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Iron out, mitophagy in! A way to slow
down hepatocellular carcinoma
Yahyah Aman1, Shuqin Cao1,2 & Evandro F. Fang1,3,*

Mitochondrial homeostasis is necessary
for the maintenance of cellular function
and neuronal survival. Mitochondrial qual-
ity is tightly regulated by mitophagy, in
which defective/superfluous mitochondria
are degraded and recycled. Here, Hara
et al demonstrate that induction of mito-
phagy via iron depletion suppresses the
development of hepatocellular carcinoma
(HCC). This work suggests turning up mito-
phagy as a potential therapeutic strategy
against liver cancer.
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M itochondrial dysfunction is consid-

ered as a hallmark of ageing and

is implicated in a spectrum of

diseases. Mitochondrial dysfunction and

impairment of mitochondrial-specific autop-

hagy, namely mitophagy, have emerged as

important components of the cellular

processes underlying ageing and age-predis-

posed conditions, such as neurodegenerative

diseases and cancer (Palikaras, Lionaki et al,

2018). In particular, mutations of nuclear- or

mitochondria-encoded mitochondrial proteins

cause rare mitochondrial disorders (Scheibye-

Knudsen, Fang et al, 2015), whilst mitochon-

dria-mediated ATP deprivation, oxidative

stress and impaired cell signalling have been

associated with various diseases and prema-

ture ageing (Fang, 2019; Fang, Hou et al,

2019). Moreover, impairment of lysosome

targeting and recycling mechanisms have

been highlighted as causative for the accumu-

lation of damaged mitochondria, which

consequently leads to cellular dysfunction

and/or death (Lou et al, 2019), altogether

implicating that mitochondrial maintenance is

critical for health due to their necessity in

coordinating multiple cellular processes.

Mitochondrial homeostasis is necessary

for the maintenance of cellular function and

survival. Mitochondrial quality is tightly

regulated by mitophagy, in which defec-

tive/superfluous mitochondria are degraded

and recycled. Several different mitophagy

pathways are known, and many are

conserved from C. elegans to rodents and

humans (Aman, Frank et al, 2020). Interest-

ingly, depletion of iron has been demon-

strated to disrupt mitochondrial homeostasis

and trigger mitophagy in C. elegans and

mammalian cells (Allen, Toth et al, 2013;

Kirienko, Ausubel et al, 2015; Schiavi,

Maglioni et al, 2015). Coupled to the mito-

phagy-inducing ability, iron chelators, such

as deferoxamine (DFO), have been used as

therapeutic agents against hepatocellular

carcinoma (HCC; Yamasaki, Terai et al,

2011). However, the mechanism underlying

iron depletion in the induction of mitophagy

and suppression of HCC remains elusive.

In this issue of the EMBO Reports, Hara,

Yanatori et al (2020) screened three iron

chelators, namely DFO, deferiprone (DFP)

and deferasirox (DFX), in human liver cells

in order to evaluate the potential of mito-

phagy induction. Amongst the iron chelators

examined, DFP emerged as the most potent

mitophagy inducer as demonstrated by

greatest abundance of mito-autophagosome-

like structures. In addition, DFP-induced

induction of mitophagy was shown to be

independent of PINK1/Parkin pathway, a

finding in line with previous report by Allen

et al (Allen et al, 2013). Using ferrozine-

based assay, Hara et al (2020) measured

cytoplasmic and mitochondrial chelatable

iron content and found DFP to reduce both

the aforementioned components in compar-

ison with DFX and DFO that were only able

to decrease cytoplasmic iron content. Within

the mitochondrial-associated regulatory

proteins examined, Hara et al (2020) identi-

fied an increase in expression of mitochon-

drial ferritin (FTMT) via the hypoxia-

inducible factor 1a (HIF1a)-specific protein

1 (SP1) axis. Selective knockdown of FTMT

using small interfering RNA (siRNA) dimin-

ished the DFP-induced mitophagy and

rescued the reactive oxygen species (ROS)

production. In consequence, these data

suggest that FTMT is required for DFP-

induced mitophagy that contributes to the

suppression of cellular oxidative stress.

Following the identification that FTMT is

important in DFP-induced mitophagy, the

authors attempted to uncouple the underly-

ing mechanism(s). For the purpose of selec-

tive autophagy, autophagy cargo receptors

specifically couple cargo material(s) and the

autophagosomal membrane. Given the abil-

ity of nuclear receptor coactivator 4

(NCOA4) to act as selective marker for turn-

over of cytosolic ferritin via the process of

ferritinophagy, the authors evaluated its

ability to interact with FTMT. Indeed, FTMT

was shown to be associated with NCOA4 in

the presence of DFP with immunofluores-

cence staining indicating the colocalization

of endogenous NCOA4 and FTMT at the

mitochondria. The FTMT-NCOA4 interaction

facilitates the coupling to the LC3 as the
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mitochondrial damage progressed due to

increased depolarisation. The authors subse-

quently evaluated the localisation of FTMT in

order to elucidate the possible mean of mito-

phagy induction. It was shown that FTMT is

localised on the mitochondrial outer

membrane upon DFP treatment that may

enable interaction with the cytosolic NCOA4.

Although, not a kinase, FTMT has been

suggested by the authors to possibly act as

PINK1 in the PINK1/Parkin pathway in traf-

ficking of damaged mitochondria, as a mech-

anism of action. However, it remains to be

determined whether mitochondrial outer

membrane localisation of FTMT is due to

DFP-mediated mitochondrial depolarisation.

Finally, the authors tested the ability of

DFP to suppress tumorigenesis in two hepa-

tocarcinogenic mouse models. Intriguingly,

DFP treatment resulted in significant

decrease in the abundance and maximum
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Figure 1. Iron loss-induced FTMT-dependent mitophagy suppresses the development of hepatocellular carcinoma.

In hepatocytes, impaired de novo lipogenesis and adipose tissue lipolysis accompanied by mitochondrial dysfunction promote development of HCC (left panels). Iron

depletion induced by deferiprone (DFP) triggers the HIF1a-SP1 axis, which in turn regulates mitochondrial ferritin (FTMT). FTMT accumulation on the outer membrane

of defective mitochondria induces mitophagy via specific interaction with the autophagic cargo receptor NCOA4 coupling to the LC3-II double-membrane phagophore.

Removal of damaged mitochondria through this process protects against oxidative stress and suppresses the development of HCC. Abbreviations: DFP, deferiprone;

Fe2+, Ferrous ion; FFAs, free fatty acids; FTMT, mitochondrial ferritin; HCC, hepatocellular carcinoma; HIF1a, hypoxia-inducible factor 1-alpha; LC3-II, microtubule-

associated protein 1A/1B-light chain 3 II; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen species; NCOA4, nuclear receptor coactivator 4; SP1,

specific protein 1.
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size of liver tumours in both mouse models.

Furthermore, DFP also suppressed hepatic

steatosis, fibrosis, and mitochondrial ROS,

whilst it improved mitochondrial function.

The authors highlight that improvement of

mitochondrial function is possibly owed to

enhanced iron loss-mediated mitophagy

enabling removal of damaged mitochon-

dria. Moreover, suppressive effect of DFP

on HCC was diminished upon FTMT

depletion, indicating its fundamental need

in order to exhibit the anti-cancer effects

of iron chelators (Fig 1). Altogether, the

data suggest that iron loss-mediated mito-

phagy via FTMT induction may suppress

tumorigenesis and may potentially be

utilised as a therapeutic strategy against

liver cancer.
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