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Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules with significant capacity to regulate the gene expres-
sion at the post-transcriptional level in a sequence-specific manner either through translation repression or mRNA degrada-
tion triggering a fine-tuning biological impact. They have been implicated in several processes, including cell growth and 
development, signal transduction, cell proliferation and differentiation, metabolism, apoptosis, inflammation, and immune 
response modulation. However, over the last few years, extensive studies have shown the relevance of miRNAs in human 
pathophysiology. Common human parasitic diseases, such as Malaria, Leishmaniasis, Amoebiasis, Chagas disease, Schisto-
somiasis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and Echinococcosis are the leading cause of death worldwide. 
Thus, identifying and characterizing parasite-specific miRNAs and their host targets, as well as host-related miRNAs, are 
important for a deeper understanding of the pathophysiology of parasite-specific diseases at the molecular level. In this 
review, we have demonstrated the impact of human microRNAs during host−parasite interaction as well as their potential 
to be used for diagnosis and prognosis purposes.
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Introduction

miRNAs are small (~ 22 nucleotides in length), endogenous, 
evolutionarily conserved regulatory ncRNAs that are impli-
cated in the post-transcriptional regulation of cellular signal-
ing pathways in both animals and plants (Paul et al. 2018, 
2020a, d; De la Fuente et al. 2020). Because the discovery 
of these molecules in Caenorhabditis elegans by Lee et al. 
(1993) it has been shown that they are widely distributed 
in most eukaryotes, including humans (Felden and Gilot 
2019; Paul et al. 2020b, c). Biogenesis of miRNAs consists 
of sequential events occurring in the cell nucleus and cyto-
plasm. In the nucleus, miRNA genes are first transcribed 

by the RNA polymerase II and fold into long double-strand 
primary miRNA transcripts (pri-miRNA). Then, the RNase 
type III Drosha and DGCR8 (also known as Pasha) com-
plex processes the pri-miRNA molecule to form miRNA 
precursor (pre-miRNA) (Fig. 1a). The resulted pre-miRNA 
is then translocated into the cytoplasm by Exportin 5 where 
it is processed one more time by the complex composed of 
the RNase III Dicer and the Trans-Activation Responsive 
RNA-Binding Protein (TRBP) to form the mature miRNA/
miRNA* duplex (Treiber et al. 2019). To be functional, the 
resulted miRNA/miRNA* duplex is then separated by a heli-
case and the single miRNA strand is incorporated into the 
RNA-induced silencing complex (RISC) coupled with the 
Argonaute (AGO) protein family which guides to interact 
with the target mRNA. Binding of miRNAs to the mRNAs 
(partial or full complementarity) leads to the regulation of 
their expression either by the degradation of the mRNA or 
by inhibiting its translation (Fig. 1b) (Wang 2014).

Evidence has shown that miRNAs influence numerous 
cell biological processes including growth and development, 
signal transduction, cell proliferation and differentiation, 
metabolism, cell death, and immune regulation (Miska 2005; 
Wu and Lu 2017; Pockar et al. 2019). It has been reported 
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that miRNAs participate in the regulation of nearly 60% 
of human protein-coding genes (Friedman et al. 2009) and 
2654 distinct human mature miRNAs available in miRbase 
(https​://www.mirba​se.org/) so far supports the idea that miR-
NAs are involved in complex regulatory networks. Their role 
has been established in several pathophysiologies includ-
ing cancer, autoimmune, and metabolic disorders (Garo 
and Murugaiyan 2016; Naveed et al. 2017). However, in 
the past ten years, deep sequencing and miRNA microarray 
technology have evidenced that during the onset of patho-
genic infection the host miRNAs regulate cellular responses 

(Bruscella et al. 2017; Zhou et al. 2018) resulting in signal-
ing and physiological modifications. Parasites are known 
to have complex interactions with their specific hosts and 
these interactions are becoming a leading research field for 
infectious diseases. miRNAs have been involved in both the 
inflammatory response during the induction of the immune 
response and the modulation of innate and adaptive immune 
responses in infectious diseases (Pockar et al. 2019). Moreo-
ver, miRNAs also participate in mediating intercellular com-
munications as they are secreted into vesicles or circulating 
extracellular fluids as exosomes, emphasizing its potential 

Fig. 1   The canonical pathway of miRNA biogenesis. a In the 
nucleus, the miRNA gene is transcribed by RNA polymerase II and 
then fold into a long pri-miRNA with a hairpin structure. The long 
pri-miRNA is then cleaved by the microprocessor complex made 
up of Drosha and DGCR8 (Pasha) proteins, generating a precursor 
miRNA (pre-miRNA). b Exportin-5 binds to the pre-miRNA and 
facilitates its export to the cytoplasm. In the cytoplasm, the type III 

RNase Dicer complex with the double-stranded RNA binding protein 
TRBP and PACT cleaves the precursor’s hairpin and the resulting 
duplex is isolated by a helicase enzyme. Finally, the functional strand 
is loaded together with the Argonaute (AGO) protein into the RNA-
induced silencing complex (RISC) to target mRNAs by sequence 
complementary binding and mediates gene suppression through 
mechanisms of either translational repression or mRNA degradation

https://www.mirbase.org/
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role as biomarkers for a variety of disorders, including para-
sitic diseases (Makarova et al. 2016). Although studies have 
highlighted the important role of miRNAs as regulators of 
gene expression related to the pathogenesis of numerous 
human diseases the specific functions of miRNAs in human 
parasitic infections are still not very clear. Thus, unraveling 
the regulatory roles of miRNAs in host−parasite interactions 
will not only provide new insights into our understanding of 
parasite disease pathogenesis but will also offer a foundation 
for new therapeutic approaches to be established. In this 
review, we demonstrate our current understanding of the 
influence of miRNAs in the development and progression 
of common parasitic diseases in humans, such as Malaria, 
Leishmaniasis, Amoebiasis, Chagas disease, Schistosomia-
sis, Toxoplasmosis, Cryptosporidiosis, Clonorchiasis, and 
Echinococcosis, as well as their possible use as clinically 
meaningful diagnostic biomarkers.

miRNAs: fine modulators of parasitic 
infections

Malaria and miRNAs

Plasmodium is a genus of protist parasites that is transmit-
ted by female Anopheles mosquitoes which injects sporo-
zoites to vertebrate hosts (including humans) and quickly 
invades liver cells undergoing rapid multiplication caus-
ing malaria (Fig. 2a) (White 2017). There are six known 
Plasmodium species that infect humans, such as P. vivax, 
P. ovale curtisi, P. ovale wallikeri, P. malariae, P. knowlesi, 
and P. falciparum (Singh et al. 2017), and among them, P. 
falciparum is considered the deadliest since it is responsible 
for driving the most severe forms of the disease (Phillips 
et al. 2017; Garrido-Cárdenas et al. 2019). Malaria is one 
of the foremost infectious illnesses in the world (generally 
in low-income countries) affecting around 228 million peo-
ple per year (World Health Organization 2019). Although 
it is widely known that P. falciparum lacks the classical 
functional RNAi machinery, accumulating evidence point 
to the possible exploitation of the host RNAi machinery or 
by employing a novel mechanism unique to Plasmodium, to 
manipulate host miRNA expression favoring their growth 
and survival leading to a potential alteration in the expres-
sion of erythrocytic miRNAs (Rathjen et al. 2006; Hakimi 
and Ménard 2010). It has been shown that Plasmodium para-
site principally upregulates those host miRNAs whose target 
proteins are involved in immune response and downregulates 
those miRNAs that participate in the inhibition of parasitic 
translation, host cell proliferation, metabolism, and survival 
(Table 1) suggesting a high probability to be involved in the 
manipulation of both MAPK/ERK (Paroo et al. 2009) and 
Transforming Growth Factor-β (TGF-β) signaling pathways 

(Lourembam et al. 2013). Increasing evidence suggests that 
miRNA-451, miR-223, and let-7i are significantly upregu-
lated in Plasmodium-infected red blood cells (RBCs) (Xue 
et al. 2008; Lamonte et al. 2013) targeting genes, such as 
Protein Kinase A Regulatory (PKA-R) and Reduced Expres-
sion protein 1 (REX1) involved in the regulation of eryth-
ropoiesis (the process of RBCs production) and red cells 
remodeling (Lamonte et al. 2013). Moreover, few studies 
indicated that host miRNAs may participate in the prognosis 
of the disease after the Plasmodium infection, supporting 
the idea that they could be considered as biomarkers for 
the diagnosis of parasite−host response and the disease pro-
gression. For example, miR-146a rs2910164 polymorphism, 
which could affect the expression level of mature miR-146a 
(downregulation), has been associated with increased sus-
ceptibility to P. falciparum infection in placental samples 
of pregnant women (Van Loon et al. 2019). Taganov and 
colleagues (2006) demonstrated that miR-146a is involved in 
the regulation of important immune response genes, such as 
tumor necrosis factor receptor-associated factor 6 (TRAF6) 
and IL-1 receptor-associated kinase 1 genes (IRAK1). On 
the other hand, P. vivax infection triggers a downregulation 
of miR-451 and miR-16 in plasma and RBCs of malaria 
patients and those have been also involved in the regulation 
of erythropoiesis by targeting PKA-R (Chamnanchanunt 
et al. 2015). In addition, it has been demonstrated that miR-
221, miR-222, miR-24, and miR-191 were downregulated in 
the bone marrow of P. vivax infected patients, while miR-
144, which is generally upregulated during erythropoiesis, 
and miR-150, which drives megakaryocyte formation while 
inhibiting erythropoiesis, were overexpressed, respectively 
(Baro et al. 2017). To date, a few reports have been reviewed 
to understand the consequence of Plasmodium infection on 
the host’s miRNA expression profile and the disturbance 
of cellular homeostasis (Shrivastava and Rajasubramaniam 
2018), however, the specific interaction between human 
miRNAs and malaria infection is still unknown.

Leishmaniasis and miRNAs

The genus Leishmania was first described in 1903 for the 
highly pathogenic species L. donovani, but since then sev-
eral pathogenic species of the genus Leishmania have been 
reported. Leishmania flagellates are transmitted to verte-
brates by the bite of infected female phlebotomine sand-
flies generating leishmaniasis with symptoms ranging from 
skin lesions to fatal leishmaniasis (Fig. 2b) (Akhoundi et al. 
2017; Borghi et al. 2017; Derici et al. 2018). It has been 
estimated up to 1 million new cases every year, resulting 
in 26,000–65,000 deaths worldwide (World Health Organi-
zation 2020). Over the past decade, miRNAs have been 
shown to be related to the pathogenesis of leishmaniasis 
(Table 1). It has been seen that at the first hours of the L. 
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major infection upregulation of miR9, miR132, miR-155, 
miR-187, and miR-146a occur which is related with the 
control of TLR-receptor signaling and targeting transcripts, 
such as Nuclear Factor NF-κ-B p105 (NFKB1), Myeloid 
differentiation primary response 88 (Myd88), TIR domain-
containing adaptor protein-inducing Interferon β (TRIF), 
TRAF6, and IRAK1 in macrophages, suggesting that these 
miRNAs are negative regulators of fine-tuned inflamma-
tory reactions. Likewise, an upregulation of let-7a, miR-25, 
miR-26a, miR-132, and miR-140 in L. major-infected human 
macrophages led to a negative correlation on the expression 
of their specific chemokine targets CCL2, CCL5, CXCL10, 
CXCL11, and CXCL12 inhibiting macrophage stimulation 

(Guerfali et al. 2008; Bazzoni et al. 2009; Lemaire et al. 
2013). On the other hand, it has been stated that miR-361-3p 
and miR-140-3p were significantly overexpressed in cutane-
ous leishmaniasis lesions (CL) generated by L. brazilien-
sis infection as compared to normal skin samples targeting 
genes involved in worsening of tissue damage such as TNF, 
Granzyme B (GZMB), Filaggrin-2 (FLG2) and Natural 
Killer cell Granule protein 7 (NKG7) (Lago et al. 2018). 
While downregulation of miR-193b and upregulation of 
miR-671 are correlated with their respective target genes 
CD40 and TNF receptors (TNFR) modulating the inflam-
matory response in lesions caused by this parasite (Nunes 
et al. 2018). In addition, Lemaire and colleagues (2013) 

Fig. 2   A graphical illustration of human microRNAs and their targets profile during host−parasite interaction of the most important insect vector 
transmitted parasitic diseases discussed in this review: (a) Malaria (b) Leishmaniasis, and (c) Chagas disease
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highlighted the downregulation of miR-210 during L. infan-
tum infection which led to inhibition of cell apoptosis by 
targeting procaspase-3 in monocyte-derived macrophages. 
Likewise, Diotavelli et al. (2018) described the upregulation 
of miR-346 during L. infantum infection of human U937 and 
THP-1-derived macrophages decreasing the mRNA level of 
major histocompatibility complex- or interferon-associated 
genes, such as antigen peptide transporter 1 (TAP1), regu-
latory factor X1 (RFX1) and B-cell receptor-associated 
protein 31 (BCAP31) involved in both immune response 
regulation and cell survival under endoplasmic reticulum 
stress during infection; thus, miR-346 could be considered 
as an enticing target for anti-Leishmania approaches. Ghosh 
et al. (2013) assessed an interesting connection between 
altered lipid metabolism during L. donovani infection and 
Huh7 cells miR-122 levels (downregulation) by targeting 
DICER1. Moreover, Geraci and colleagues (2015) dem-
onstrated significant correlations between miR-21 (down-
regulation) and miR-146b-5p (upregulation) in L. donovani 
infected dendritic cells and specific members of the TGF-β 
signaling pathway SMAD7 and TRAF6. Furthermore, a 
decrease infectivity of L. donovani due to the inhibition of 
the autophagic mechanism via negative regulation of Beclin 
1 (BECN1) in THP-1 and human monocyte-derived mac-
rophages has been reported to be triggered by the upregula-
tion of miR-30a-3p during infection (Singh et al. 2016).

Amoebiasis and miRNAs

Entamoeba histolytica is a single-celled anaerobic proto-
zoan parasite that causes human amoebiasis. It is spread 
by fecal–oral transmission and is most prevalent in areas 
plagued by overcrowding, poverty, and poor sanitation 
(Nourollahpour Shiadeh et al. 2016; Pineda and Perdomo 
2017; Deere et al. 2019). Amoebiasis affects around 50 mil-
lion people globally of which approximately 10% of infected 
individuals are at risk of contracting invasive amoebiasis 
that includes amoebic colitis and amoebic liver abscesses. 
Invasive amoebiasis kills up to 100,000 people worldwide 
annually, mainly in tropical countries (Saidin et al. 2019). 
The effects of parasites on host miRNAs expression have 
been described in a few species of protozoans and nema-
todes, but very little is known about E. histolytica. The con-
tribution of miRNAs in amoebiasis has been described to act 
in the modulation of gene expression of physiological and 
pathophysiological factors (Table 1). It has been suggested 
that miRNA-controlled pathways such as clathrin receptor-
mediated internalization of lipid and protein molecules, as 
well as gene regulation and signal transduction of the Ras 
family GTPase are disrupted during E. hystolytica infection 
(Mar-Aguilar et al. 2013). Interestingly, evidence indicates 
that the components of miRNA biogenesis machinery, such 
as Argonaute (AGO) are present in E. histolytica while Dicer 

protein is still elusive, suggesting the presence of some 
unknown mechanisms to regulate gene expression without 
a Dicer enzyme (Mar-Aguilar et al. 2013). However, recent 
studies have shown an important dysregulation of miRNAs 
repertoire in epithelial colon cells, specifically, López-Rosas 
and coworkers (2019) evidenced that after 45 min of E. his-
tolytica infection, there is an upregulation of miR-526b-5p, 
miR-643, miR-615-5p, miR-525, and miR150, and a down-
regulation of miR-409-3p, which altogether may impact in 
the expression of genes involved in at least five major bio-
chemical pathways in SW-480 cells, including biosynthesis 
of unsaturated fatty acids, phosphatidylinositol 3-kinase/
Protein kinase B (PI3K/AKT) signaling pathway, ubiqui-
tin-mediated proteolysis, mRNA surveillance pathways, and 
apoptosis. Interestingly, the amoeba can induce apoptosis in 
host cells by partially altering miRNAs that regulate genes 
involved in lipid metabolism, the PI3K/AKT signaling path-
way, and apoptosis. Of particular note, the aforementioned 
six modulated microRNAs potentially target apoptosis-
related genes. Thus, the expression of B Cell Lymphoma 2 
(BCL-2) protein family, BCL2 Antagonist/Killer 1 (BAK1), 
BCL2 Interacting Protein 3 Like (BNIP3L), X-linked Inhibi-
tor of Apoptosis Protein (XIAP), Apoptosis Inducing Fac-
tor Mitochondria associated 2 and 3(AIFM 2 and AIFM3), 
Apoptosis Inhibitor 5 (API5), BCL2 Associated transcrip-
tion Factor 1 (BCLAF1), Apoptosis-Associated Tyrosine 
Kinase (AATK), BAG1, BAG3, BMF, Nuclear Apoptosis 
Inducing Factor 1 (NAIF1), CFLAR, and Caspase 7 and 8 
(CASP7 and CASP8) can potentially be regulated by the 
aforesaid miRNAs suggesting their possible usage in the 
clinical diagnosis of amoebiasis (Lopez-Rosa et al. 2019).

Chagas disease and miRNAs

Chagas disease (CD) is an anthropozoonosis caused by the 
protozoan parasite Trypanosoma cruzi (Fig. 2c) which is 
transmitted by insect vector Triatominae or kissing bugs and 
affects about 10–12 million people just in America lead-
ing to approximately 50,000 deaths per year (Corti and Vil-
lafañe 2017; Pérez-Molina and Molina 2018; De Oliveira 
et al. 2020). The infection has two successive phases. The 
acute phase is characterized by a high parasitemia, usually 
asymptomatic or oligosymptomatic, while it may progress 
to the chronic phase with neurological, cardiac, digestive, 
or cardiodigestive clinical complaints (Pérez-Molina and 
Molina 2018; De Souza 2019). Among chronic Chagas 
patients, modulation of gene expression in myocardial tis-
sue is mostly associated with immune response, metabo-
lism, and cell stress response (Ferreira 2014). Over the past 
decade, the central role of miRNAs has been established to 
impact the resistance to infection and the pathogenesis of 
CD (Table 1). Linhares-Lacerda et al. (2018) detected higher 
levels of miR-208a in plasma samples from patients with 
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chronic CD and they suggested that this might be correlated 
with TGF-β stimulation and regulation of genes involved 
in cardiac hypertrophy and fibrosis, such as GATA bind-
ing 4 (GATA4) and Gap Junction Alpha-5 (GJA5). More 
recently, Nonaka et al. (2019) reported an elevated level of 
miR-19a-3p, miR-29b-3p, and miR-30a-5p in serum, and 
miR-19a-3p, miR-21-5p, miR-29b-3p, miR-30a-5p, and 
miR-199b-5p in heart samples from chronic CD patients 
suggesting that some of them might be correlated with car-
diac injury and disease severity, targeting Natriuretic Peptide 
B (NPPB) and Collagen type I Alpha 1 chain (COL1A1). 
However, the relationship of miRNAs with CD pathogenesis 
could be further explored in order to validate new biomark-
ers or molecular targets for therapeutic intervention.

Schistosomiasis and miRNAs

Schistosomiasis (also known as Bilharziasis) is a para-
sitic infection caused by several species of blood-flukes of 
the genus Schistosoma and it is one of the most prevalent 
zoonotic diseases, affecting over 258 million individuals in 
54 countries (McManus et al. 2018; Chuah et al. 2019; Salari 
et al. 2020). Trematode parasites S. mansoni (mainly distrib-
uted in Africa, South America, Caribbean, and the Middle 
East), S. haematobium (Africa and the Middle East), and S. 
japonicum (China and Southeast Asia) are the main species 
that cause this human disease (Meningher et al. 2020). Infec-
tions take place in freshwater bodies, where schistosomes 
penetrate human skin; followed by penetration, schistosome 
cercariae migrate to the host portal−mesenteric vein sys-
tem where the female worm lay a large number of eggs that 
are either discharged into the environment through feces 
or urine or are retained in host tissues where they induce 
inflammation (Colley et al. 2014; Wu et al. 2015). Several 
lines of evidence have been demonstrated that miRNAs 
can modulate schistosomiasis pathogenesis (Table 1). For 
example, Cabantous et al. (2017) showed that in the liver 
of S. japonicum infected patients the levels of miR-150-5p, 
miR-146b-5p, miR-143-3p, miR-199a-3p, miR-10a-5p, 
miR-4521, miR-31-5p, miR-222-3p, and miR-221-3p were 
elevated, while miR-663b was present in low level. Further-
more, they reported that the predicted target genes of the 
aforesaid miRNAs, such as KANK4, Dopamine Receptor 
D1 (DRD1), Metallothionein-1H (MT1H), PL1N1, Vanin 
1 (VNN1), Catenin Alpha-3 (CTNNA3), SLC39A8, and 
Guanylate-Binding Protein 5 (GBP5) are involved in crucial 
processes implicated in hepatic fibrosis progressions, such 
as cellular proliferation and differentiation, reorganization of 
the extracellular matrix, lipolysis, and cellular detoxification. 
To date, four schistosomal miRNAs have been isolated from 
extracellular vesicles in sera from Schistosoma infected indi-
viduals, such as Bantam, miR-2c-3p, miR-3488, and miR-
2a-5p suggesting that can be used both as a diagnostic tool 

for infection and to monitor treatment effectiveness (Menin-
gher et al. 2016). More recently, the role of miRNAs in the 
pathogenesis of hepatic fibrosis in schistosomiasis caused by 
both S. japonicum and S. mansoni has been reviewed, high-
lighting their role in the regulation of antifibrosis and profi-
brosis mechanisms (Chen et al. 2019). Moreover, the recent 
advances in characterizing miRNA profiles in extracellular 
vesicles secreted by Schistosoma species have upstretched 
the possibility for validating more parasite-derived miR-
NAs as potential biomarkers for schistosomiasis detection 
(Cabantous et al. 2017).

Toxoplasmosis and miRNAs

Toxoplasma gondii, one of the most common human para-
sites in the world, is a ubiquitous pathogen that is the causa-
tive agent of toxoplasmosis and can infect a large range of 
hosts including humans. The transmission begins with the 
ingestion of contaminated raw meat and then the parasite 
starts to infect as many cells as possible. Manifestations are 
highly variable, ranging from asymptomatic to severe, espe-
cially in cases of brain and eye infection (Parlog et al. 2015; 
Assolini et al. 2017). Nearly all infections are silent, and it 
has been shown that this parasite specifically modulates the 
expression of essential miRNAs in the host, altering their 
response to the infection (Table 1). The first study in this 
subject demonstrated that Toxoplasma effectors are responsi-
ble for the alterations in host miR-17 ~ 92 and miR-106b ~ 25 
family expression that are upregulated after infection with 
RH toxoplasma strain in primary human foreskin fibroblasts 
(HFFs) (Zeiner et al. 2010). Similarly, Cai and colleagues 
(2013) found an increased expression of miR-20a, miR-125, 
miR-19a, miR-19b, miR-27b, and miR-30c in human mac-
rophage at 6 h and 12 h postinfection. Interestingly, some of 
those miRNAs (miR-19a, miR-19b, and miR-20a) are part 
of the miR-17 ~ 92 cluster and have been associated with a 
novel mechanism for the regulation of apoptosis by inhibit-
ing proapoptotic molecule BIM allowing T. gondii to evade 
immune responses through this mechanism (Cai et al. 2014). 
On the other hand, Cannella and colleagues (2014) used an 
infected HFF with two different Toxoplasma strains (Me49 
and RH) and reported an upregulation of miR-146a in HFF 
infected with Me49 and a downregulation in the RH infected 
cells, targeting IRAK and TRAF which are fine modula-
tor of TLR-receptor signaling pathway. Furthermore, it is 
also known that T. gondii affects the human brain in many 
pathways related to epilepsy, neurodegeneration, and cancer. 
A positive regulation of miR-132 has been reported in the 
human neuroepithelial cell line infected with RH-2F, PRU, 
and CTG strains which have been related to a modulation 
in the expression of genes involved in the metabolism of 
dopamine, such as apoptotic protease-activating F-factor 
1 (APAF1), Kirsten Rat Sarcoma (KRAS), MAPK3 and 
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PPP2R5E (Xiao et al. 2014; Ngô et al. 2017). Finally, it has 
been recently reviewed that this parasite also features its 
own miRNA processing system and possesses the capac-
ity to secret exosomes that contain miRNAs (Menard et al. 
2019). Changes in the miRNA profiles of the host in T. gon-
dii infection represent a powerful mechanism for a better 
understanding of this pathology.

Cryptosporidiosis and miRNAs

The genus Cryptosporidium is composed of protozoan par-
asites that infect the gastrointestinal epithelium and other 
mucosal surfaces of their host, including humans (Vanathy 
et al. 2017). Transmission occurs through the fecal−oral 
path, and sources of infection with Cryptosporidium include 
contaminated food or water (Dumaine et al. 2019). Human 
cryptosporidial infections have been related mainly to C. 
parvum and the severity of infection may range from an 
asymptomatic shedding of ingested oocysts to a serious life-
threatening, and prolonged disease (Ryan et al. 2014; Lender 
et al. 2015). The exact molecular pathogenic mechanisms 
of cryptosporidial infection are still not completely known. 
However, a growing number of functional studies have docu-
mented the role of miRNAs in the response of human hosts 
to Cryptosporidium (Table 1). For example. increasing evi-
dence suggests that host miRNAs help in the elimination 
of the parasites by regulating TLR4 and NF-κB signaling 
pathways and with the regulation of the release of antimi-
crobial peptides (Chen et al. 2007; Hu et al. 2013). Spe-
cifically, it has been demonstrated that C. parvum infection 
reduces the expression of the let-7 family miRNAs in biliary 
epithelial cells, which lead to an increase of synaptosome-
associated protein 23 (SNAP23) expression, coordinating 
the subsequent release of exosomes carrying antimicrobial 
peptides (Hu et al. 2013). In addition, Zhou and colleagues 
(2012) demonstrated the role of miR-27b (upregulation) in 
the modulation of TLR4/NF-κB-mediated epithelial anti-C. 
parvum responses in human biliary epithelial cells, targeting 
KSRP. On the other hand, a couple of studies suggest that 
host miRNAs are also used by C. parvum to strengthen its 
own survival. Specifically, C. parvum infection downregu-
lates the expression of miR-98 and let-7 family to induce the 
suppressor of cytokine signaling (SOCS4) proteins that are 
negative regulators of cytokine signaling (Hu et al. 2010; 
Sato et al. 2017). Recently, Wang and collaborators (2019) 
reported for the first time the miRNA expression profile of 
human intestinal epithelial cells infected with C. parvum 
and they evidenced that most miRNAs were not significantly 
differentially expressed in the infected HCT-8 cells as com-
pared to uninfected cells. Nonetheless, they reported that 
the miR-34b-5p, miR-18b-3p, miR-3976, and miR-3591-3p 
were downregulated after C. parvum infection and those 
have been associated with the regulation of both apoptotic 

processes and epithelial immune responses, targeting genes, 
such as ELAVL1, RAB10, RAB14, ELK4, SOS2, TAB2, 
DAXX, fibroblast growth factor 14 (FGF14), and MAPK3.

Clonorchiasis and miRNAs

Clonorchiasis is a food-borne parasitic disease caused by 
the fluke Clonorchis sinensis through the consumption of 
raw or undercooked freshwater fish, containing metacer-
cariae of C. sinensis. Clonorchiasis generally appears as 
bile duct obstruction, biliary inflammation, liver cirrho-
sis, hepatic carcinoma, and cholangiocarcinoma (Wu et al. 
2012; Tang et al. 2016). This parasite infects about 35 mil-
lion people globally, mainly distributed in Asian countries, 
such as China, Japan, Vietnam, and Korea (Han et al. 2016). 
Although molecular mechanisms of carcinogenesis associ-
ated with hepatic fluke infestation are not completely under-
stood, some studies have investigated variations in miRNA 
expression patterns and associations with specific biologi-
cal functions in C. sinensis infection indicating a possible 
association between miRNA and cholangiocarcinogenesis 
(Table 1). Specifically, in vitro experiments using human 
cholangiocarcinoma cells (HuCCT1) treated with excretory-
secretory protein (ESP) of C. sinensis have demonstrated 
an upregulation in expression levels of miR373, miR342-
5p, miR-199a-3p, miR-195, miR185, miR181d, miR-153, 
miR136, miR-95, miR-93, miR31, miR24, and miR-16-2 
along with the downregulation of miR-124a, let7i, and let7a, 
in a time-dependent manner compared with untreated con-
trols. Similarly, ESP-treated normal cholangiocytes (H69) 
revealed that the expressions of nine miRNAs (miR-16-2, 
miR-93, miR-95, miR-153, miR-195, miR-199-3P, let7a, 
let7i, and miR-124a) were similarly regulated, showing that 
the cell proliferation and inhibition of tumor suppression 
mediated by these miRNAs are common to both cancerous 
and noncancerous cells (Pak et al. 2014). Functional cluster-
ing of these dysregulated miRNAs revealed their involve-
ment in cell differentiation/proliferation, inflammation, 
metastasis, oncogene regulation, and DNA methylation by 
regulating various cancer-related signaling pathways, such 
as TGF-β, MAPK, TLR, and PI3K/AKT, and by targeting 
several genes, such as matrix metalloproteinase-9 (MMP9), 
Tyrosine-protein phosphatase (PTP), AKT serine/threonine 
kinase 1 (AKT1), CDH12M, Ras Association domain fam-
ily member 1 (RASSF1), LAST2, PPP2R2A, Phosphatase 
and Tensin homolog (PTEN), PTPN13, Caveolin-2 (CAV2), 
TLR4, RAS, MYC, HMGA2, STAT3, and EZH2 (Pak et al. 
2014; Yan et al. 2016). This information could allow the 
identification of potential targets and miRNA-associated 
genes involved in multiple oncogenic pathways during C. 
sinensis infection and establishing new tools that may func-
tion as indicators for the diagnosis and prognosis of the 
disease.
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Echinococcosis and miRNAs

Cystic echinococcosis (CE) and alveolar echinococcosis 
(AE), two severe zoonotic tapeworm diseases, are triggered 
by Echinococcus granulosus sensu lato (s.l.) and Echinococ-
cus multilocularis, respectively (Wang et al. 2013; Wen et al. 
2019). CE (considered as a neglected disease by the WHO) 
infects mainly the liver and lungs and it is categorized as a 
major public health problem resulting in 1.2 million cases 
per year (Mariconti et al. 2019; Alizadeh et al. 2020). On the 
other hand, AE, one of the most dangerous human parasitic 
zoonosis in the northern hemisphere, is mainly characterized 
by a tumor-like development of metacestodes in human livers 
causing around 200 cases per year (Geramizadeh and Bagh-
ernezhad 2016). MicroRNA-based diagnostics have attracted 
great interest in biomarker research for clinical diagnosis and 
monitoring of echinococcosis (Table 1). The recent studies 
show a substantial upregulation of eight miRNAs (let-7g-5p, 
let-7a-5p, miR-26a-5p, miR-26b-5p, miR-195-5p, miR-16-5p, 
miR-30c-5p, and miR-223-3p) in whole blood samples of 
patients with active larval cysts as compared to those with 
inactive cysts. These upregulated miRNAs have been involved 
in a variety of biological processes, such as macrophages pro-
liferation and activation, inflammation, apoptosis, oxidative 
damage, targeting, modulation of the NF-κB pathway and type 
I interferon signaling by targeting genes, such as Interleukin 
6, 10, and 13 (IL-6, IL-10, and IL-13), Transmembrane pro-
tein 184B (TMEM184B), PTEN, BCL2, GZMB, and Histone 
Deacetylase 2 (HDAC2) (Mariconti et al. 2019). Furthermore, 
Zhang and colleagues (2016) reported that the expression of 
miR-19 showed a significant reduction in hepatic stellate cells 
(LX-2 cells) treated with hydatid cyst fluid (HCF) in pericystic 
collagen-rich liver tissue of CE patients, as compared to nor-
mal liver, leading to a significant suppression of cell prolifera-
tion by blocking signal transmission in the TGF-β pathway, 
decreasing COL1A1 and COL3A protein expression rates, 
suggesting that miR-19 could be an important biomarker in 
humans infected with E. granulosus (s.l.). Likewise, Alizadeh 
and colleagues (2020) reported that egr-miR-71 and egr-let-7 
can be detected in human plasma during hydatid cyst infection 
and can be used as possible biomarkers for the early diagno-
sis and monitoring of CE. Similarly, miR-483-3p that targets 
Lamin-B receptor (LBR) and has been associated with cancer 
progression, is assessed as a potential marker due to substan-
tial upregulation in the plasma of AD patients as compared to 
normal controls that provide a new approach to the clinical 
diagnosis of AE (Ren et al. 2019).

Conclusion

Identifying and characterizing parasite-specific miRNAs 
and their targets in hosts, as well as miRNAs interfering 
with host pathology, are crucial for a better understanding 
of the pathophysiology of parasitic diseases at the molecular 
level. The biological knowledge acquired about miRNAs, 
especially in biomedical research, is expected to be widely 
translated in the field of parasitology in the coming years 
since miRNAs have great potential to lead to a transition 
to a novel class of theranostic tool. Thus, we can expect the 
discovery of more and more specific miRNAs with highly 
specialized functions linked to cellular processes in parasites 
that can provide novel guidelines for the management of 
parasitic diseases.
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