–2007 did not address randomization, blinding, and power analysis.

This result is not entirely surprising given that these factors were specifically identified as leading to

problems with reproducibility and were therefore targeted in the reporting guidelines that emerged af-

ter this period.

Since 2007, there has been a steady improvement in rigor inclusion and key resource identifiability rates

across the literature. Between 1997 and 2019, the average score of biomedical research has more than

doubled indicating an improvement in the transparent reporting of scientific research. However, it is

Papers

Analyzed

Year Title Cell Lines

Found

% Identifiable % Authentication

278 2019 Elife 849 55% 71%

11 2019 Nature Microbiology 39 33% 64%

83 2019 Oncogene 302 41% 54%

23 2019 Journal of Cell Science 87 31% 52%

27 2019 Nature 85 47% 52%

33 2019 Oncogenesis 95 36% 52%

14 2019 Breast Cancer Research 86 35% 43%

29 2019 EMBO Molecular Medicine 65 38% 41%

17 2019 Disease Models & Mechanisms 23 43% 41%

17 2019 EMBO Reports 42 36% 41%

18 2019 Cell 67 36% 39%

178 2019 BMC Cancer 485 40% 38%

37 2019 Molecular Cell 157 37% 38%

14 2019 Therapeutic Advances in

Medical Oncology

48 44% 36%

946 2019 Nature Communications 2,601 38% 34%

Table 3. Top 15 Journals Sorted by Percent of Cell Line Authentication (Authentication or Contamination) thatWere

Identifiable in 2019.

There were 2,280 journals in which more than 180,316 articles andmore than 388,337 cell lines were accessible in our dataset.

The complete dataset is available in Data S8.
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difficult to assign causality. Although the checklist implemented at Nature has clearly been well executed

(see Figure 3), in general, guidelines and checklists have been shown to be relatively ineffective at

improving the reporting tendencies of authors; because of this, we highly doubt these improvements

are entirely due to the presence of checklists and guidelines (Kilkenny et al., 2009). However, that is not

to say that these guides are useless. We believe these guides help disseminate knowledge to authors,

providing themwith good focal points for where they should put forth effort in order to improve the report-

ing of their research, and although efforts such as the ARRIVE guidelines initially remained relatively unsuc-

cessful in changing author behavior, there was eventual improvement (Figure 1). Given our current dataset,

we can state that these reporting improvements appear to be occurring across biomedicine in general,

suggesting that they may be due in part to an increase in awareness of the importance of reporting on

good scientific practice.

Although there are many causes contributing to the complex issue of scientific irreproducibility within bio-

logical research, none have beenmore vilified than the antibody (Baker, 2015). As one of themost prevalent

tools in modern-day biological research, they represent an easy target raising the ire of disgruntled scien-

tists as they are known in many cases to display a high level of variability between sources (Voskuil, 2017).

These issues, however, cannot be discovered in most papers because even today, these reagents are not

usually cited in a way that makes it easy to even understand which antibody has been used. Antibodies have

long been one of the least identified resources (Figure 1C; Vasilevsky et al., 2013). In 2013, Vasilevsky et al.

analyzed 238 manuscripts to measure the identifiability of a variety of resources including antibodies.

Comparing the Vasilevsky antibody results to our current analysis, we found that antibodies are identifiable

less often. For 2013, Vasilevsky found that ~45% of antibodies are identifiable, whereas our algorithm found

it to be ~20% (in 2013). This discrepancy can likely be attributed to differences in criteria used, the exact

papers analyzed, and the size of the sample. For each antibody, Vasilevsky looked in all vendor catalogs

and searched for the name of that antibody, if the vendor search resulted in only one antibody, it was

considered identifiable. This presents a bit of a best-case scenario for antibody identification as similarly

named antibodies may be added to a company’s inventory in the future or an antibody may simply have

its name altered over time. Our algorithm relies on the presence of either a catalog number or an RRID

for identifiability, which are far more stringent. Although catalog numbers may still be quite imperfect

for identifiability (Voskuil, 2014), they are nevertheless far more stable than product names in a vendor’s

catalog. Additionally, RRIDs are significantly more stable than either a product’s name or its catalog num-

ber as they are meant to serve as a sort of unique product code (UPC) that transcends any of these super-

ficial changes.

Data about software tools may be subject to more significant recency effects than other resources. This is

partially because SciScore can detect that a word or phrase is the name of a software tool, but to be consid-

ered identifiable the tool must have accessible metadata. It is relatively more likely that tools in common

use are more identifiable than tools that may have been used over a short period of time. Despite this, we

still feel that SciScore has captured a majority of the mentioned software tools. This is because software

tool mentions appear to follow the 80/20 rule where roughly 80% of the mentions are related to 20% of

the tools (Ozyurt et al., 2016).

Figure 3. Analysis of Rigor Criteria for the Journal Nature

The right axis represents the percentage of papers that fulfill a particular criterion. The left axis represents the average

SciScore. The figure shows that, during and after the implementation of theNature checklist, the average SciScore as well

as all measures except for organism identifiability have improved markedly. Although scores were increasing before the

checklist implementation, the checklist appears to quickly boost numbers. Data underlying this graph are available in the

(Data S1 and S4, https://scicrunch.org/scicrunch/data/source/SCR_016251-1/search?q=*&l=*).
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Our analysis of the antibody data clearly demonstrates that some journals, which enforce RRIDs, have

dramatically higher rates of identifiability (>90%) than the average journal (~40%) (see Table 2). Enforc-

ing the use of RRIDs is not an effortless exercise; we understand from personal communications with

the editors of the Journal of Neuroscience that authors are asked to identify their research resources

three times during the publication process (Marina Picciotto, personal communication). As a group,

Cell Press journals in particular have done an exemplary job in identifying antibodies. By requiring a

STAR table (a standardized key resources table), Cell Press has created a way to make key resource

identification highly visible (Marcus, 2016). This is especially important because it appears that they

are not only moving their authors to change behavior but that these changes in behavior are also

spreading as evidenced by a fairly dramatic overall shift in identifiability since 2016. We do not know

why this spread is occurring, but in seemingly unrelated journals that did not change policies with re-

gard to antibody identification there are more well-identified antibodies. Some of this could be ex-

plained as journals that enforce policy have high rejection rates and those authors end up in another

journal with well-identified antibodies. It may also be that authors have been frustrated for so long

trying to track down antibodies that when they hear about a way to change the current practice,

they embrace the change.

Comparison of the RTI with Other Metrics

Through the use of a vastly different performance indicator than what is currently used (SciScore as

opposed to JIF), we have created a method to score journals that is very different from the impact factor.

The Rigor and Transparency Index lists journals with their composite scores and rates of inclusion for rigor

adherence and resource identifiability. Our analysis indicates that there is no correlation between a jour-

nal’s impact factor and the Rigor and Transparency Index, which highlights the uniqueness of the RTI as

a metric independent of research popularity.

Researchers have pointed out various problems with measuring journals based on the JIF (Davis, 2019;

Parish et al., 2019; Rawat, 2014; Vanclay, 2011). Many of these arguments are valid in that they point to

this single number as an ‘‘outdated artifact’’ that improperly impacts how we view research. The most

important underlying problem with the JIF, in our opinion, is that it measures popularity (number of cita-

tions) and not the quality of the work. Although somemay argue that we are simply switching one problem-

atic metric with another, this is a gross oversimplification.

Figure 4. Average Journal SciScore between 2016

and 2017 as a Function of the Journal Impact Factor

for 2018 (Data from Published Papers from 2016 to

2017)

Data from 490 journals are shown in each graph.

(A) A comparison between the raw JIFs and Rigor and

Transparency Index is shown. The correlation

coefficient is calculated using the formula for

Spearman’s rank-order correlation (Rs =

�0.1102253134).

(B) A comparison between JIF percentiles and SciScore

percentiles is shown. The axes are labeled with

quartiles; top quartile is Q1. For presentation purposes

only, using Google Sheets with journal names as

centered data labels, we chose the top 45 journals by

the number of articles included and then we removed

labels that were overlapping until we were left with 25

labeled journals, shown above. All 490 journals, for

which we had sufficient data in the open access

literature to compare to the Journal Impact Factor, are

presented in (Data S5). Correlation values were

calculated using the formula for Spearman’s rank-order

correlation, the line is not shown (Rs = �0.1541069707).
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The Rigor and Transparency Index differs from the JIF in that it is based on known problem areas linked to

the inability to reproduce a study. Although the composite number for any given study is likely nearly mean-

ingless (an 8 is not demonstrably better than a 7, for example), it is very difficult to argue that reagents used

in a study should not be referenced in such a way as to easily identify them. It is also true that all means of

reducing investigator bias, such as blinding, are not possible in all experimental designs, especially during

the conduct of certain experiments. However, it is difficult to argue that addressing investigator bias is a

waste of time; indeed, investigators surveyed by Nature overwhelmingly state that the MDAR checklist,

which covers bias, was helpful to their reporting of research (Hawkins, 2019). Investigator bias can creep

into any scientific discipline and has been shown to artificially inflate effect size in stroke research (Sena

et al., 2010), but these effects have been well understood since the 1960’s (Rosenthal and Fode, 1963)

and have informed the practice of clinical trials. Although currently it is nearly impossible to determine if

authors are addressing rigor criteria appropriately, an automated metric like the RTI can still be used to

increase transparency in reporting, allowing readers to make better, more informed decisions regarding

an experiment’s reproducibility. The fact that most authors largely ignore these criteria shows that inves-

tigator bias is not ‘‘on the radar’’ of many researchers as they report findings. By elevating the visibility

and importance of rigor and transparency through the use of something like the RTI, we believe we can

improve the quality of scientific reporting and, thus, improve scientific reproducibility. In more general

terms, we believe that research that completely and transparently reports its reagents andmethods is likely

to be better than research that does not. We therefore argue that a study that scores 8 or 9, which will

necessarily address investigator bias and uniquely identify most resources, is better than a study that

does not address these and scores 2 or 3.

We also examined the potential relationship between the RTI and the newly released 2019 TOP Factor us-

ing data from 31 journals where the ISSN numbers match between TOP and RTI. Similarly to the JIF, there

was no correlation between the two metrics (Pearson’s correlation). Ideally, there would be some correla-

tion between twometrics of rigor, and perhaps once more data are released for TOP, this could be the case

in the future. However, although both the TOP Factor and the RTI generally try to quantify rigor and trans-

parency in journals, they go about it in two different ways. The TOP Factor is calculated based on a journal’s

reporting best practice guidelines, whereas RTI is calculated based on whether or not authors within a jour-

nal actually follow some of these guidelines at the individual article level. We know from previous works that

guidelines are rarely followed (Bandrowski et al., 2015; Hair et al., 2019; Kilkenny et al., 2009; Leung et al.,

2018), so although a journal may have very strict guidelines, the current lack of relationship suggests that

authors do not change their behavior accordingly.

Future goals of the RTI include improving the detection of power calculations and the authentication and

contamination of cell lines. These classifiers worked relatively poorly compared with the other parts of Sci-

Score. In addition to expanding datasets, we plan to add additional criteria (e.g., inclusion/exclusion

criteria and replication information) in future versions of SciScore to improve our coverage of entities

required to complete the MDAR checklist.

The creation of the Rigor and Transparency Index provides both a short hand for how a journal is doing and

amuchmore detailed picture of the current state of rigor and transparency practices. It can point each jour-

nal to significant problem areas that are addressable in future publications. It also provides journals and

funders the ability to monitor the impact of their policies regarding rigor and reproducibility. The RTI

can bring attention to the importance of sound scientific practices.

Limitations of the Study

A limitation of the study is that the OA subset represents only a fraction of the total biomedical literature

and as a result must be considered a biased subsample. First, because these data consist of only full text

accessible, open-access papers or copies of closed access papers supported by the NIH with licenses

permissive for text mining, some journals may not be represented. Second, most of the data available

through PMC are from the past 5–10 years, whereas PubMed contains a significant number of articles

that date back 30 to 40 + years. Because of these concerns, we concede that PubMed, with 30.37 million

articles as of November 27, 2019, is only partially represented in the portion of PubMed Central accessible

for text mining. As a result of this differential, we cannot be certain that the text-mining accessible papers in

PubMed Central are completely representative of the totality of biomedical literature. However, given that

PubMed is our best guess at the totality of the biomedical literature, then it stands to reason that a sample
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of this magnitude should be a reasonable representation of the total, especially in the more recent years.

Journals that are not represented in this dataset are either those that are unavailable as open access or un-

available under a text-mining allowed license.

Another limitation is that any information that is not included in a text-mining accessible methods section is

omitted from review by SciScore. One of themost glaring omissions from our dataset is the journal Science.

There are several reasons why this may be the case, the most likely being that their articles are not included

in theOA subset because of restrictive licenses. Another potential reason is that their articles’ methods sec-

tions are simply unreadable to SciScore. Since Science’s format is highly abbreviated, the methods section

tends to be pushed into the supplementary materials where it is likely to be formatted as an image (PDF)

rather than as text. To a text mining algorithm like SciScore, a supplementary PDF is effectively invisible. If

we were to attempt to score these papers manually instead, it would take roughly 1,500 h or 187 days of

nonstop curation to score the 18,000 Science papers in PMC assuming each paper took 5 min. As a point

of reference, SciScore averaged about 2 s per paper, so Science would take 10 h on a single machine (the

1.6 M articles were processed in about 6 weeks). The biomedical literature is produced at a rate of about 2

million articles per year, a rate that long ago exceeded the ability of any human to read, much less deeply

understand the content. We expect that scientists will need a helping hand from some form of robot that

can pre-digest content, but to be effective, this robot will need access. It would be a real shame if the flag-

ship journals were not represented in this new paradigm (Carpenter, 2017).

As previously mentioned, SciScore was originally developed to score biomedical research articles and the

training data consist entirely of sentences from the methods sections of papers. This might be viewed as

problematic given that PMC contains non-biomedical research journals where SciScore’s scoring criteria

may not be deemed fully relevant. We attempted to mitigate this by excluding papers that had scored a

0. Papers without any criteria found (SciScore = 0) were not included in our analysis as we considered SciS-

core’s criteria ‘‘not applicable’’ in these cases. In future versions of SciScore, we plan on implementing addi-

tional criteria and conditional scoring (e.g., only expecting an IACUC when vertebrate organisms are de-

tected) to be able to more accurately score a wider range of papers.

The use of SciScore versus individual classifiers differs, where SciScore in total performs a little better than

expected if one were to consider only the individual classifier performance, as evidenced by the agreement

between the tool and curator (Table S1). Some of this can be explained by the fact that research resources

are often used in multiples, and these may be described several times, increasing the ability of SciScore to

pick up at least one of the mentions. Another difference is that SciScore triggers a second pass with less

stringent criteria when some features, such as RRIDs, are detected by regular expression in the text. This

allows for a higher recall than expected by the raw classifiers in cases where we are certain that a key

resource is being described, without the downside of reduced precision.

Resource Availability

Lead Contact

Further information and requests for materials should be directed to and will be fulfilled by the lead con-

tact, Dr. Anita Bandrowski (abandrowski@health.ucsd.edu).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Code for retrieving and pre-processing XML data from theOA subset was previously published and is open

source (https://github.com/SciCrunch/resource_disambiguator). Owing to the proprietary nature of Sci-

Score, we cannot release its full source code. However, the resource disambiguator (RDW) mentioned

above uses the same basic technology, a conditional random field-based named entity recognizer, which

is directly used as part of SciScore. All RDW code is available. SQL statements (version hash from Open

Science Chain RRID:SCR_018773; https://portal.opensciencechain.sdsc.edu/data/osc-5837f83f-31ab-

426f-b8cc-84c7b9ec542a) and the Google spreadsheets (version hash https://portal.opensciencechain.

sdsc.edu/data/osc-3c6555f9-9e55-4c9b-932a-82b799d6b0d4) used for analysis can be found in the supple-

mental materials provided. Summary data for each journal are provided through the supplemental files and
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have been made available via SciScore website (https://sciscore.com/RTI; RRID:SCR_016251). Data from

individual papers from theOA subset will bemade available upon request to researchers, but is considered

sensitive because low scores assigned to published papers may be seen as negatively impacting scientists,

without giving them the ability to respond to criticism or providing the same ‘‘criticism’’ for closed access

publications. However, a limited number of individual papers can be submitted free at sciscore.com, and

we encourage researchers to test their manuscripts for themselves.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101698.
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Supplemental Data Items 
 

 
Figure S1​: A visualization of the different components of an antibody that are part of the training set for SciScore. 
Related to Table 1. 
  



Table S1​. Individual Classifier Performance for Named-Entities. Training set size is shown as the # of entities, 
which represents the total number of entities tagged by our curators as either positive or negative and # of sentences, 
which represents the total number of sentences containing positive and negative examples as well as some sentences 
without any entities used in both training and testing. Related to Table 1. 

Entity Type 
F1 Precision Recall Training Set Size 

(# of entities/# of 
sentences) Mean ± SD Mean ± SD Mean ± SD 

Rigor Criteria (5 total points) 

Institutional Review Board Statement  81.41 ± 3.62  84.45 ± 5.26 79.57 ± 8.83 340/78,170 

Consent Statement  94.75 ± 1.68  96.29 ± 2.42 93.38 ± 3.63 373/78,170 

Institutional Animal Care and Use 
Committee Statement  

81.30 ± 4.20  89.30 ± 4.60 74.89 ± 6.12 591/78,170 

Randomization of subjects into groups 83.05 ± 3.04  80.25 ± 5.05 86.45 ± 4.64 368/52,945 

Blinding of investigator or analysis 78.96 ± 12.38  77.74 ± 17.16 81.79 ± 10.32 183/52,945 

Power analysis for group size 64.45 ± 29.37  73.74 ± 34.13 59.50 ± 26.91 81/52,945 

Sex as a biological variable 88.32 ± 3.91  87.94 ± 6.03 88.93 ± 3.52 862/52,945 

Cell Line Authentication  54.08 ± 11.88  85.70 ± 10.78 41.15 ± 12.82 155/14,792 

Cell Line Contamination Check  91.70 ± 5.24  93.35 ± 7.15 90.65 ± 7.05 151/14,792 

Key Biological Resources (5 total points) 

Antibody 78.94 ± 2.62  86.89 ± 3.78 72.46 ± 3.20 16,772/53,216 

Organism 66.05 ± 4.70 79.91 ± 6.28 56.64 ± 5.75 4,439/45,500 

Cell Line 70.07 ± 5.95  86.48 ± 3.27 59.34 ± 8.03 1,763/45,500 

Plasmid ​a 79.62 ± 3.35 92.53 ± 3.80 70.09 ± 4.85 2,568/63,400 

Oligonucleotide ​a 83.03 ± 9.05 95.28 ± 3.13 74.94 ± 13.90 1,893/63,400 

Software Project/Tool 89.03 ± 0.90 92.49 ± 2.08 85.84 ± 1.10 10,161/19,002 

a. Entity type not used for analysis in the current paper.  

  



Table S2​: Rates of false negatives, false positives, and overall agreement based on manual analysis of 250 scored 
papers (SciScore > 0) from our dataset. The curator generated data was considered always correct. Thus a false 
positive is when SciScore finds an item where the human curator did not. Agreement constitutes a much broader 
definition than Table S1. Here, agreement means that both the curator and SciScore found an item in the manuscript. 
If, for example, there are two sentences describing sex of subjects and the tool found one, while the curator found 
another, it would still be considered agreement. When considering key resources like antibodies or cell lines, authors 
tend to describe these in several sentences. Therefore even when the recall from Table S1 is 70%, recall of finding 
either of 2 sentences is over 85%. Related to Table 1. 

Entity Type 
False Positives False Negatives Overall Agreement 

Size (#) Rate (%) Size (#) Rate (%) Size (# 
agreed) 

Rate (%) 

Rigor Criteria 

Institutional Review Board Statement or 
Consent Statement 

11 4.4 3 1.2 236 94.4 

Institutional Animal Care and Use 
Committee Statement 

7 2.8 15 6.0 228 91.2 

Randomization of subjects into groups 16 6.4 8 3.2 226 90.4 

Blinding of investigator or analysis 2 0.8 7 2.8 241 96.4 

Power analysis for group size 12 4.8 6 2.4 232 92.8 

Sex as a biological variable 5 2.0 20 8.0 225 90.0 

Cell Line Authentication or 
Contamination Check 

12 4.8 0 0.0 238 95.2 

Key Biological Resources 

Antibody 2 0.8 3 1.2 245 98.0 

Organism 3 1.2 7 2.8 240 96.0 

Cell Line 6 2.4 4 1.6 240 96.0 

Software Project/Tool 8 3.2 41 16.4 201 80.4 

 
  



Table S3​. STAR Key Resources Table 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Rigor and Transparency Index This paper https://sciscore.com/rti/ 

Software and Algorithms 

PubMed Central N/A https://www.ncbi.nlm.nih.gov/pmc/ 
RRID:SCR_004166 

SQLite N/A 
https://www.sqlite.org/index.html 
RRID:SCR_017672 

Journal Citation Reports N/A 
https://jcr.clarivate.com/JCRLandingPageAction.actio
n 
RRID:SCR_017656 

Clarivate Analytics N/A 
https://clarivate.com 
RRID:SCR_017657 

Google Sheets N/A 
https://www.google.com/sheets/about/ 
RRID:SCR_017679 

Open Science Chain N/A https://opensciencechain.org 
RRID:SCR_018773 

SciScore This paper https://sciscore.com 
RRID:SCR_016251 
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Transparent Methods 
 
Text mining the open access subset of PubMed Central 
For this study, we downloaded and processed all open access literature available through PubMed Central (PMC, 
RRID:SCR_004166) in September of 2019. In total, we obtained data from 1,578,964 articles from 4,686 unique 
journals. The PMC Open Archives Initiative (PMC-OAI) was used to initially download the PMC Open Access 
subset (OA subset) as directories (one per journal named by the journal’s standard abbreviation) allowing for a clear 
differentiation of each journal. Articles only available as PDFs were not included in the OA subset, and were 
therefore excluded from our analysis. In addition, abstract-only articles and articles without a methods section were 
also excluded from our analysis because the reporting criteria are generally included only in the materials and 
methods. We limited our analysis to journals that had published more than 10 papers for any given year available in 
the OA subset.  
 
In order to create the dataset used for our analysis, the OA articles were fed through the named-entity recognition 
classifiers. SciScore currently uses 6 core named-entity recognition classifiers recognizing 15 primary entity types 
(see Table 1). In Table 1, a complete list of the primary entity types detected are shown along with their source(s) 
and a brief description. Criteria were generally chosen based on a variety of factors including our previous work 
(Grethe et al., 2016), feasibility (Can we identify the criteria using NER? How many examples will be needed to 
achieve high F1?), and the criteria’s suspected impact on reproducibility (How many major guidelines/checklists 
does the criterion appear? Are other researchers voicing similar concerns?). It should be noted that SciScore is a 
long-term endeavour, thus the criteria presented here should be viewed as an initial set. 
 
The classifiers (sequence taggers) use conditional random field (CRF) based algorithms to detect a variety of entity 
types (Lafferty et al., 2001). Each of these was validated using precision and recall as well as their harmonic mean, 
F1. The values for each entity type are listed in Table S1. Each classifier component was trained and tested 
separately for precision and recall using human curated data. The curator labeled each entity type within tens of 
thousands of example sentences using the smallest word chunk that was still informative. However, not all classifier 
components are visible in the composite tool result (see paragraph about antibodies below).  
 
If the curator and algorithm did not have complete agreement with regard to the entity in our training dataset, it was 
considered a miss e.g., [anti-5.8S] vs. [anti-5.8S rRNA]. For rigor criteria (e.g. consent statements or cell line 
authentication statements), named entity recognition is used to identify words or word phrases that consistently 
appear in sentences of interest. In these cases, we report sentences rather than the individual entities within, 
although, we calculated F1 rates the same for each entity type where the exact entity had to be detected by SciScore 
with 0 edit distance to be considered a match even if the entity was found in the correct sentence. As a result, the 
classifier performances listed in Table S1 can be considered conservative estimates.  
 
We tested these values using 10-fold cross-validation where 90% of the human curated data was used as training and 
10% was used as the test. The final value comes from a mean of all 10 training trials. If the F1 was determined to be 
below the desired 70% threshold for key resources, we attempted to increase the training dataset size. Training sets 
contain sentences from the complete methods sections of published papers. Annotations were made using a NER 
curation tool (created by B.O.) that inserts XML snippets into XML training files. We did not set a minimum F1 
threshold for our rigor classifiers as training data was far more difficult to locate for certain criteria, e.g., power 
analysis and cell line authentication. Because of the low number of examples, both entity types had highly variable 
F1 scores that were lower than we would have liked. In the future, we plan to create an expanded dataset to improve 
these numbers. However, the simple fact that our curators struggled finding these types of statements in the literature 
shows that these key rigor criteria are severely underreported.  
 



Overall, 11 curators have worked on annotation over the last 4 years ranging from early- to late-career researchers. 
When initially developing SciScore classifiers, an inter-curator agreement (ICA) was calculated between J.M. and 
A.B. to determine the feasibility and difficulty level of the curation tasks (>90%). In cases where there was not 
complete agreement, curators would discuss until an agreement was reached forming the basis for our initial 
curation rules. All new curators were expected to annotate with more than 90% agreement with J.M. For each 
subsequent training file, J.M. (with A.B. advising) would serve as both quality control and as a point of contact for 
other curators to ensure a high ICA was maintained over the course of the training.  
 
Antibodies are composite entities that can use detected antibody metadata to improve recognition of the antibody 
entity. The antibody composite entity identification relies on the presence of some of these features in a short span 
of text (within 3 word-phrases). For example, in Figure S1, the various antibody components are visualized 
mimicking SciScore’s training and entity detection. When an antibody name cannot be found in a sentence, the 
presence of an antibody RRID will trigger a second pass with a reduced threshold for detection as SciScore now has 
reason to suspect an antibody is described within the sentence. In cases where no RRID is mentioned, SciScore 
attempts to use the detected name and metadata to suggest an RRID when possible. We assume that the authors will 
report some but not all antibody features for any given antibody. Treating the antibody name feature as its primary 
tag, the overall F1 score for antibodies is 78.9 with a precision of 86.9 and a recall of 72.5.  
 
While the cell line algorithm has been tested previously to find the total number of cell lines used throughout the 
open access subset of PubMed Central (Babic et al., 2019) and the software/database detector has been previously 
described in detail (as well as its features and data representation) (Ozyurt et al., 2016), the other algorithms had not 
been thoroughly validated before this on complete articles outside of the training set. To validate SciScore’s total 
performance, we tested SciScore against an independent set of human-curated data. This set was created using 250 
papers randomly chosen using the random() function in SQLite (RRID:SCR_017672) from our dataset of 
open-access papers. We did not perform a power analysis to determine if this number was sufficient, but chose a 
round number that was larger than any of our power calculations for individual journals. Each paper was manually 
reviewed by a curator (N.A., an early-career researcher, with oversight from J.M and A.B.) to determine which rigor 
criteria and key resource information had been referenced. For each paper, the methods section was read, and the 
curator noted the presence or absence of each entity type listed in Table S1. For this check, the curator and SciScore 
were considered to be in agreement if both had marked an entity type as either present or absent. We note that this 
criteria is substantially less stringent than what we used to assess F1 rates (shown in Table S1), where the exact 
entity had to be detected by the tool with 0 edit distance to consider the match a “hit”. We assumed that if both the 
curator and SciScore agreed about the presence or absence of an entity type, then the answer was correct and we did 
not look more deeply into these data. If there was a disagreement, it would then be classified as either a false 
negative error or a false positive error with the assumption that the curator is always correct. False negatives were 
defined as cases where the classifier incorrectly noted an entity type as absent when it was in fact present. False 
positives were defined as cases where the classifier noted an entity type as present when it was missing. For 
example, if a paper containing multiple antibodies was noted by the curator as having antibodies present and 
SciScore determined that there were antibodies present as well, then this would be considered an agreement. In that 
example, if SciScore had determined that no antibodies were present, then this would be considered a false negative 
error. Note that the curator did not keep track of exactly which antibodies were used in the paper or how many. For 
this analysis, the curator was blinded to the output of the algorithm while curating papers in this set. For validation, 
this information was then compared against our calculated SciScore classifier performances, listed in Table S1; the 
results of this analysis are in Table S2.  

 
Scoring Framework  
All research papers in the OA subset were scored on a 10-point scale. To calculate the total score for each paper, the 
scoring was broken down into two equally weighted sections: 5 points for rigor adherence (made up of the rigor 



criteria listed in Table 1) and 5 points for key resource identification (consisting of the key biological resource types 
listed in Table 1). In cases where no rigor criteria or key resources were detected, the paper was considered “not 
applicable” and received a score of 0. Papers given a 0 were excluded from the dataset because in cases where the 
algorithms cannot find any criteria to judge, there is no way of determining if a score is appropriate. As SciScore 
was originally intended for biomedical research articles, papers scored as 0 typically fall far outside of its current 
scope (e.g. X-ray crystallography), or are the wrong paper type (e.g. a letter to the editor). Indeed, of the 197,892 not 
applicable (0 scoring) papers, over 30,000 came from the following five journals: Acta crystallographica. Section E, 
Structure reports online (98% of articles scoring 0), Nanoscale research letters (71%), Beilstein journal of organic 
chemistry (78%), Acta crystallographica. Section E, Crystallographic communications (95%), and iScience (100%) 
(Data S6). In order to validate this assumption, a second set of human-curated data was created using 250 papers that 
had received a score of 0. These papers were randomly chosen using the random() function in SQLite. Each paper 
was then manually reviewed by a curator (J.M. with oversight from A.B.) to determine if any rigor criteria had been 
mentioned and which key resources, if any, had been referenced. Similar to our scored paper analysis, any criteria 
found was marked as either present or absent. The curator was not blinded to the output of the algorithm for this set, 
which may introduce an element of bias for this portion of the analysis.  
 
Of the 250 “not applicable” papers, 81.2% were found to have been correctly scored (n = 203). Of these 203 papers, 
5 were found to be using supplementary methods sections, so a human might be able to look at these, but these 
sections are invisible to our algorithm, so we did not consider these a miss; 6 had their experimental procedures 
broken up across different sections of their papers, while 6 did not contain a clear methods sections at all. 47, or 
18.8%, of the “not applicable” papers were found to have been incorrectly scored, that is, they were within scope, 
but the algorithm did not detect any relevant entity. Of these 47 incorrectly scored papers, 45 were found to contain 
at least one software tool that was not detected by SciScore. This was by far the most missed entity in this set of 
papers. Blinding and sex as a biological variable were each missed by SciScore in 3 papers, while IRB/Consent, 
IACUC, blinding, and organism entity types were each found to only have been missed in one paper. These values 
all fall in line with what was expected based on our calculated rates for false negatives (shown through the recall rate 
in Table S1). The relatively low agreement rate for software tools seems reasonable as new software tools are often 
created with a specific use in mind and, as a result, are sometimes only used a handful of times. Because of this, 
there is a high number of uncommon software tools with which SciScore has very little tool specific training data. 
This leads to a higher rate of false negatives for those types of software. However, this issue only impacts 
uncommonly used or recently created software. As a result of these analyses, we did not seek to tune parameters 
further for SciScore. 
 
We note that when creating the manually checked datasets, we grouped IRB and consent as well as cell line 
authentication and contamination statements so the coding would be consistent with the output of the automated 
pipeline. This means that we counted the presence of one of these entity types as sufficient for both. Of these entity 
types though, all can be considered conditional and are therefore not entirely independent; e.g., studies that require 
IRB approval usually require a statement of consent; studies using cell lines normally require both an authentication 
statement and a contamination statement. Because of this, we feel that it is not unreasonable to group these criteria 
together in these instances.  
 
Again, SciScore scores papers using a 10-point scale broken into two equally weighted sections: rigor adherence (5 
total points) and key resource identification (5 total points). In general the rigor section score increases for each 
criterion that is detected. In certain cases, a particular criterion may be deemed irrelevant and is not expected (or 
scored), such as the cell line authentication statement, which would not be required in papers that do not use cell 
lines. Currently, we weigh ethical approval sentences (which could be of the following types: IRB, IACUC, or 
consent statement) as two criteria even if only 1 criteria (i.e. IACUC approval) is found because this tool is intended 
for manuscripts in preparation and not having a statement on ethics can have serious legal ramifications. In short, 
simply comparing the total number of found, relevant criteria to the total number of expected, relevant criteria, one 



could roughly calculate the score for the rigor section. In short, the rigor section score can be estimated by using the 
following formula: 

detected, relevant criteria
expected, relevant criteria × 5 (Eq. 1) 

 
This presents a positive bias in scores towards vertebrate animal and human subjects papers that include the ethical 
approval statement, and a negative bias against cell line and invertebrate papers, as ethical approval is not required 
in those cases. The current version of the tool does not score cell line authentication if no cell line is detected, but 
does not yet have the ability to distinguish whether ethical approval is necessary. 
 
The key resources section is scored altogether as one block and takes into consideration the total number of 
resources found using a similar found:expected ratio scoring system. In brief, all detected resources are categorized 
into two scoring groups: detected but not uniquely identifiable (no points), and uniquely identifiable (full points). 
We define a resource as “uniquely identifiable” if the entity can be linked to a single resource based on the metadata 
provided. For example in the sentence “We used the mouse monoclonal GFAP antibody from Sigma”, the algorithm 
is likely to detect a single antibody and vendor, but the catalog number or research resource identifier (RRID) would 
not be found. For this sentence, this resource would not contribute any points towards the “found'' total because the 
resource is not uniquely identifiable. It would, however, still contribute towards the expected resources count, so if 
this was the only resource detected, the author would receive a 0 of 5 for this section. If the author were to provide a 
catalog number, the algorithm may suggest a RRID given that it is able to estimate with a high level of confidence a 
single RRID entity with matching metadata (suggestions are granted points for the identifiable section), a valid 
matching RRID also guarantees the point. We then calculate the key resource section’s score using a similar formula 
as the rigor section where the numerator is the number of identifiable resources and the denominator is the total 
number of resources detected. When the algorithm fails to recognize a resource, that is considered a false negative, 
occuring at rates outlined in Table S1. We note that the values reported in Table S1 are for individual entities. When 
an entity is discussed several times, the probability should be additive. Papers tend to discuss resources several times 
in the methods section; for cell lines, each cell line was mentioned twice on average, improving the rate of resource 
identification in the paper. Because of this, we expect that our SciScore to curator agreement scores should be at or 
above the raw values. Final scores are rounded to the nearest integer. 
 
Impact Factor Comparison 
All journals contained in the OA subset were initially considered for our analysis. In order to ensure that the average 
score calculated for each journal was representative of their true average, we limited our analysis to journals with 
sample sizes larger than the minimum required sample size calculated for each journal. Journals that did not meet 
this minimum were excluded from our analysis. We then searched the Journal Citation Reports (JCR, 
RRID:SCR_017656) database (operated by Clarivate Analytics; ​RRID:SCR_017657​) to obtain the journal impact 
factor (JIF) and average JIF percentile for each journal’s 2018 scores. These values are the most recent obtainable 
scores as new JIF information is usually released ~6 months after the end of the year (e.g. JIF values for 2019 will 
be released around June of 2020). Searches were performed in November of 2019. Journals that did not have their 
information listed in the JCR were excluded from our analysis. JIF is “calculated by dividing​ the number of current 
year citations to the source items published in that journal during the previous two years” according to Clarivate 
Analytics, the official source for JIFs. For JIFs in 2018, this roughly translates to the following equation (Eq. 2): 
 

Articles  + Articles2017 2016

Citations  + CitationsArticles 2017 Articles 2016                 ​(Eq. 2) 

 
Because of this, when we calculated the average score for each journal, we only included scores from 2016 and 
2017, so that the SciScores and JIFs would theoretically be representative of roughly the same papers. We say 
“roughly” because JIF is calculated using “citable items”, a vague term sometimes made up of a variety of article 



types (original research, commentaries, opinions, etc.),​43​ while SciScore is currently intended for use on original 
research only. The average JIF percentile is calculated using the rank of each journal’s impact factor grouped by the 
field in which the journal is indexed. This calculation accounts for citation variations between different scientific 
fields as the JIF percentile only compares journals within a specific category (cell biology journal vs. cell biology 
journal). As a result, any difference in citation counts between fields (e.g. physical chemistry vs. immunology) will 
be mitigated, allowing for a better comparison across all biomedical research. SciScore percentile was calculated 
based on the average SciScore of all 490 journals used in our impact factor comparison. In order to evaluate the 
correlations between JIF vs. SciScore and JIF percentile vs. SciScore percentile, we used Sheets (Google Sheets; 
RRID:SCR_017679) to calculate Spearman's rank-order correlation for each. Spearman’s correlation was chosen 
over Pearson’s because we did not assume bivariate normality. Some potential sources of biases affecting this 
analysis are the FUTON (full text on the Net) bias and the NAA (no abstract available) bias, which in both cases can 
positively impact citation counts for open-access research, while negatively impacting the number of citations for 
research not freely available on the web (Mueller et al., 2006; Murali et al., 2004; Wentz, 2002). We feel though that 
a​ny impact associated with these biases would be mitigated because a vast majority of the journals analyzed here 
were at least partially open-access and all cases where abstracts were not available were universally excluded. 
 
Statistics 
To determine if a journal sampling was representative of its population in our impact factor analysis, we calculated 
the minimum sample sizes (n) required for each journal using the following equation (Eq. 3) for the sample size 
estimation of a finite population: 
 

n​ = ε2
z ·p(1 − p)2 ︿ ︿

1 + 
ε ·N2

z ·p(1 − p)2 ︿ ︿               ​ (Eq. 3) 

 
where z is the z score, is the sample proportion, ε is the confidence interval, and N is the population. We used ap︿  
confidence level of 95%, a confidence interval of 5%, and a sample proportion of ~0.875, which was the proportion 
of papers in our dataset that received a score above 0. Population sizes varied, but were determined by performing 
searches on PubMed restricted by publication type [journal article] and journal name. The minimum sample size was 
also calculated for each year to determine how far back our analysis should consider. For those calculations, the 
population was determined by the number of journal articles published in PubMed for a given year. These 
calculations were performed in Sheets. For each manually curated test set, a set size of 250 was chosen arbitrarily as 
a round number that was larger than the minimum sample size calculated using equation 3.  For all other analyses, 
journals were only included if more than 10 papers were scored per year unless stated otherwise. For the antibody 
identification analysis, we only included journals that had more than 10 scored papers containing at least one 
antibody in a given year. 
 
For SciScore named-entity classifiers, we used the standard measures used to quantify performance: recall (R), 
precision (P), and the harmonic mean of R and P (F1). These were determined by the following formulae: 
 

 R =  True Positives
T rue Positives + False Negatives       ​ (Eq. 4) 

 
   P =  True Positives

T rue Positives + False Positives         ​ (Eq. 5) 

 
1 F =  (2·P ·R)

(P  + R)       ​ (Eq. 6) 
 



In this case, false negatives are criteria that were missed by SciScore but were labeled by a human curator, and false 
positives were incorrectly identified text labeled by SciScore. 
 
We did not obtain an institutional review board approval to conduct this study as we did not utilize any human or 
animal subjects, making this study exempt.  
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