Table 5.
Overall accuracies of raw and preprocessed clinical spectra classification by SVM, RF, and LDA.
| Datasets | # classes | Applied to raw datasets | Applied to preprocessed datasets | |||||
|---|---|---|---|---|---|---|---|---|
| Best CNNs | SVM | RF | LDA | SVM | RF | LDA | ||
| Canine sarcoma | 2 | 0.98 ± 0.00a | 0.77 ± 0.02 | 0.96 ± 0.01 | 0.71 ± 0.02 | 0.76 ± 0.16 | 0.96 ± 0.01 | 0.93 ± 0.02 |
| 12 | 0.99 ± 0.00b | 0.61 ± 0.00 | 0.65 ± 0.04 | 0.41 ± 0.01 | 0.52 ± 0.19 | 0.65 ± 0.01 | 0.60 ± 0.04 | |
| Microorganisms | 3 | 0.99 ± 0.00c | 0.45 ± 0.03 | 0.77 ± 0.03 | 0.90 ± 0.01 | 0.87 ± 0.02 | 0.95 ± 0.02 | 0.88 ± 0.02 |
| 5 | 0.99 ± 0.00c | 0.54 ± 0.35 | 0.86 ± 0.01 | 0.67 ± 0.13 | 0.19 ± 0.09 | 0.87 ± 0.02 | 0.85 ± 0.03 | |
| Human ovary 1 | 2 | 0.98 ± 0.00c | 0.53 ± 0.04 | 0.84 ± 0.05 | 0.65 ± 0.04 | 0.66 ± 0.24 | 0.91 ± 0.02 | 0.93 ± 0.02 |
| Human ovary 2 | 2 | 0.99 ± 0.00b | 0.60 ± 0.06 | 0.81 ± 0.01 | 0.71 ± 0.03 | 0.60 ± 0.05 | 0.88 ± 0.03 | 0.96 ± 0.00 |
The best result for each task (accuracy ± standard variation over 10 independent iterations) is indicated in boldface.
aThe best CNNs from scratch.
bThe best CNNs after cumulative learning.
cThe best CNNs after transfer learning.