Skip to main content
. 2020 Nov 5;11:5595. doi: 10.1038/s41467-020-19354-z

Table 5.

Overall accuracies of raw and preprocessed clinical spectra classification by SVM, RF, and LDA.

Datasets # classes Applied to raw datasets Applied to preprocessed datasets
Best CNNs SVM RF LDA SVM RF LDA
Canine sarcoma 2 0.98 ± 0.00a 0.77 ± 0.02 0.96±0.01 0.71 ± 0.02 0.76 ± 0.16 0.96±0.01 0.93 ± 0.02
12 0.99 ± 0.00b 0.61 ± 0.00 0.65±0.04 0.41 ± 0.01 0.52 ± 0.19 0.65±0.01 0.60 ± 0.04
Microorganisms 3 0.99 ± 0.00c 0.45 ± 0.03 0.77 ± 0.03 0.90±0.01 0.87 ± 0.02 0.95±0.02 0.88 ± 0.02
5 0.99 ± 0.00c 0.54 ± 0.35 0.86±0.01 0.67 ± 0.13 0.19 ± 0.09 0.87±0.02 0.85 ± 0.03
Human ovary 1 2 0.98 ± 0.00c 0.53 ± 0.04 0.84±0.05 0.65 ± 0.04 0.66 ± 0.24 0.91 ± 0.02 0.93±0.02
Human ovary 2 2 0.99  ± 0.00b 0.60 ± 0.06 0.81±0.01 0.71 ± 0.03 0.60 ± 0.05 0.88 ± 0.03 0.96±0.00

The best result for each task (accuracy ± standard variation over 10 independent iterations) is indicated in boldface.

aThe best CNNs from scratch.

bThe best CNNs after cumulative learning.

cThe best CNNs after transfer learning.