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Transcriptomic and life history 
responses of the mayfly Neocloeon 
triangulifer to chronic diel thermal 
challenge
Hsuan Chou1, Dereje D. Jima2,4, David H. Funk3, John K. Jackson3, Bernard W. Sweeney3 & 
David B. Buchwalter1*

To better understand the effects of transient thermal stress in an aquatic insect, we first identified 
static temperatures associated with fitness deficits, and then reared larvae from egg hatch to 
adulthood under diurnally variable regimens including daily forays into deleterious temperatures. 
We sampled mature larvae at the coolest and warmest portions of their respective regimens for 
RNA-seq analysis. Few transcripts (28) were differentially expressed when larvae oscillated between 
favorable temperatures, while 614 transcripts were differentially expressed when experiencing 
daily transient thermal stress. Transcripts associated with N-glycan processing were downregulated 
while those associated with lipid catabolism and chitin turnover were significantly upregulated in 
heat stressed larvae. An across-regimen comparison of differentially expressed transcripts among 
organisms sampled at comparable temperatures demonstrated that the effects of daily thermal stress 
persisted even when larvae were sampled at a more optimal temperature (806 differentially expressed 
transcripts). The chronically stressed population had reduced expression of transcripts related to ATP 
synthesis, mitochondrial electron chain functions, gluconeogenesis and glycolytic processes while 
transcripts associated with cell adhesion, synaptic vesicle transport, regulation of membrane potential 
and lipid biosynthesis increased. Comparisons of constant vs. variable temperatures revealed that the 
negative consequences of time spent at stressful temperatures were not offset by more time spent at 
optimal temperatures.

Temperature is among the most important factors that determine the distribution and performance of ecto-
thermic species1–8. In most aquatic ecosystems, organisms experience thermal regimes that include distinct diel 
cycles that are imbedded within the more commonly studied seasonal cycle9–12. As the global climate changes 
and human activities alter the thermal regimes of freshwater ecosystems13–16, it is increasingly likely that organ-
isms are subjected to stressful temperatures on different temporal scales17(e.g. hourly, daily, seasonally, annually) 
that differentially affect physiological processes, developmental trajectories, life history outcomes, and ultimately 
species distributions18.

Insects play critical ecological roles and are the most widely used faunal group to evaluate ecological condi-
tions of freshwater environments19–21. While insect thermal biology has been broadly studied, less has focused on 
aquatic insects. At the seasonal/annual scale, it appears that aquatic insects typically adhere to the temperature 
size rule (TSR)3,5,22,23, though some exceptions have been noted22. For a given species, relatively warm temperature 
accelerates growth and developmental rates, with development time decreasing at a disproportionately faster rate 
than biomass accumulation. As a result, warmer conditions produce smaller, less fecund individuals, relative 
to cooler temperatures, which produce larger, more fecund individuals. In life cycle rearing studies at constant 
temperatures with the mayfly Cloeon dipterum, Sweeney et al.8 defined a thermal “acclimation zone” where 
development and growth rates changed consistently with increasing temperature while degree-day requirements 
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to complete metamorphosis were constant. Rearing at temperatures warmer than the thermal acclimation zone 
significantly reduced survival and fitness.

As thermal regimes continue to change, it is increasingly likely that some species will spend greater portions 
of their life cycle at daily high temperatures that are outside of the thermal acclimation zone. While some research 
in the thermal biology field has begun to incorporate transient thermal stress in recent years24, the fitness conse-
quences of exposure to diel temperature fluctuations in insects still remains poorly understood. Understanding 
the physiological processes that occur under repeated, transient thermal stress are especially important because 
this situation is likely common as conditions warm.

Recent efforts have increased our knowledge of the thermal biology of mayflies and the development of a 
lab-reared mayfly model (Neocloeon triangulifer (Ephemeroptera: Baetidae) for physiological and ecological 
studies25–35. We have developed a better understanding of both short-term36,37 and long-term38 thermal chal-
lenge in N. triangulifer, but the more ecologically relevant situation of long-term development in a diel thermal 
regime with daily excursions out of the acclimation zone and into stressful temperatures has remained unstudied.

In this paper, we examine the consequences of daily, transient exposures to thermally challenging tempera-
tures. We first used constant temperature rearing experiments (from egg hatch to adulthood) to identify a physi-
ologically stressful and fitness-reducing temperature – in this case 28 °C which clearly fell outside the thermal 
acclimation zone for N. triangulifer. We then established variable temperature regimens that included a brief 
(hours), daily exposures to 28.5 °C. We used an RNA-seq approach to compare gene expression profiles of mature 
larvae sampled at the low and warm temperatures of their respective daily thermal regimes to better understand 
how short-term forays into sub-optimal (warm) conditions affected gene expression. We also made comparisons 
of gene expression profiles across thermal regimens to better understand how signatures of transient but chronic 
thermal challenge are retained at the transcriptomic level, even at “recovery” temperatures. We link these results 
to life history outcomes and highlight the important role of molting in mediating the thermal performance.

Materials and methods
Mayfly rearing.  The parthenogenetic mayfly N. triangulifer (WCC-2 clone isolated from White Clay Creek, 
(Patent US5665555)) were reared at the Stroud Water Research Center (SWRC; Avondale, PA). Newly hatched 
eggs of N. triangulifer were partitioned into rearing jars using natural stream water from White Clay Creek 
(WCC) and natural WCC periphyton as a food source as described elsewhere39. Mayflies were reared at four 
constant temperature treatments (22°, 26°, 28°, and 30 °C ± 0.1 °C) and three variable temperature treatments 
with a 5 °C daily oscillation (0.5 °C/h) from 19.5 °C to 24.5 °C, mean = 22 °C (Regimen 1- diel fluctuation within 
the thermal acclimation zone) 23.5 °C to 28.5 °C, mean = 26 °C (Regimen2-diel fluctuation outside the thermal 
acclimation zone), and 25.5–30.5  °C, mean = 28  °C (Regimen 3 -diel fluctuation further outside the thermal 
acclimation zone). In each rearing condition, 5–11 replicate jars were used, and each jar contained 50 larvae. 
Temperature starts to rise at 6:30 am and reaches high soak at 4:30 pm for 2 h. Temperature starts to fall at 
6:30 pm and reaches low soak at 4:30 am for 2 h. All temperature treatments were exposed 15:9 (L:D) photoper-
iod that began at 5:00 am and ended at 8:00 pm, simulating a light regime near the summer solstice at ~ 40°N). 
Survivorship, development time, and adult body size (fitness) were recorded for each replicate jar. Survivorship 
was the percentage of 1st-instar larvae surviving to the adult stage. These data were arcsine transformed for 
statistical analysis. Development time was the number of days from the start of the experiment (egg hatch) to 
the median day of adult emergence from a given replicate jar. Adult body size was mean individual biomass of 
emergent adults from a given replicate jar, dried at 60 °C for 48 h.

Larval rearing for molt counting.  Hatchlings (< 12 h old) of N. triangulifer (WCC-2 clone) were reared 
from first instar larvae to the adult (subimago) stage in incubators (Thermo Scientific, MA) held at 18 °C and 
26 °C ± 0.05 °C (trial 1), 22 °C and 26 °C ± 0.05 °C (trial 2) constant temperatures at NCSU. To conveniently 
monitor and collect mayfly exuviae, a single larva was put in a well containing artificial soft water (ASW) in a 
12 well plate (Genesee Scientific, CA). Each temperature treatment contained three replicates (12-well plates). 
Larvae were transferred into larger 6-well plates as they developed. Simulated daylight was provided by fluo-
rescent “grow lights” and all experiments involved a 15:9 h light:dark cycle. Food was provided every other day 
using periphyton shipped from SWRC. Water was filled and kept at the surface of each well to ensure larvae were 
oxygenated. Larvae molt count was conducted every day and exuviae were removed from wells.

Mayfly larval sampling for RNA‑seq.  Because temperature strongly influenced development time, it was 
essential for larvae in the different thermal treatments to be sampled at comparable developmental stages. While 
there are no perfect anatomical features that would allow for this developmental synchronization to be precise, 
the presence of developed but not darkened wing pads was used as a visual guide to sampling at the low soak and 
high soak temperatures of the respective thermal regimes. For the Regimen 1 group larvae were sampled on day 
21.7 and 22.2 of larval development. The median larval emergence time for this thermal treatment was 23.7 days. 
Thus, we estimate that larvae from the 22 °C group were sampled at 92–94% completion of larval development. 
For the Regimen 2 group, larvae were sampled on day 18.2 and 18.7 of larval development. The median emer-
gence time for this thermal treatment was 20.1 days. Thus, we estimate that larvae from the Regimen 2 group 
were sampled at 91–93% completion of larval development. Upon collection, all samples were flash frozen in 
liquid nitrogen and stored at − 80 °C freezer. All samples were packaged with dry ice and sent with overnight 
shipping to North Carolina State University (NCSU; Raleigh, NC) for RNA-seq at the NCSU Genomic Sciences 
Laboratory (GSL). Biological replicates were n = 4 for RNA-seq and n = 6 qPCR analysis.
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RNA‑seq and data analysis.  To prepare samples for RNA-seq studies, total RNA was isolated from N. 
triangulifer following the SV Total RNA Isolation System protocol (Promega, WI). RNA quality was assured with 
Bioanalyzer RNA nano chips (Agilent, CA); Truseq libraries (Illumina, CA) were prepared; and 16 libraries were 
sequenced with paired-end reads using the Illumina NextSeq 500 at the NCSU GSL.

Transcriptome assembly.  Transcriptome assembly and differential expression were performed in consul-
tation with Bioinformatics Core at NCSU Center for Human Health and the Environment (CHHE). The quality 
of sequenced data was assessed using FastQC application, and the adapter sequence and quality trimming was 
preformed using Trimmomatic version 0.3640 with the following parameters (HEADCROP:12, LEADING:20, 
TRAILING:20, SLIDINGWINDOW:30:30, MINLEN:40). Transcriptome de novo assembly were conducted 
using trinity41. The transcriptome sequences were annotated using BLAST + command line utility (blastx and 
blastp; E-value cutoff 1e-5 and max target sequence -1)42 and the Trinotate pipeline (https​://trino​tate.githu​b.io/). 
Since there was no N. triangulifer reference genome and mapping reads to another mayfly, E. danica resulted 
with less than 1% unique mapping, the raw reads were mapped back to the de novo assembled transcriptome. 
The count matrix was generated using align and estimate abundance Perl script in the Trinity software package 
using RSEM abundance estimation method and bowtie2 aligner.

Pairwise analysis.  Differentially expressed genes were determined using the R package DESeq243. The 
Count data were normalized for sequencing depth and RNA composition, specifically the counts divided by 
sample-specific size factors determined by median ratio of gene counts relative to geometric mean per gene.

We fitted a linear model using the treatment levels, and differential expressed genes were identified after apply-
ing multiple testing correction using Benjamini–Hochberg procedure44 , padj < 0.05. Significant differentially-
expressed genes (UniprotKB IDs) were assigned for Gene Ontologty (GO) analysis through comparison with 
annotated protein sequences from Drosophila melanogaster with online web tool PANTHER (https​://geneo​ntolo​
gy.org/). Expression results were validated by conducting qPCR on a subset of genes (Fig. 4). Pathway analyses 
were conducted with two online database: reactome pathway analysis via PANTHER and KEGG pathway analysis 
via DAVID (https​://david​.ncifc​rf.gov/summa​ry.jsp). Both analyses showed similar result, and data presented in 
this study are shown as reactome pathways via PANTHER.

qPCR validation.  To validate the expression results from RNA-seq analysis, we selected 11 genes for confir-
mation by conducting qPCR. We selected genes randomly from several functional categories of interest, includ-
ing a mix of up- and down-regulated genes by our treatments. All primers were designed with IDT PrimerQuest 
Tool (https​://www.idtdn​a.com/Prime​rques​t/Home/Index​) with the following parameters: length of 18–22 nt, 
melting temperature of 60 °C and product size of 150–220 bp. Primers were synthesized by Life technologies, 
USA and were tested using conventional PCR and gel electrophoresis for correct size product. cDNA for qPCR 
was generated from aliquots of the same RNA samples used for RNA-seq with 2 additional biological replicates 
for each treatment. First strand cDNA was synthesized from the same amount of each total RNA by MultiScribe 
MuLV reverse transcriptase using random primers (Applied Biosystems, (ABI), CA) and all thermocycling was 
done using a Bio-Rad iCycler (Bio-Rad, CA). The resulting cDNA samples were diluted 4 × before analysis and 
stored at − 20 °C. Quantitative real-time PCR (qRT-PCR) was performed on an ABI Prism 7700 Sequence Detec-
tion System (Applied Biosystems (ABI), CA) using default parameters. Amplification mixtures consisted of 5 
µL of SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, CA), 10 µM primers, 20 ng template cDNA and 
nuclease free water in a total volume of 10 µL. qRT- PCR conditions were 2 min at 94 °C, followed by 40 cycles 
at 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s. Relative expression of each amplicon was calculated by the 
corrected delta delta Ct method (Pfaffl 2001), with EF1α serving as a reference gene38. Relative levels of EF1α 
were confirmed to be approximately equal across all treatments.

Results
Life history responses in constant temperature regimes..  In constant temperature treatments, sur-
vivorship was 89% at 22° and 78% at 26 °C, but decreased to only 12.8% at 28 °C. No larvae survived to adulthood 
at 30 °C (Fig. 1A). Development time decreased from 24.8 d at 22 °C to 20.6 d at 26 °C, and then was unchanged 
(20.6 vs 21.0 d) between 26 and 28 °C (Fig. 1B). Adult body mass decreased gradually from 1.3 mg at 22 °C to 
1.1 mg at 26 °C and 0.6 mg at 28 °C (Fig. 1C). Note that adult body size (as dry mass) is an excellent predictor of 
fecundity25; Funk, Jackson, Sweeney, unpublished data), and therefore individual fitness. When comparing 26° 
and 28 °C, the dramatic increase in mortality, absence of a decrease in development time, and decrease in adult 
body size establishes 28 °C as a clearly detrimental temperature based on these life history outcomes.

We used this information to rear N. triangulifer under three variable temperature regimens (Regimen 1: diel 
minimum of 19.5 °C and maximum of 24.5 °C, mean 22 °C; Regimen 2: 23.5–28.5 °C, mean 26 °C; Regimen 
3: 25.5–30.5 °C, mean 28 °C) from egg hatch to adult. The responses for survivorship, development time, and 
body size in variable temperature treatments were similar to what was observed in constant temperature treat-
ments – survivorship, development time, and body size decreased as mean temperature increased (Fig. 2A–C).

Molting experiment.  We reared mayflies in well plates so that we could monitor individual larvae on a 
daily basis and quantify the total number and frequency of molts. In two separate trials (trial 1 comparing 18 °C 
and 26 °C, and trial 2 comparing 22 °C and 26 °C), we found that there was no statistical difference in the total 
number of molts required to complete larval development within each trial. In trial 1, larvae averaged 13.4 ± 1.9 
and 14.3 ± 1.3 molts at 18 °C and 26 °C, respectively. In trial 2, larvae averaged 13.5 ± 1.4 and 11.8 ± 1.6 molts 
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respectively. Thus, because warmer temperature reduces development time and body size, there is less time 
between molts (e.g. 13 molts in 30 d vs 21 d), and molts later in development occur at a smaller size.

Life history outcomes in variable vs constant temperatures.  The response to being exposed to 
a variable temperature regime of ± 2.5 °C versus a constant temperature regime depended on the mean tem-
perature examined, and the life history parameter being measured. The variable temperature regime had no 
significant effect on survivorship, development time, and adult body size when mean temperature was 22 °C 
(Fig. 2D,E,F). In contrast when mean temperature was 26 °C, the variable temperature regime had no significant 
effect on survivorship (Fig. 2D), but development time was 9.1% longer (Fig. 2E) while adult body size was 12.8% 
less (Fig. 2F) than in the constant temperature treatment. Finally, survivorship in the variable temperature treat-
ment at 28 °C was 79.2% lower (nearly significant at p = 0.08), development time was 14.3% greater, and adult 
body size was 18.2% smaller relative to the constant temperature treatment at 28 °C. The differences between the 
constant and variable temperature treatments at 28 °C was not always significant due to low survivorship in both 
treatments (i.e., few individuals survived). These results show that daily exposure of larvae to brief periods of 
24.5 °C had no impact on the life history traits measured, but brief periods of 28.5 °C in the variable 26 °C treat-
ment had a negative impact on development time and adult body size, and brief periods of 30.5 °C had a negative 
impact on survivorship, development time, and adult body size. Thus, larvae in warmer, variable temperature 
treatments responded negatively (e.g., reduced survivorship and adult size, increased development time) relative 
to constant temperature treatments, and the negative response intensified as temperature increased. The differ-
ences between variable and constant temperature treatments at 26 °C highlight that time spent at 23.5 °C does 
not compensate for the negative impact of a brief exposure to 28.5 °C.

Differential gene expression in variable thermal regimes.  To better understand the influence of 
variable (diel) thermal regimes on global RNA expression patterns (Fig. 3), we first compared RNA-seq data in 
larvae that were reared entirely within the thermal acclimation zone (Regimen 1: diel cycles between 19.5 °C and 
24.5 °C, daily mean 22 °C) (See Table S1). Remarkably few transcripts (28) were differentially expressed in larvae 
sampled at 19.5 °C vs. 24.5 °C that met our criteria of a false discovery rate (FDR) < 0.05. Of the 28 differentially 
expressed transcripts, 7 were upregulated and 19 were downregulated, but only 17 were named or have known or 
inferred function (A vs B in Fig. 3B). These few genes with known function (Table S1) are largely associated with 
functions related to circadian clock and/or visual functions such as rhodopsin-specific isozyme, peptidyl-prolyl 
cis–trans isomerase (protein folding, possible roles in co-chaperone activities and steroid hormone receptor traf-
ficking), However, no thermal stress related responses were noted in this comparison.

In contrast, when larvae were subjected to daily excursions out the thermal acclimation zone (Regimen 2: 
diel fluctuations between 23.5 and 28.5 °C, daily mean 26 °C), we identified 514 differentially expressed genes, 
with 369 (60%) upregulated and 245 (40%) downregulated genes (C vs D in Fig. 3B) (Table S2). A cross regimen 
(regimen 3) comparison was made between larvae sampled at 24.5 °C in regimen 1, and larvae sampled at 23.5 °C 
in regimen 2. Here we identified 806 differentially expressed genes, with 501 (62%) upregulated and 305 (38%) 
downregulated genes (B vs C in Fig. 3B) (Table S3). A principal components analysis of the gene expression data 
(Fig. 4) shows similarities within regimen 1. However, within regimen 2, responses to 28.5 °C are clearly separate 
from 23.5 °C. For completeness, the other pairwise comparisons are provide in Tables S4−S6.

Figure 1.   Measures (mean ± 1SE) for survivorship (A), development time (B), and adult body size (dry weight) 
(C) across four constant temperature treatments (22, 26, 28, and 30 °C), with statistically significant differences 
(1-way ANOVA with Tukey’s multiple comparison test, p ≤ 0.05) between treatments indicated by different 
letters over bars (a,b,c). Survival, development time, and adult body size identify 28 °C as detrimental relative to 
26 °C and/or 22 °C. Each mean represents the results for 7–9 replicate rearing jars, each containing 50 larvae.
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Functional comparisons of diel fluctuations outside of the thermal acclimation zone.  To fur-
ther analyze and distinguish between functional groups of the differentially expressed genes that responded to 
transient daily thermal challenge (Fig. 3; Regimen 2), we separated the gene ontology (GO) enrichment anal-
ysis into lists of up- and down-regulated genes (Table  S3). Comparing the daily high soak (28.5  °C) to low 
soak (23.5 °C) samples in regimen 2, GO enrichment analysis through web-based tool (PANTHER) identified 
up-regulated genes associated with GO enrichment analyses for biological processesof sterol transport, chitin 
metabolic process, lipid catabolic process, chitin-based cuticle development, carbohydrate metabolic process 
and nucleobase-containing compound metabolic process (Fig. 5 upper panel, red circles). Other up-regulated 
processes were associated with clock/time of day as described above and included deactivation of rhodopsin 
mediated signaling and phototransduction. The GO enrichment analysis identified down-regulated genes with 
major GO enrichment analyses for biological processesin N-glycan processing (packaging of monosaccharides) 
and encapsulation of foreign target (Fig. 5 upper panel, blue circles). Reactome pathway analysis combining 
both up- and down-regulated genes suggested that pathways involved in lipid and lipoprotein metabolism are 
significantly enriched during thermal challenge. Of the genes residing in the pathway, 63% were up-regulated 
while 37% were down regulated.

Functional comparisons of the residual effects of chronic but transient thermal stress.  To 
assess the lingering or persistent effects of transient daily forays into challenging temperatures, we compared 

Figure 2.   Measures (mean ± 1SE) for survivorship (A), development time (B), and adult body size (dry weight) 
(C) across three variable temperature treatments (22, 26, and 28 °C). Each variable temperature treatment 
consisted of means from 4 replicate rearing jars, each containing 50 larvae. Statistically significant differences 
(1-way ANOVA with Tukey’s multiple comparison test, p ≤ 0.05) between variable treatments indicated by 
different letters over bars (a,b,c). Difference between constant and variable temperature treatments expressed as 
% difference (A–C relative to Fig. 1A–C) for survivorship (D), development time (E), and adult body size (F). 
Statistical significance (Student’s t-test) indicated by ns (p > 0.05), * (p ≤ 0.05) or ** (p ≤ 0.01).
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RNA-seq profiles of larvae sampled at 23.5 °C (the low soak (cool) portion of regimen 2) with those sampled 
at 24.5 °C (the high soak (hot) portion of regimen 1) (See B-C comparison from Fig. 3) (Table S4). GO enrich-
ment analysis identified up-regulated genes associated with several biological process such as neurotransmit-
ter secretion, synaptic vesicle transport/cycle/organization, and lipid biosynthetic process (Fig. 4, lower panel, 
red circles). Down-regulated genes were enriched in GO enrichment analyses for biological processes such as 
ATP synthesis coupled proton transport, mitochondrial electron transport gluconeogenesis, glycolytic process, 
drug catabolic process, and determination of adult lifespan (Fig. 4, lower panel, blue circles). Reactome pathway 
analysis combing both up and down-regulated genes suggested enrichment in pathways including acetylcholine 
neurotransmitter release cycle, formation of ATP by chemiosmotic coupling, complex l biogenesis, PLC beta 
mediated events and glycolysis. Of the pathways involved, 80% and 71% of the genes are up-regulated in the 
acetylcholine neurotransmitter release cycle and the PLC beta mediated events, respectively. Genes involved in 
metabolism pathways- formation of ATP by chemiosmotic coupling, complex l biogenesis and glycolysis, are all 
strongly down-regulated (92%, 84% and 85%, respectively).

qPCR confirmation.  To validate the RNA sequencing results, we used separate aliquots of the biologi-
cal samples for sequencing along with two additional samples, and randomly selected 11 genes from either 
regime 2 or regimen 3 pairwise-GO enrichment analysis groups for quantitative real-time PCR confirmation. 
The genes chosen were significantly differentially expressed from both groups. The gene set is comprised of dif-
ferent functional groups and included 5 down-regulated genes and 6 upregulated genes. For both RNAseq and 
qPCR shown in Fig. 6A, genes cht 6 isoform C, probable chitinase 10, cuticle protein 66D, aromatic-L-amino-
acid decarboxylase and alpha amylase B expressions are pairwise comparison of daily high soak (28.5 °C) relative 

Figure 3.   (A) Thermal regimens for rearing and sampling strategy for RNA-seq analyses. Circled letters 
represent the sampling temperatures for mature larvae reared for their entire larval development period. 
The 22 °C mean temperature regime (regimen 1) oscillated daily between 19.5 and 24.5 °C. The 26 °C mean 
temperature regime (regimen 2) oscillated daily between 23.5 and 28.5 °C. (B) The numbers of differentially 
expressed genes associated with each pairwise comparison.

Figure 4.   PCA plot showing similarity within Regimen 1 (19.5 and 24.5 °C) whereas the Regimen 2 shows 
strong effects of exposure to 28.5 °C. This transient 28.5 °C exposure appears to influence gene expression in the 
23.5 °C group.
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to low soak (23.5 °C) in regime 2; whereas genes bcDNA.GH02901, elongation of very long chain fatty acids 
protein, hexosaminidase 1 isoform A, poly (ADP-ribose) glycohydrolase and cytochrome c oxidase subunit 7A 
are pairwise comparison of regimen 3: 23.5 °C relative to 24.5 °C. EF1α was used as an internal control for qPCR 
to normalize expression before pairwise comparison. While Fig. 6A showed that our qPCR results had relatively 
stronger expression levels in some genes (we added two more biological replicates in addition to those sent for 
RNAseq for qPCR analysis), overall the RNA-seq and qPCR results were consistent. Figure 6B shows the rela-
tionship between RNA-seq and qPCR gene expression (y = 1.245x − 0.31, R2 = 0.90). Primer sequences used for 
this validation are provided in Table S5).

Discussion
The changing thermal regimes of freshwater ecosystems require that we better understand species responses to 
temperature at different time scales (e.g. hourly, daily, seasonally, annually). Recent efforts have made progress in 
our understanding of both short-term36,37 and long-term38 thermal challenge in N. triangulifer. Even so, the effect 
of ecologically relevant diel thermal variation with daily excursions into stressful temperatures on long-term 
survival and development remains poorly understood. It was critical for this study to establish an unambigu-
ously stressful temperature in N. triangulifer (28 °C) such that we could explore the consequences of ecologically 
relevant transient exposures at both the levels of transcript expression and associated life history outcomes.

Previous studies in this species explored physiological processes associated with chronic thermal stress 
and indicated that lipid depletion, reduced trehalose synthase and increased histamine and heat shock protein 
(HSP) gene expression were associated with chronic thermal stress38. Here we opted for the RNA-seq approach 
so that we could obtain an unbiased view of transcript expression changes and assess even low-abundance 
transcripts45–49.

Within regimen comparisons.  Few (28) transcripts were differentially expressed in Regimen 1, where 
rearing temperatures fluctuated well within the typical temperatures experienced in the source population of 
this lab-reared clone. In contrast, mayflies reared under Regimen 2—with daily forays outside the thermal accli-
mation zone (diel fluctuations between 23.5 and 28.5 °C, daily mean 26 °C) resulted in a total of 614 signifi-
cantly differentially expressed transcripts, with more transcripts being upregulated at the warmer temperature 
than down-regulated. Upregulated processes included the deactivation of rhodopsin mediated signaling and 
phototransduction. Rhodopsin has long been known as a light-sensitive receptor protein involved in visual 
phototransduction50. Interestingly, research have also showed that the rhodopsin signaling pathway is involved 
in light-independent roles, such as thermosensory signaling51. Moreover, a daily temperature oscillation (< 5 °C) 
within a physiological range synchronizes circadian rhythms in D. melanogaster and can also be independent 

Figure 5.   Gene ontology (GO) enrichment analysis results showing GO enrichment analyses for biological 
processes affected in regimen 2 (top panel and C–D comparison from Fig. 3), and regimen 3 (bottom panel, 
B–C comparison from Fig. 3). Biological functions are represented as upregulated (red) and downregulated 
(blue) and are size scaled based on calculated fold enrichment of our differentially expressed genes dataset 
compared to drosophila database.
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from light-entrainable oscillators52,53. However, we suspect that in our case the enriched biological function is 
independent from thermal effects. Our sampling times and thermal fluctuation range (5 °C) were the same in 
pairwise comparison groups both within and outside the thermal acclimation zone. While transcript numbers 
were not sufficient enough for GO enrichment analyses for biological processes in the Regimen 1 comparison, 
some individual transcripts related to circadian clock and/or visual functions were also differentially expressed. 
This is not surprising because sampling time A is just after lights on (sunrise) and sampling time B is just before 
lights off (sunset), and are timed to important elements in a circadian rhythm or diel cycle. Therefore, this sug-
gests that these GO enrichment analyses for biological processes observed for the variable 22 °C treatment are 
independent from thermal effects.

During the transient thermal stress in regimen 2, there was a reduction of transcripts related to N-glycan 
processing in the GO enrichment analyses for biological processes. N-glycan plays an extremely important role 
in proper protein folding, and the data suggests that this daily thermal push, while transient, is stressful enough 
to effect physiological processes at the molecular level in N. triangulifer. This is also consistent with our RNAseq 
data as well as previous findings, that chaperone protein HSP90 was upregulated under thermal stress to aid for 
proper protein folding36. Increased expression of transcripts associated with lipid catabolism and carbohydrate 
metabolism was observed during transient thermal stress. Reactome pathway analysis suggests that metabolism 
of lipids and lipoproteins is highly enriched, and that more than half of the transcripts involved in the pathway 
are enriched, supporting the GO results. These responses are consistent with previous metabolomic studies of 
chronic heat stress in N. triangulifer36 where depletion of certain lipids was observed. We did not find evidence 
of hypoxia signaling at chronic thermal limits (see54–56).

Transient thermal stress in regimen 2 also simultaneously stimulated chitin metabolic processes and chitin- 
based cuticle development. The exoskeleton of insects is an assembly of chitin and cuticle proteins57. Interestingly, 
nearly half of the top 20 most upregulated transcripts in this pairwise comparison group were related to chitin 
catabolism or cuticle development. It has been suggested that cuticle is sensitive to temperature changes58–61, and 
these changes in cuticular transcript expression are intriguing because our separate molting experiments suggest 
that the number of molts required to reach adulthood is “fixed”, with warmer temperatures simply accelerating 
the process. Under warmer conditions, larvae molt more frequently and at smaller body sizes than larvae reared 
under cooler conditions. Thus, molting is not determined by body size. It is interesting that even brief thermal 
ramping stimulates molting. Camp et al.62 observed that larvae were more likely to molt when put on the thermal 
ramp than when maintained at static temperatures.

Hormone signaling (i.e. juvenile hormone and ecdysteriods) and its involvement with cuticle proteins in 
regulating insect molting process has been well studied63–65. However, the linkage between thermal effects and 
molting frequency (perhaps through hormone signaling up-regulating cuticle protein genes or other unknown 
physiological mechanisms) has not been elucidated. The transcriptome analysis in our study may have revealed 
that thermal stress affects chitin catabolic process and molting cycle, still it remains unknown why mayflies tend 
to molt more frequently at warmer temperatures when the process of molting itself requires high energy cost. 

Figure 6.   qPCR analysis confirming transcriptomic results. (A) The 11 genes selected for qPCR analysis 
showed overall consistency with RNA-seq despite some of the gene expression levels appeared stronger. (B) 
Correlation between RNA-seq and qPCR gene expression. EF1a is used as a housekeeping gene to calculate 
relative fold change.
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Regardless, the findings that total molts per life cycle is relatively fixed and time between molts decreases as tem-
perature increases may help explain why mayflies result in smaller body size under warm temperatures (Fig. 1).

Across regimen comparisons.  A second goal of our study was to understand lingering effects of chronic 
but transient thermal stress. To achieve this goal, we compared transcript expression profiles between the 
warmer temperature of Regimen 1 (24.5 °C) and the cooler recovery temperature of Regimen 2 (23.5 °C) (regi-
men 3, e.g. the BC comparison in Fig. 3). We were surprised by how many genes were differentially expressed 
between these groups.

We found that the chronically stressed population had significant reductions in the expression of transcripts 
associated with ATP synthesis and the mitochondrial electron transport chain relative to the unstressed popu-
lation. Both gluconeogenesis and glycolytic processes were simultaneously lower in the chronically stressed 
population. However, lipid biosynthesis was actually upregulated in the chronically stressed population, which is 
interesting because lipid catabolism was experienced in this population during the thermal challenge at 28.5 °C. 
It may be that the increased activity of lipid biosynthesis at the recovery temperature reflects a compensatory 
response to the heat stress. The finding of downregulation in energy metabolism was consistent with our previ-
ous study where we analyzed targeted metabolite end products in N. triangulifer exposed to chronic thermal 
stress statically38.

The other major difference between the two treatments was in the increased activity of neurotransmitter 
secretion, synaptic vesicle cycle and transport, and regulation of membrane potential. Many studies have pro-
vided evidence of hormonal and neurotransmitter change from the endocrinological aspect of insect stress 
response. Davenport and Evans66 linked the secretion of biogenic amines, which can function as neurohor-
mones in response to stress. However, the stress response reaction depends on the speed of carbohydrate and 
lipid metabolic responses. The data from our pairwise comparison group in regimen 2 may suggest that while 
temperature rises slowly to a stressful level, the increase of energy-related metabolic processes to cope with that 
increasing thermal challenge may increase slowly as well. This helps explain the absences of neurotransmission 
related GO enrichment analyses for biological processesin regimen 2 (Figs. 3, 5). Interestingly, in our previous 
study where mayflies were subjected to chronic thermal stress, we found an increase in histamine and dopamine, 
both biogenic amines play the role as neurotransmitter38. Consistent with our current findings in this study, 
these data suggest that the thermal stress-induced neurological activities are also affected under chronically 
stressful conditions.

Life history outcomes.  We found that in regimen 1 (within the thermal acclimation zone), it did not 
matter if larvae experience constant vs. variable temperature. Survival, development time and adult sizes were 
not statistically different. However, when larvae are transiently but repeatedly pushed outside their thermal 
acclimation zone (regimen 2), both development time and fitness (inferred from adult body sizes) are negatively 
affected. A more detailed treatment life history outcomes across more thermal treatments is needed, however 
these results suggest that time spent at harmful temperatures is not offset by time spent at more ideal tempera-
tures.

Together, our study shows that N. triangulifer larvae do not recover from daily forays into thermally chal-
lenging conditions. RNA-seq and GO enrichment analysis support our previous findings of energy source re-
allocation under thermal stress. In addition, the study also emphasizes the role of molting in mediating thermal 
performance. Our study helps elucidate how a modest increase in daily thermal fluctuation affects transcript 
expression and its associated GO enrichment analyses for biological processes and ultimately life history out-
comes in N. triangulifer and likely other aquatic insects.
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