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Abstract
Information processing under conditions of uncertainty requires the involvement of cognitive control. Despite behavioral
evidence of the supramodal function (i.e., independent of sensory modality) of cognitive control, the underlying neural
mechanism needs to be directly tested. This study used functional magnetic imaging together with visual and auditory
perceptual decision-making tasks to examine brain activation as a function of uncertainty in the two stimulus modalities.
The results revealed a monotonic increase in activation in the cortical regions of the cognitive control network (CCN) as a
function of uncertainty in the visual and auditory modalities. The intrinsic connectivity between the CCN and sensory
regions was similar for the visual and auditory modalities. Furthermore, multivariate patterns of activation in the CCN
predicted the level of uncertainty within and across stimulus modalities. These findings suggest that the CCN implements
cognitive control by processing uncertainty as abstract information independent of stimulus modality.
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Introduction
The human brain receives and processes a vast amount of
information from multiple sensory modalities (e.g., visual and
auditory), but only a fraction of the information reaches the
conscious mind. Cognitive control is the psychological mecha-
nism that coordinates mental operations under conditions of
uncertainty for the selection and prioritization of information to
be processed (Fan 2014; Wu et al. 2018; Wu, Wang, et al. 2019b).
An information theory account of cognitive control proposes
that the role of the mechanism is to encode and process abstract
information regarding uncertainty that can be quantified in

units of information entropy (Fan 2014). Behavioral evidence of
significant correlation between conflict effects in visual and
auditory tasks suggests a supramodal mechanism of cognitive
control (Spagna et al. 2015; Spagna, Kim, et al. 2018b). However,
the neural framework that supports the supramodal mechanism
of cognitive control is still not well understood.

Neuroimaging studies have shown the common involvement
of a large-scale network in cognitive control across sensory
modalities and cognitive domains (see Wu, Chen, et al. 2019a,
for our recent meta-analysis). This cognitive control network
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(CCN) (Niendam et al. 2012; Fan et al. 2014; Wu et al. 2018; Wu,
Chen, et al. 2019a) is composed of three subnetworks: 1) the
frontoparietal network that includes the frontal eye field (FEF),
supplementary eye field, middle frontal gyrus (MFG), areas near
and along the intraparietal sulcus (IPS), and superior parietal
lobule (Corbetta 1998; Fan et al. 2014); 2) the cingulo-opercular
network comprising anterior cingulate cortex (ACC) and ante-
rior insular cortex (AIC) (Dosenbach et al. 2007, 2008); and 3)
a subcortical network involving thalamus and basal ganglia
(Rossi et al. 2009; Fan et al. 2014; Koziol 2014). The involvement
of the CCN in uncertainty processing has been demonstrated
for the visual (e.g., Farah et al. 1989; Corbetta 1998; Colby and
Goldberg 1999; Macaluso et al. 2002; Pessoa et al. 2003; Reynolds
and Chelazzi 2004; Knight 2007; Silver and Kastner 2009; Fan
et al. 2014; Wu et al. 2018) and auditory (e.g., Salmi et al. 2009;
Westerhausen et al. 2010; Green et al. 2011; Donohue et al.
2012; Kong et al. 2014; Lee et al. 2014; Costa-Faidella et al. 2017)
modalities. Furthermore, within-subject conjunction analyses
of specific cognitive control functions (e.g., conflict processing
and response inhibition) revealed spatially overlapping regions
in the CCN associated with uncertainty processing in both the
visual and auditory modalities (Laurens et al. 2005; Roberts and
Hall 2008; Walther et al. 2010; Walz et al. 2013; Mayer et al. 2017).
However, the potential mechanisms for the CCN to encode and
process information uncertainty from different modalities in
overlapping regions need to be further examined.

From a systems biology perspective, uncertainty is encoded
in protocols that constrain the neural architecture of the CCN to
functionally connect the subnetworks and regions (Doyle and
Csete 2011). It is unknown whether uncertainty in information
received from different modalities is encoded and processed by
the CCN as multiprotocol representations comprising distinct
patterns of modality-specific neuronal coupling between
regions or as cross-protocol representations supported by the
same pattern of neuronal coupling between regions. Moreover,
individual regions within the CCN may encode information
as either multimodal representations supported by distinct
populations of modality-specific neurons or as more abstract
cross-modal representations supported by a single modality-
independent group of neurons (Fairhall and Caramazza 2013;
Simanova et al. 2014; Kaplan et al. 2015; Corradi-Dell’Acqua
et al. 2016; Handjaras et al. 2016; Wurm et al. 2016; Alizadeh
et al. 2017; Jung et al. 2018). Little is known about whether
the CCN encodes information from multiple modalities into
abstract neural representations of uncertainty to support the
supramodal function of cognitive control.

This study used functional magnetic resonance imaging
(fMRI) together with visual and auditory perceptual decision-
making tasks in a within-subjects design to examine the neural
mechanisms for the supramodal processing of uncertainty
in the CCN. The level of uncertainty (and the corresponding
cognitive control load) was manipulated in the tasks by
varying the stimulus congruency and was quantified as bits
of information entropy. The two tasks incorporated a delayed-
response approach to control for potential motor confounds.
The hypothesis that the CCN supports the supramodal
processing of uncertainty would be supported by findings of 1)
variations in activation in regions of the CCN as a function of the
level of uncertainty that are independent of sensory modality;
2) cross-protocol representations of uncertainty manifested in
similar architectures of intrinsic connectivity within the CCN
and between the CCN and modality-specific sensory regions
for the visual and auditory tasks; and most importantly 3)

cross-modal representations of uncertainty evidenced by
patterns of activation in regions of the CCN that predict the
level of uncertainty both within and across sensory modalities.

Materials and Methods
Participants

Participants included 30 adult volunteers (15 females and 15
males; mean ± standard deviation [SD] age: 26.3 ± 4.5 years,
range = 19–37 years) with no history of brain injury or psy-
chiatric and neurological disorders. Data from nine additional
participants were excluded from the analyses due to missing
files (n = 1) and poor behavioral performance (i.e., overall hit
rate <80%; n = 8). A conservative exclusion criterion of <80%
overall hit rate in both the visual and auditory tasks was chosen
to assure data quality. A low hit rate in the tasks may indicate
that participants were not paying attention to the task or were
not be able to hear the tones clearly in the auditory task due
to the noisy environment during the MRI scan. The study
was approved by the institutional review boards of The City
University of New York and the Icahn School of Medicine at
Mount Sinai (ISMMS). Written informed consent was obtained
from all study participants. The participants were compensated
for their participation in the study.

Sequential Majority Function Tasks

The original majority function task was developed to paramet-
rically manipulate the level of uncertainty during cognitive con-
trol (Fan et al. 2008, 2014). This task was modified to present the
stimuli set sequentially rather than simultaneously to accom-
modate the auditory stimuli. The visual (SMFT-V) and auditory
sequential majority function tasks (SMFT-A) each consisted of
two 954-s runs that all began and ended with 30-s period of
fixation. Each run contained 72 trials.

Each trial in the SMFT-V (Fig. 1a) began with a 1-s fixation
period, followed by the sequential presentation of 5 black arrows
at the center of the screen. Each arrow was displayed for 400 ms
followed by a 100-ms inter-stimulus interval (ISI) of fixation. A
majority of the five sequentially presented arrows were either
left or right pointing in each trial (majority factor: left vs. right).
The ratio of arrows pointing in the majority direction versus
the minority direction varied among 5:0, 4:1, and 3:2. Left- and
right-pointing arrows in the 4:1 and 3:2 trials were presented in
random order. The 5-arrow sequence was followed by a period
of fixation varying from 2.1 to 5.1 s (mean = 3.1 s), after which
a red probe arrow was displayed. The direction of the probe
arrow matched the majority direction of the 5-arrow sequence
in half of the trials. Participants were instructed to press a button
with their right index finger when the direction of the probe
arrow matched the majority direction of the 5-arrow sequence
and to make no response if the direction of the probe did not
match the majority direction. The responses window was 2.5 s
starting at probe onset. The matching trials served as catch trials
to monitor whether participants maintained attention to the
task and were able to hear the stimuli clearly. Once a response
was made, the probe arrow was replaced by fixation for the
remaining time of the response window and was then followed
by a post-trial delay period (jittered from 1 to 8 s, mean = 3 s).
Each trial lasted from 9 to 16 s in duration (mean = 12 s). Each run
included 24 trials per ratio (i.e., 5:0, 4:1, 3:2), evenly split between
trials with left and right majority direction. Trial order in each
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Figure 1. Schematic of the SMFT. (a) The visual task (SMFT-V). (b) The auditory task (SMFT-A). S, stimulus; ISI: inter-stimulus interval; M, matching condition; NM,
nonmatching condition; H, high-pitched tone; L, low-pitched tone. Central panels: Timeline of the stimuli in one trial for each task. Participants were required to
indicate whether the probe matched the majority direction or pitch of the stimulus sequence by pressing a response button only in the matching condition. Responses

had to be made within a 2500-ms window. Corner Panels: Schematic of the 3 (Ratio: 5:0 vs. 4:1 vs. 3:2) × 2 (Match: M vs. NM) design for each task. One possible stimulus
sequence was illustrated for each ratio condition.

run was randomized across majority direction, ratio, and probe
type.

The design and trial structure of the SMFT-A (Fig. 1b) were
identical to the SMFT-V however, in the SMFT-A, the visual
stimuli were replaced with auditory tones of 300 ms duration
followed by a 200-ms ISI of fixation, and the post-probe fixation
period was fixed to 2200 ms. The auditory stimuli consisted of
eight high-pitched tones with frequencies ranging from 980 to
1085 Hz (i.e., 980, 995, 1010, 1025, 1040, 1055, 1070, and 1085 Hz)
and eight low-pitched tones with frequencies in the 415 to
520 Hz range (i.e., 415, 430, 445, 460, 475, 490, 505, and 520 Hz). For
the 5 tones in each trial, high-pitched and/or low-pitched tones
were randomly sampled (without replacement) from the tone
sets. The probe tone was either a high-pitched tone (1100 Hz)
or a low-pitched tone (400 Hz). Participants were instructed to
press a button with their right index finger when the pitch of
the probe tone (i.e., high vs. low) matched the majority pitch of
the 5-tone sequence and to make no response if the pitch of the
probe tone did not match the majority pitch.

Estimation of Cognitive Control Load (in Information
Entropy)

Information theory was applied to estimate the cognitive control
load (i.e., amount of cognitive control needed to process uncer-
tainty to reach a final decision) of the different conditions in
the decision-making tasks. Cognitive control load was jointly
determined by both the stimulus congruency and the cognitive
strategy adopted to process the stimulus (Fan et al. 2008, 2014;

Fan 2014). The two most plausible strategies to search for the
majority of items during the sequential presentation of stimuli
make different demands on cognitive control: 1) an exhaustive
search of each of the five arrows or tones sequentially prior
to calculation of the majority, or 2) a self-terminating search
that concluded once the majority could be determined (i.e.,
when 3 stimuli of the same direction/pitch in the sequence were
presented). Each arrow or tone of the stimulus sequence entailed
an independent decision between two alternatives (i.e., left vs.
right pointing or high vs. low pitched) for both search strategies.
The exhaustive search requires a constant 5 binary decisions
per trial regardless of the congruency, while the self-terminating
search requires an average of 3, 3.6, and 4.5 binary decisions to
determine the majority in the 5:0, 4:1, and 3:2 ratio conditions,
respectively. Uncertainty in a choice selection can be quantified
as information entropy (H) in unit of bit as H = log2(n), where n
is the number of equiprobable alternative choices. Each binary
decision corresponds to log2(2) = 1 bit of information entropy.
Thus, cognitive control load is 5 bits of information entropy for
all congruency conditions if the exhaustive search strategy is
adopted, while it increases with the level of incongruence if
the self-terminating search strategy is adopted, with respective
means of 3, 3.6, and 4.5 bits of information entropy for the 3 ratio
conditions, respectively.

The total cognitive control load for each trial gauges the
demands imposed by binary decisions for each single stimulus
but may also reflect demands imposed by evidence accumu-
lation and working memory. The exhaustive search requires a
constant updating of 5 items in working memory regardless of
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the stimuli congruency. In contrast, the self-terminating search
may require updating the judgment of the majority (i.e., the
ratio) after processing each stimulus without maintaining the
representation of each specific stimulus in working memory.
Thus, the demands imposed by updating a subprocess of cog-
nitive control (Miyake et al. 2000; Chen et al. 2019; Wu, Chen,
et al. 2019a) may increase monotonically with the level of incon-
gruence. Alternatively, the self-terminating search may engage
working memory to maintain each stimulus in the series and
involve a decision-making stage after processing each stimu-
lus to determine whether the number of stimuli in the same
direction/pitch in working memory has reached the majority.
The decision-making stage engages the central executive com-
ponent of working memory (Baddeley 2018), which is a cognitive
construct that activates the CCN (Wu, Chen, et al. 2019a). In this
case, the demand imposed by decision-making in working mem-
ory would also increase monotonically with the level of incon-
gruency. Therefore, the total cognitive control load increases
monotonically with the level of incongruency when taking both
updating and working memory into account, with a range even
greater than 1.5 bits that accounts for only the number of binary
decisions.

This task has advantages over classical cognitive control
tasks. The ∼1.5 bits of cognitive control load increase in this
task is greater than that found in such classical cognitive con-
trol tasks as the flanker conflict task (Eriksen and Yeh 1985)
and the Stroop task (Stroop 1935), which engender less than
or maximum 1 bit increase in uncertainty for the incongruent
condition compared to the congruent condition (Fan 2014). This
greater increase in cognitive control load together with a para-
metric design enhanced the detection power of brain regions
and networks involved in cognitive control.

fMRI Data Acquisition

Participants were scanned on a 3T Siemens Magnetom Skyra
system with a 16-channel phase-array coil (Siemens, Erlangen,
Germany). All images were acquired in the axial plane parallel
to the anterior commissure–posterior commissure (AC–PC)
line. Head movement was minimized with foam padding. Four
runs of 462 T2∗-weighted gradient-echo echo-planar images
(EPI) depicting the blood oxygenation level-dependent signal
(time repetition [TR] = 2000 ms, time echo [TE] = 27 ms, flip
angle = 77◦, field of view [FOV] = 240 mm, matrix size = 64 × 64,
voxel size = 3.75 × 3.75 × 4 mm, 40 axial slices of 4 mm thickness
with no skip) were acquired during the scan session, with the
first two runs for the SMFT-V and the last two runs for the
SMFT-A. Each run began with two dummy volumes before the
onset of the task to allow for equilibration of T1 saturation
effects. A high-resolution T1-weighted anatomical volume of
the whole brain was acquired with a magnetization-prepared
rapid gradient-echo sequence (TR = 2200 ms, TE = 2.51 ms,
flip angle = 8◦, FOV = 240 mm, matrix size = 256 × 256, voxel
size = 0.9 × 0.9 × 0.9 mm, 176 axial slices of 0.9 mm thickness
with no skip).

Procedure

The task was compiled and run using E-Prime software (RRID:
SCR_009567; Psychology Software Tools, Pittsburgh, PA). Partici-
pants practiced one run of each task, first on a desktop PC and
then in an MRI simulator. During the actual scan, stimuli were
projected onto a screen mounted at the back of the magnet

bore using a liquid crystal display projector. The length of the
arrows in the SMFT-V was 2.5 cm on the screen with a viewing
distance of 238 cm (visual angle = 0.6◦). The auditory tones in the
SMFT-A task were presented in both ears using MRI-compatible
headphones (Avotec Audio System SS-3300 with a Persaio MRI
noise cancellation system); the amplitude of all tones was con-
stant. Participants responded with the index finger of the right
hand using a fiber optic button system (BrainLogic, Psychology
Software Tools).

Behavioral Data Analysis

For the 30 participants, the percentage of correct responses was
calculated separately for each task condition and analyzed with
a 2 (Task: visual vs. auditory) × 3 (Ratio: 5:0 vs. 4:1 vs. 3:2) × 2
(Probe: matching vs. nonmatching) repeated measures analysis
of variance (ANOVA). Reaction time (RT) was calculated for cor-
rect responses on matching trials only because no response was
required on nonmatching trials. Individual RTs exceeding 3 SD
from the mean of the corresponding condition were considered
outliers and were excluded from the analyses of RT. Mean RT was
analyzed using a 2 (Task: visual vs. auditory) × 3 (Ratio: 5:0 vs. 4:1
vs. 3:2) repeated measures ANOVA. Follow-up comparisons were
conducted with a Bonferroni correction. Confidence interval in
within-subject design (Cousineau 2005) was computed for each
condition.

Image Preprocessing and General Linear Modeling

Event-related fMRI analyses were conducted using statistical
parametric mapping software (SPM 12, RRID: SCR_007037; Wel-
come Trust Centre for Neuroimaging, London, UK). T1 images
and EPI images were manually adjusted to align with the AC–PC
plane, if necessary. For each participant, the EPI image volumes
were realigned to the first volume in the series, corrected for
the staggered acquisition of slices, coregistered to the T1 image
using normalized mutual information coregistration, spatially
normalized to a standardized template with a resampled voxel
size of 2 × 2 × 2 mm, and finally spatially smoothed with a
Gaussian kernel of 8 mm full-width half-maximum.

Separate general linear models (GLMs) were conducted to
identify brain regions that support cognitive control in the visual
and auditory modalities. Participant-specific GLM-fitted beta
weights to 6 regressors representing expected neural responses
to the 2 (Match: matching vs. nonmatching) × 3 (Ratio: 5:0 vs.
4:1 vs. 3:2) task conditions on trials with correct responses. The
vectors for each condition were time-locked to the onsets of
the first arrow or tone in the stimulus sequences and had a
duration of 2.5 s for each event. Two additional vectors for the
onset of probes of the matching and nonmatching responses
were also generated. Nuisance vectors were entered when nec-
essary for trials with incorrect responses separately in each task
condition, as well as for the corresponding probes in each match
condition, for a maximum of 8 nuisance regressors per run.
These vectors were convolved with a standard hemodynamic
response function (HRF) (Friston et al. 1998) to generate the
corresponding regressors and were entered into the GLM. The six
motion parameters generated during realignment and sessions
(dummy coded) were also entered as covariates of no interest.
Low-frequency signal drift was removed using a high-pass filter
with a 128-s cutoff and serial correlations were estimated with
an autoregressive AR(1) model. The GLM generated an image of
parameter estimates (beta image) for each regressor.
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Appropriate orthogonal polynomial contrasts were applied
to the beta images to test for brain regions that 1) showed
monotonic increases or decreases in activation as a function
of cognitive control load (conjunction of 4:1 minus 5:0 and 3:2
minus 4:1 contrasts), 2) supported task performance in general
(contrast of all stimuli-locked regressors minus baseline), and 3)
were involved in motor-related responses (contrast of matching
probes minus nonmatching probes). In addition, brain activation
associated with the contrast of matching minus nonmatch-
ing stimulus sets was also examined to test whether motor
programming and preparation impacts activation during the
processing of the stimulus sequences. These analyses resulted
in four images of contrast estimates for each participant.

The images of contrast estimates for all participants were
entered into second-level group analyses conducted with sep-
arate random-effect GLMs to test the four brain effects of inter-
est. Conjunction analyses were performed to test for common
regions of activation in the visual and auditory tasks for each
contrast of interest. Disjunction analyses were conducted to
identify modality-specific activation by masking activation in
one modality (e.g., auditory) when testing for activation in the
other modality (e.g., visual). Significance for these one-tailed
tests was set at an uncorrected voxel-wise level of P < 0.001 for
the height threshold and an extent threshold of k contiguous
voxels that was estimated by random field theory to correct for
multiple voxel comparisons at a cluster-wise level of P < 0.05.

Region of Interest Analysis

Region of interest (ROI) analyses were conducted to test for
variations in activation as a function of cognitive control load
to determine the cognitive search strategy employed in the
visual and auditory tasks. ROIs in the supplementary motor area
extending to the ACC (SMA/ACC), left and right AIC, left and
right FEF, and left and right IPS were defined from the results
of the cross-modal conjunction analysis of monotonic changes
in cognitive control-related activation, as the corresponding
clusters showing a significant effect. The first eigenvariate of
the beta values was extracted from all voxels within each ROI
separately to model regional activation as a linear function of
information entropy (H), as predicted by the self-terminating
search strategy. The linear model predicted that activation = b
• H + c, where b represents the gain in activation for each 1
bit increase in information entropy and c represents baseline
activation as a constant when entropy is 0 bit. This model was
compared to the constant model (i.e., activation = c) predicted by
the exhaustive search strategy. All regressors in the models were
demeaned. The coefficients in each model were estimated using
mixed effect regression, with the factors of “entropy” included
as both fixed and random effects and participants entered as
a random effect in each model. Model comparison was based
on the Bayesian information criteria (BIC), with a smaller BIC
indicating better model fitting.

Dynamic Causal Modeling

Dynamic causal modeling (DCM) was conducted using DCM12
implemented in SPM12 (Friston et al. 2014, 2016; Razi et al. 2017)
to identify the network architecture of the CCN and associ-
ated sensory regions during cognitive control for each modality.
Ten nodes identified in the GLM analyses were entered into
each model, including eight regions in the CCN (i.e., left and
right SMA/ACC, AIC, FEF, IPS) and two modality-specific sensory

regions for the SMFT-V (i.e., left and right visual areas) and the
SMFT-A (i.e., left and right auditory areas). A fully connected
base model was initially constructed with reciprocal connec-
tions between all possible pairs of regions and self-connection of
each region (i.e., intrinsic feedback). The three ratio conditions
(5:0 vs. 4:1 vs. 3:2) were entered in the model as both driving
inputs to the sensory regions and modulatory inputs that influ-
ence effective connectivity between all pairs of regions. The
prior probability for each input and intrinsic connection was
set at 1.

The parameters of the intrinsic connections and driving
inputs in the two fully connected models were estimated at
the first level for each participant individually using spectral
DCM (Razi et al. 2017). The base model was elaborated into
a series of nested models that systematically varied the con-
nections between pairs of regions; the posteriors and parame-
ters for the nested models were inferred with Bayesian model
reduction analysis (Friston et al. 2016). The first-level posteriors
and parameters for all participants were entered into group-
level analyses that used parametric empirical Bayes models
to estimate the group-level posteriors of the nested models
separately for SMFT-V and SMFT-A. Bayesian model averaging
was then used to estimate the group-level models based on the
group-level posteriors.

Four separate analyses were conducted to test the cross-
modal similarity of the networks of inter-regional connectivity
in the estimated group-level DCM for SMFT-V and SMFT-A. The
community structure of the CCN for the two tasks was compared
to test the cross-modal similarity in network architecture. The
community structure of each network was constructed using the
Brain Connectivity Toolbox (RRID: SCR_004841; brain-connectivi
ty-toolbox.net) by subdividing the network into nonoverlapping
groups of nodes when maximizing the numbers of within-group
connections and minimizing the number of between-group con-
nections (Rubinov and Sporns 2010). The cross-modal similar-
ity of the inter-regional connectivity for the entire network
was tested by calculating Pearson correlation coefficient of the
posterior expectations for the 90 inter-regional connections in
the group-level DCM for SMFT-V and SMFT-A. The cross-modal
similarity of the inter-regional connectivity for the CCN was
tested by calculating Pearson correlation coefficient of the pos-
terior expectations for the 56 inter-regional connections in the
group-level DCM for SMFT-V and SMFT-A. Pearson correlation
coefficient were also calculated for the posterior expectations
for the 32 connections between regions of the CCN and visual
and auditory sensory nodes in the two group-level models.

Cross-modal Encoding Analysis

Single-Trial Brain Response Extraction
Whole-brain responses to each visual and auditory stimulus
sequence (trial) were extracted individually using an “extract-
one-trial-out” approach (Rissman et al. 2004; Choi et al. 2012;
Kinnison et al. 2012; Wu et al. 2018; Wang et al. 2019). Specifically,
the onset for a single stimulus sequence (trial) was removed
from the vector for the corresponding task condition and was
added as a new vector with a single onset for the trial of interest.
The new vector was then convolved with the standard HRF as
the single regressor for the trial of interest. A GLM with the
original regressors (but without the trial of interest) and the new
regressor for the trial of interest was estimated voxel-by-voxel
based on normalized images that were not spatially smoothed
to avoid the loss of fine-grained data. The resultant estimated

brain-connectivity-toolbox.net
brain-connectivity-toolbox.net
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beta image for the new regressor represents the brain response
for the single trial of interest. The process was repeated for every
trial with a correct behavioral response. Trials with global mean
beta values more than 3 SD from the mean were excluded from
the prediction analyses below.

Within- and Cross-modal Prediction
Multivoxel pattern analyses (MVPAs) were conducted to test
for supramodal representation of uncertainty in the CCN. The
estimated beta images for the single-trial responses to auditory
and visual stimuli were each divided into training and testing
sets individually for each participant. The first set of images
was used to train a decoder to predict the cognitive control
load represented by the single-trial response; the performance
of the decoder was then tested using the independent testing set
of images. The training and testing sets of images were either
both from the visual or auditory task (within-modal predic-
tion) or from different tasks (cross-modal prediction) including
both visual-to-auditory and auditory-to-visual predictions. The
within- and cross-modal predictions were tested using four sets
of features: 1) CCN regions that showed significant monotonic
increase in activation in the conjunction analysis, including left
and right SMA/ACC, left and right AIC, left and right FEF, and
left and right IPS, which were identical to the nodes in the
DCM; 2) sensory regions that included left and right visual and
auditory areas defined using the all stimuli-locked regressors
minus baseline contrasts; 3) CCN and sensory regions combined;
and 4) the whole brain.

Single-trial beta values for each voxel were transformed into
z-scores across all trials in the training and testing sets for each
participant. The z-scores for the training sets were entered as
predictors in the models. The ratio of arrows pointing in the
majority versus minority direction was coded trial-by-trial as
a rank scale (rank 1 = 3:2 ratio; rank 2 = 4:1 ratio; rank 3 = 5:0
ratio) and served as the target in the models. A ranking support
vector machine (SVM-R; Joachims 2002) was trained to predict
the rank of cognitive load based on brain activation. A sep-
arating hyperplane, defined by a weight vector w computed
across all predictors, was learned to maximize the margins
between different ranks constrained by the assumption of the
rank order. A linear kernel SVM-R was adopted because there
were no assumptions of nonlinear relationships among features
in the study. Higher absolute values for the learned weight vector
in the linear kernel of SVM indicated greater importance of
the corresponding feature (voxel) to the prediction. The per-
formance of the trained decoder was evaluated on the testing
set by applying the learned weight vector to each trial of the
testing set to compute ranking scores, with a greater score
indicating a higher rank. Computed ranking scores for pairs of
trials with different ranks were compared to the actual ranking
scores to test whether the trials were classified correctly. The
overall performance (i.e., prediction accuracy) of each model was
calculated as the percentage of the total number of possible
pairs of trials in different ranks that were correctly classified.
The chance level of prediction accuracy was 50%. The SMV-R was
implemented using the SVMrank toolbox (Joachims 2006; https://
www.cs.cornell.edu/people/tj/svm_light/svm_rank.html).

Within-modal predictions for the SMFT-A and SMFT-V were
examined with 8-fold cross-validation tests that randomly sub-
divided the trials in each task into eight nonoverlapping subsets,
in which each of the subsets served as the testing set and the
remaining seven subsets were concatenated as the training set.

Prediction accuracy and the learned weight vectors were aver-
aged across the eight training and testing routines conducted for
each model. Cross-modal predictions were tested using all trials
in one task (e.g., SMFT-V) as the training set and all trials in the
other task (e.g., SMFT-A) as the testing set. The learned weight
vectors were extracted from the voxel-wise cross-modal pre-
dictions for each feature set and were entered into group-level
GLM to identify common activation patterns across participants
that predicted uncertainty. The weight vectors learned from
the visual-to-auditory prediction and the auditory-to-visual pre-
diction were analyzed separately. The absolute value of the
weight of a voxel represents its contribution to the classifi-
cation, while the sign of the weight indicates the condition
that voxel supports, with positive and negative values corre-
sponding to higher and lower cognitive control load conditions,
respectively.

One-sample t-tests (one-tailed) were conducted to assess
each prediction for accuracy higher than chance level (50%). The
difference in accuracy between within-modal and cross-modal
predictions using the CCN feature was assessed with two paired
t-tests (two-tailed) that compared 1) visual-to-visual prediction
versus visual-to-auditory prediction and 2) auditory-to-auditory
prediction versus auditory-to-visual prediction. Planned com-
parisons used two paired t-tests (one-tailed) to contrast predic-
tion accuracy for each within- and cross-modal prediction to test
the hypothesis that 1) the combined CCN and sensory feature set
is greater than the CCN feature set alone and 2) the whole brain
feature set is greater than the combined feature set in terms of
prediction accuracy. Bonferroni correction was applied to correct
the significance level for multiple comparisons.

Results
Response Accuracy and RT as a Function of Entropy

The mean accuracy, including both the hit rate in matching
trials and the correct rejection rate in nonmatching trials, was
89.9% (range 83.3–100%) in the most difficult condition (the 3:2
matching condition of the SMFT-A), indicating that participants
maintained attention to the task and were able to see/hear
the stimuli clearly during the scan. Supplementary Table 1
presents the mean ± SD accuracy and RT of responses for each
ratio condition of the SMFT-V and the SMFT-A. The ANOVA
testing accuracy revealed a significant main effect of Task,
F(1, 29) = 10.74, P = 0.003, with higher accuracy on the visual
task (mean ± standard error: 96.6 ± 0.8%) than the auditory task
(96.2 ± 1.0%). The main effect of Ratio was also significant, F(2,
58) = 27.12, P < 0.001, with significantly lower accuracy in the
3:2 condition (92.7 ± 1.1%) than in the 4:1 (96.6 ± 0.7%, P < 0.001)
and 5:0 (96.8 ± 0.9%, P < 0.001) conditions, but the difference
between the 4:1 and 5:0 conditions was not significant (p > 0.99).
The main effect of Match was not significant, F(1, 29) = 3.20,
P = 0.084, but there was a significant Task-by-Match interaction,
F(1, 29) = 4.66, P = 0.039, with a significant effect of Task on
matching trials, F(1, 29) = 11.41, P = 0.002, but not on nonmatching
trials, F(1, 29) = 2.322, P = 0.138. Task-by-Ratio, F(2, 58) < 1, Match-
by-Ratio, F(2, 58) < 1, and Task-by-Match-by-Ratio interactions
were not significant, F(2, 58) = 3.14, P = 0.056. The ANOVA testing
RT revealed a significant main effect of Task, F(1, 29) = 121.79,
P < 0.001, but not main effect of Ratio, F(2, 58) = 1.05, and Task-
by-Ratio interaction, F(2, 58) < 1. Responses were significantly
faster on the visual task (665 ± 22 ms) than on the auditory task
(842 ± 28 ms).

https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
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Cross-modal Involvement of the CCN in Cognitive
Control: GLM Results

Significant monotonic increases in activation as a func-
tion of cognitive load were found bilaterally in all cortical
regions of the CCN for both the SMFT-V and SMFT-A (Fig. 2a,b
and Supplementary Table 2). No region showed a significant
monotonic decrease in activation. Conjunction analysis of
the monotonic increase in activation as a function of cog-
nitive load on the SMFT-V and SMFT-A identified significant
modality-independent activation in cortical regions of the
CCN, including the SMA/ACC, AIC, FEF, MFG, and IPS (Fig. 2c
and Supplementary Table 3). The disjunction analysis found
no significant modality-specific activation associated with
cognitive control load for either task. All identified regions of
the CCN were inside the clusters of the CCN identified in our
meta-analytic study (Wu, Chen, et al. 2019a) highlighted as the
green contours in the section views of Figure 2. The monotonic
increase in activation as a function of cognitive control load for
each ROI is illustrated in Figure 3. The regional activation fits
the linear model significantly better than the constant model
for all cortical regions of the CCN (Supplementary Table 4).

The all regressor minus baseline contrast identified sig-
nificant modality-specific activation for both the SMFT-V
and SMFT-A. General task-related activation was found in all
cortical regions of the CCN in both the visual and auditory
modalities (Fig. 4a,b, respectively), as well as in extrastriate
visual areas in mid and inferior occipital gyri, fusiform gyrus,
mid temporal gyrus, and superior and inferior parietal lobules
in the visual modality (Supplementary Table 5) and primary
and secondary auditory cortices and putamen in the audi-
tory modality (Supplementary Table 6). Disjunction analyses
identified significant visual-specific activation in extrastriate
visual areas (Fig. 4c and Supplementary Table 7) and auditory-
specific activation in primary and secondary auditory cortices
and putamen (Fig. 4d and Supplementary Table 7). General task-
related deactivation was revealed in regions of the default mode
network for both tasks, with deactivation in visual-specific areas
in the auditory task and deactivation in auditory-specific areas
in the visual task.

The contrast of matching minus nonmatching probe
identified significant motor-related activation in primary
motor cortex extending ventrally to precentral gyrus, mid
and posterior insular cortex, ventral ACC extending to mid
cingulate cortex, thalamus, putamen, caudate nucleus, and
the ventral part of cerebellum for both the SMFT-V and SMFT-
A (Supplementary Fig. 1a,b). The activation was bilaterally
distributed except in primary motor cortex, which was lim-
ited to the left hemisphere for the right-handed response.
The conjunction analysis revealed a pattern of activation
identical to those found separately for the individual modal-
ities (Supplementary Fig. 1c and Supplementary Table 8). The
contrast of matching minus nonmatching stimulus sequence
identified no significant activation.

Cross-modal Similarity in Effective Connectivity of the
CCN: DCM Results

The estimated group-level models of effective connectivity
revealed highly interconnected cortical regions of the CCN that
were also connected to sensory input regions for both the SMFT-
V and SMFT-A (Fig. 5a,b). The community structure of intrinsic
connectivity was composed of the same four modules for the
auditory and visual tasks: 1) left and right SMA/ACC, 2) left

and right AIC, 3) left and right FEF and IPS, and 4) sensory
regions in left and right visual areas for the SMFT-V or left and
right auditory areas for the SMFT-A. This community structure
reflects the protocol of network architecture for uncertainty
processing. The inter-regional connectivity in the entire network
was significantly correlated across the two tasks (r = 0.81, n = 90,
P < 0.001). The inter-regional connectivity in the CCN (excluding
the sensory regions) was significantly correlated across the two
tasks (r = 0.81, n = 56, P < 0.001). The similarity in connectivity
between specific regions of the CCN and sensory input regions
for the two modalities was significant even after excluding the
intra-CCN connections and connections between left and right
sensory regions (r = 0.71, n = 32, P < 0.001).

Cross-modal Representation of Uncertainty in the CCN:
Cross-decoding Analysis Results

Accuracy rates of the within- and cross-modal predictions of
cognitive control load are shown in Figure 6. The accuracy
was significantly higher than the chance level threshold for all
predictions (all Ps < 0.001), indicating that both CCN and sensory
regions supported within-modal and cross-modal represen-
tations of uncertainty. The difference between within-modal
and cross-modal predictions in accuracy using the CCN feature
was marginally significant for the within-visual versus visual-
to-auditory comparison (68.3 ± 1.6% vs. 59.9 ± 1.0%, t28 = 1.99,
P = 0.056) and was significant for the within-auditory versus
auditory-to-visual comparison (62.6 ± 1.6% vs. 59.7 ± 1.0%,
t28 = 6.01, P < 0.001). The accuracy based on the combined
CCN and sensory feature set was significantly higher than
the accuracy based on the CCN feature set only for the
within-auditory prediction (66.8 ± 1.7% vs. 62.6 ± 1.6%, t28 = 4.53,
P < 0.001), but not for the within-visual prediction (68.9 ± 1.6% vs.
68.3 ± 1.6%, t28 = 0.631, P = 0.267), visual-to-auditory prediction
(59.6 ± 1.2% vs. 59.9 ± 1.0%, t28 = 0.376, P = 0.627), and auditory-
to-visual prediction (59.5 ± 1.2% vs. 59.7 ± 1.0%, t28 = 0.306,
P = 0.619). Prediction accuracy based on the whole-brain feature
set was significantly higher than accuracy based on the
combined CCN and sensory feature set for the within-auditory
prediction (69.6 ± 1.6% vs. 66.8 ± 1.7%, t28 = 2.65, P = 0.026), visual-
to-auditory prediction (63.3 ± 1.3% vs. 59.6 ± 1.2%, t28 = 3.65,
P = 0.002), and auditory-to-visual prediction (64.1 ± 1.4% vs.
59.5 ± 1.2%, t28 = 4.00, P < 0.001), but not for the within-visual
prediction (70.8 ± 1.7% vs. 68.9 ± 1.6%, t28 = 1.69, P = 0.203).

The distributions of the weight vector for voxel-wise cross-
modal predictions based on the CCN set and the combined CCN
and sensory set are presented in Supplementary Figure 1a and b,
respectively. The sparse distribution of voxels with weights sig-
nificantly different from zero in Supplementary Figure 1a sug-
gests that the fine-grained multivoxel representation of uncer-
tainty within regions of the CCN varies substantially between
participants. As shown in Supplementary Figure 2c, the distribu-
tion of the weight vector for whole-brain predictions indicates
that regions of the CCN and modality-specific sensory areas
both contributed significantly to predictions of cognitive load.

Discussion
Supramodal Involvement of the CCN in Cognitive
Control

The common involvement of regions in the CCN in the
processing of information uncertainty in both auditory and
visual modalities confirms the crucial role of the network

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa189#supplementary-data
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Figure 2. Brain regions involved in uncertainty processing. Brain regions that showed a significant monotonic increase in activation as a function of cognitive load for
the SMFT-V (a) and for the SMFT-A (b) and the conjunction across the two tasks (c). The color bar indicates T value. Left column: Surface view. Right column: Sagittal
view (top) and axial view (bottom), with the green contours showing the cluster of regions of the CCN identified in our previous meta-analytic study.

in the supramodal function of cognitive control. Task-related
activation in cortical regions of the CCN increased monoton-
ically as escalating information uncertainty made increasing
demands on cognitive control. Moreover, the conjunction of the
monotonic activation gains for visual and auditory information

processing showed in the same regions of the CCN, suggesting
that this network encodes modality-independent representa-
tions of uncertainty that are integral to cognitive control. The
extensive connectivity among regions of the CCN and between
these regions and sensory input regions forms the neural
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Figure 3. Activation of the regions of interest as a function of entropy for SMFT-V and SMFT-A. L, left; R, right; SMA/ACC, supplementary motor areas externding to
anterior cingulate cortex; AIC, anterior insular cortex; FEF, frontal eye field; MFG, mid frontal gyrus; IPS, areas near and along the intraparietal sulcus. Error bar indicates

95% confidence interval in the within-subject design.

Figure 4. General and specific brain activation for SMFT-V and SMFT-A. Brain regions that showed significant activation change for all stimulus-locked regressors
minus baseline for the SMFT-V (a) and for the SMFT-A (b). Brain regions that showed significant visual-specific (c) and auditory-specific (d) activation. Red: Region that
showed an increase in activation. Blue: Region that showed a decrease in activation.
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Figure 5. Intrinsic connectivity across regions of the CCN and modality specific sensory regions. (a) Connectivity for the SMFT-V. (b) Connectivity for the SMFT-A. V,

visual areas; A, auditory areas; L, left; R, right. The strength of each connection is indicated by the thickness of the arrow.

Figure 6. Within- and cross-modality prediction accuracy. (a) Within-visual
prediction. (b) Within-auditory predication. (c) Visual-to-auditory prediction. (d)
Auditory-to-visual prediction. Error bar indicates 95% confidence interval in the

within-subject design.

framework to integrate multiple information streams into
modality-independent and domain-general representations of
information uncertainty.

The results of both the GLM and the ROI analyses of the cog-
nitive search strategy employed in the visual and auditory tasks
provide clues regarding the nature of the abstract information

represented in regions of the CCN. The monotonic increases
in task-related activation in cortical regions of the CCN were
best explained by a linear model of increasing information
entropy consistent with a self-terminating search strategy in
both visual and auditory modalities. Each bit increase in infor-
mation entropy or average content processed by cognitive con-
trol required an increase of one constant unit of neural resources
that was quantifiable in the hemodynamic responses (Borst
and Theunissen 1999; Averbeck et al. 2006; Fan 2014; Fan et al.
2014; Wu et al. 2018). Thus, the monotonic increase in regional
activation in the CCN represents higher-order abstract coding
of the linear increase in information uncertainty across the
different task conditions rather than the lower-level coding of
the sensory and perceptual properties of the stimuli that were
immutable across trials.

The findings provide no evidence that the contributions of
the CCN to cognitive control in the visual and auditory tasks
were related to potential motor effects. The possibility that an
increase in CCN activation may reflect the enhanced motor
programming demands that usually accompany an increase in
cognitive control is an unresolved issue in the field. The tasks
in this study were designed with a delayed response with no
response for half the trials, instead of choice reaction time map-
ping, to temporally segregate activation related to cognitive con-
trol and motor response generation. Activation in regions of the
CCN for uncertainty processing during the stimulus sequence
also did not significantly differ between matching trials that
required a motor response and nonmatching trials that required
no response. Motor programming and preparation did not vary
across trials and therefore could not account for the monotonic
increases in CCN activation.

Connectivity that Underlies Cross-protocol
Representation of Uncertainty in the CCN

The cross-protocol representation of uncertainty in the dynamic
coupling between regions of the CCN across cognitive control
load levels is supported by a stable intrinsic architecture that
is independent of sensory modality. Direct causal modeling
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revealed that uncertainty is represented at the network level
in protocols constraining a core neural architecture in the CCN
that has comparable functional couplings with key visual and
auditory sensory nodes. The current results demonstrat that
regions of the CCN form a stable network structure that receives
modality-specific inputs and further processes the information
through the intrinsic connectivity of the network as proposed in
previous studies (Sridharan et al. 2008; Menon and Uddin 2010;
Cocchi et al. 2013; Power et al. 2013; Nee and D’Esposito 2016; Wu
et al. 2018).

At the group level, the shared community structure of the
CCN for the visual and auditory tasks confirms the stable intrin-
sic structure of the network. This common network structure
can explain approximately 35–40% of the total network similar-
ity effect and is consistent with previous studies demonstrating
core network configurations that are independent of cognitive
tasks (Krienen et al. 2014; Ito et al. 2017; Dixon et al. 2018).
The similar intrinsic connectivity of the CCN across the two
tasks suggests that the CCN functions independently of input
modality. In addition, the core intrinsic structure of the CCN was
similarly coupled with the auditory and visual sensory regions.
This network architecture may enable the CCN to efficiently
integrate and coordinate information from multiple modalities
and domains (Spagna et al. 2015; Spagna, He, et al. 2018a; Wu,
Chen, et al. 2019a).

Cross-modal Representation of Uncertainty in the CCN

The results of the cross-decoding analyses demonstrate that
the supramodal function of cognitive control is also supported
by cross-modal representations of uncertainty in regions of the
CCN. The results of the MVPA corroborate the finding that infor-
mation uncertainty in visual and auditory inputs is encoded
in patterns of activation in regions of the CCN that predicted
cognitive control load (i.e., level of information uncertainty) both
within and across sensory modalities at a level that was sig-
nificantly higher than chance. The finding of significant cross-
modal prediction of cognitive load suggests that cortical regions
of the CCN encode a unified neural representation of informa-
tion uncertainty that is independent of the input modality and
is generalizable across sensory modalities. The greater accuracy
of the within-modal predictions compared to cross-modal pre-
dictions of cognitive control load indicates that the CCN also
encodes a proportion of the modality-specific information.

The higher-order cross-modal representations of uncertainty
encoded in the CCN incorporate the lower-level modality-
specific information represented in sensory regions. Although
the within-modality predictions based on the sensory feature
set were significantly higher than chance level, combining
the sensory and CCN features did not improve the prediction
compared to the CCN feature alone. It suggests that patterns
of activation in the CCN may integrate multiple lower-level
modality-specific information streams into a unified cross-
modal representation of uncertainty and that patterns of
activation within sensory areas may partially mirror acti-
vation of the CCN via feedback modulation of top–down
control.

The spatial distribution of weight vectors that represent the
importance of each voxel in the predictions provides further
evidence of how uncertainty is encoded by the CCN and other
networks. Group-level analysis of the weight vectors for the
whole-brain predictions based on the combined CCN and sen-
sory features found spatially similar activation patterns across

participants confirming the contribution of these common
regions to the representation of uncertainty. However, the large
intersubject variability in the weight vectors for predictions
based on the CCN feature set suggests that the fine-grained
representation of uncertainty in regions of the CCN is unique
to individual participants, which is consistent with previous
findings of highly variable microstructure in regions of the CCN
(e.g., ACC and AIC) across individuals (Menon et al. 2020). Finally,
the slight but significant increase (3%) in the accuracy of whole-
brain predictions compared to the combined CCN and sensory
features may be attributable to regions in the default mode
network (Raichle and Snyder 2007), which are anticorrelated
with the CCN and may mirror supramodal representations
of uncertainty in the CCN (Wu et al. 2018) with the effect of
enhancing reliability of the brain in predicting behavior.

The CCN as a Unified Information Processing Entity

The role of the CCN in the processing and representation of
information uncertainty may extend beyond the visual and
auditory modalities tested in this study. This network has been
implicated in the processing of information uncertainty in other
sensory modalities (e.g., somatosensory modality) (Macaluso
et al. 2002; Wang et al. 2019) and for other cognitive domains
including working memory and response selection and inhibi-
tion (Lewis et al. 2000; Zhang and Li 2012; Wu et al. 2018). In
this capacity, the CCN integrates a vast amount of information
from multiple input modalities into higher-order abstract rep-
resentations of uncertainty that are subjectively experienced as
“thoughts,” “feelings,” and “awareness” (Craig 2009; Singer et al.
2009; Brass and Haggard 2010; Nelson et al. 2010; Craig 2011; Gu
et al. 2013). It is suggested that the CCN is a unified information
processing entity in the brain that is responsible for higher-order
uncertainty processing independent of sensory modalities and
cognitive domains (Fan 2014; Spagna, Kim, et al. 2018b).

The architecture of a single unified supramodal network for
cognitive control rather than multiple modality-specific cen-
ters reflects an economic trade-off between the cost of limited
capacity and the benefit of adaptively and efficiently coordi-
nation of information received from multiple modalities. Most
regions of the CCN belong to a “rich club” of highly intercon-
nected connector hubs that participate in multiple modality-
and domain-specific networks in the brain (van den Heuvel
and Sporns 2011; van den Heuvel et al. 2012). This organization
may support efficient intranetwork information transfer and
the adaptive reconfiguration of connectivity between the CCN
and other networks to implement cognitive control. However,
the heavy computational load imposed by the participation in
multiple cognitive processes may lead to a bottleneck in these
CCN regions, such as the AIC, which limits the capacity of
cognitive control (Wu, Wang, et al. 2019b).

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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