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A wearable motion capture device able to detect
dynamic motion of human limbs
Shiqiang Liu 1, Junchang Zhang1, Yuzhong Zhang1 & Rong Zhu 1✉

Limb motion capture is essential in human motion-recognition, motor-function assessment

and dexterous human-robot interaction for assistive robots. Due to highly dynamic nature of

limb activities, conventional inertial methods of limb motion capture suffer from serious drift

and instability problems. Here, a motion capture method with integral-free velocity detection

is proposed and a wearable device is developed by incorporating micro tri-axis flow sensors

with micro tri-axis inertial sensors. The device allows accurate measurement of three-

dimensional motion velocity, acceleration, and attitude angle of human limbs in daily activ-

ities, strenuous, and prolonged exercises. Additionally, we verify an intra-limb coordination

relationship exists between thigh and shank in human walking and running, and establish a

neural network model for it. Using the intra-limb coordination model, dynamic motion capture

of human lower limbs including thigh and shank is tactfully implemented by a single shank-

worn device, which simplifies the capture device and reduces cost. Experiments in strenuous

activities and long-time running validate excellent performance and robustness of the

wearable device in dynamic motion recognition and reconstruction of human limbs.
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Motion capture technology plays an essential role in
action recognition, motor function assessment and
dexterous human-robot interaction for rehabilitation

robots and intelligent prosthetics. It allows machine to assist users
and improve life quality in such as senior care, physical rehabi-
litation, daily life-logging, personal fitness, and assistance for
people with cognitive disorders and motor dysfunctions1–6.
Optical system (or machine vision system) is one of the most
popular solutions for motion capture. However, high cost, com-
plex setup and susceptibility to lighting condition and occlusion
limit their applications only for laboratory7,8. Goniometer (or
angle encoder) is another commonly-used motion capture device
applied in rehabilitation robotics. But its noncompliance with
human joint that has multi-degree-of-freedom disturbs the nat-
ural pattern of human motion and leads to discomfort and even
joint injury in long-term applications9,10. Wearable motion sen-
sors, such as force based sensors11–13, surface electromyography
sensors14–16, soft strain sensors17–20, and micro inertial sensors21,
may overcome such problems. The wearable sensors provide
promising tools for the next generation rehabilitation exoskele-
tons, such as soft exosuits, in which lightweight and comfort are
concerned17,22. Among these sensors, body-worn inertial sensors
including micro accelerometers and micro gyroscopes are the
most commonly used wearable movement sensors23,24 due to
their capability of direct measurement on body segment move-
ment, which is important for not only quantitative assessment of
motor function9, but also interaction and control of rehabilitation
robots and prostheses25.

Although the popular uses of inertial sensors in motion cap-
ture, technique challenges still exist in detecting dynamic motion
of human limbs. As a matter of fact, the accelerometer detects
total acceleration of gravity and motion accelerations26,27 that
precludes it from determining motion velocity or attitude angle
independently, and gyroscope based attitude estimation suffers
from integral drift error. The motion velocity is usually estimated
using integral of motion acceleration. However, due to the lack of
precise motion acceleration, even processed by noise filtering and
fusion method, the motion acceleration determined by inertial
sensors still contains noises and errors that induces the cumula-
tive error in the integral for estimating the motion velocity. To
solve the drift problem, a variety of calibration algorithms have
been proposed, including the model-based method28–30, the
machine-learning-based method31, the Zero Velocity Update
(ZUPT) method9,32, and the drift estimation method33. However,
these methods restrict only for foot-mounted or shank-mounted
applications, and large acceleration interference caused by foot
strike degrades the velocity tracking performance. To estimate
attitude angles, various data fusion solutions using accelerometer
and gyroscope have been investigated, such as acceleration
threshold-based method34,35 and model-based method using
Kalman filters or complementary filters26,36,37. The threshold-
based method regulates the weight of the accelerometer in data
fusion according to the intensity of acceleration. In capturing
high dynamic motion of human limbs, the attitude angles are
mainly estimated by integral of gyroscope output rather than
gravity acceleration via accelerometer due to highly dynamic
interference, and thus suffers from drift problem. The model-
based data fusion method treats attitude estimation as a separa-
tion problem of gravity acceleration from motion acceleration
according to their discrepant dynamic models. However, it is
hard to establish a robust acceleration model that is applicable for
diverse scenarios because the model is actually motion type
dependent. Various improved data fusion methods by incorpor-
ating the model-based method with the threshold approach have
been reported in recent years. For example, adaptive filter
methods38,39 adopt adaptively regulating covariance matrix of

noise to regulate the weight of the accelerometer in a model-based
data fusion algorithm26, which are able to deal with transient or
short-term dynamic motion capture. However, similar to the
threshold-based method, attitude estimation using adaptive filter
mostly or even only relies on integral of gyroscope in highly
dynamic motion. Therefore, the adaptive filter methods using
low-cost micro inertial sensors suffer from serious drift problem
in capturing long-term dynamic motion. Although great
efforts have been made in data fusion algorithm for inertial
sensors26,34–39, inherent problems of drift and instability in long-
term monitoring of highly dynamic limb motions still exist40, for
example limb posture capture in running. To avoid dynamic
interference, the inertial sensors are usually mounted on the trunk
of human or robots25,41 instead of limbs. Current reports of soft
exosuit show the utilization of inertial sensors in leg movement
monitoring, but only for gait recognition25. Elevation angles of leg
are estimated only in static or quasi-static cases (for example
stand up and sit down)42. In addition, complexity and cost of
wearable device is another sensitive issue to be considered.
Reducing wearing nodes and lightening weights are important for
next generation of wearable system. To solve the problem, a
wearable motion capture device using dual-axis velocity sensor
integrating with inertial sensors has been proposed to detect two-
dimensional motion of limb in our previous articles40,43. A micro
flow sensor was used to detect a motion-induced surface flow, by
which two-dimensional motion velocity was determined.

In this work, we propose using combined micro flow sensors to
detect tri-axis motion velocity and develop a wearable motion
capture device by incorporating tri-axis flow sensors with tri-axis
inertial sensors to implement accurate and robust three-
dimensional motion measurement for human limbs with the
simplest setup, as shown in Fig. 1a. The motion velocity and
acceleration are measured via integral-free approach by using
micro flow sensor, which avoids accumulative errors and thus
overcomes drift and instability problems. We also design a data
fusion algorithm to determine attitude angles by incorporating
the motion velocity detected by the flow sensor with inertial
quantities detected by the inertial sensors. Therefore, the devel-
oped wearable device is competent to accurately measure three-
dimensional velocity, acceleration, and attitude angles of limbs in
dynamic motions, as shown in Fig. 1b. In addition, we study the
intra-limb coordination relationship between shank and thigh in
human walking and running, and find the natural coordination
model for human lower limb. We establish a neural network
model to characterize the intra-limb coordination for human
lower limb, and use it to determine the thigh motion from the
shank motion in human walking and running, as shown in
Fig. 1b. Thereby, people only need to wear single device on shank,
while capably detect motions of both shank and thigh in real
time. This configuration greatly simplifies the motion capture
system, and reduces the cost and alignment complexity of
wearable devices. To evaluate the performance of the device, we
conduct a variety of limb motion captures for subjects who are
doing boxing and kicking activities like Chinese Kungfu, and
long-time walking and running. The experimental results validate
effectiveness and superiority of accuracy and long-term stability
of the device. In a word, we achieve accurate and robust limb
motion capture in highly dynamic activities of human body using
a simple wearable device.

Results
Wearable motion capture device. Inspired by the lateral line
system of fish and amphibian animals for flow and motion sen-
sing44, we propose a micro velocity sensor that measures motion
velocity by detecting the motion-induced surface flow vectors
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using micro flow sensors. Two-dimensional (2-D) velocity mea-
surement using the flow sensor has been proved in our previous
works40,43,45–47. Here, we use two orthogonally-placed micro flow
sensors to constitute a tri-axis velocity sensor, which further
integrates with tri-axis accelerometer and tri-axis gyroscope to
construct a wearable motion capture device (shown in Fig. 1a,
named wearable device). More detailed design of the wearable
device is described in “Methods” section. We propose an integral-
free approach to determine three-dimensional motion velocity,
acceleration and attitude angle of human limb to overcome
cumulative errors. The tri-axis motion velocity vb is measured by
the velocity sensor based on flow detection. The tri-axis motion
acceleration ab is estimated from Eq. (1) by linear algebraic
operation of vb and tri-axis angular rate ωb measured by the
gyroscope (shown in Fig. 1b). Here, subscript b refers to the body
reference frame of the wearable device.

ab ¼ ωb ´ vb þ _vb ð1Þ
The attitude angles of limb are figured out by using a tailor-
designed data fusion method incorporating the motion velocity
detected by the flow sensor with the inertial quantities detected by

the accelerometer and gyroscope (shown in Fig. 1b and Fig. 2a).
In virtue of no integral operation in the calculation, none of
accumulative errors is involved in motion velocity, acceleration
and attitude estimations. In other words, the wearable capture
device has competence to detect accurate motion velocity,
acceleration and attitude angles for human limbs in dynamic
motion (shown in Fig. 1).

Intra-limb coordination model of human lower limb. Lower
limb motion capture accounts for a high level importance in
diagnose and rehabilitation of motor dysfunction, athlete train-
ing, and human-robot coordination in assistive robotic devices
for locomotion48–51. In conventional methods24,46, at least two
devices need to be worn separately on thigh and shank to measure
the motion of lower limb. Alignment of the devices on two seg-
ments of lower limb is troublesome. As a matter of fact, a natural
intra-limb coordination exists between shank and thigh motions
in human walking and running, which has been evidenced by
neurological and biomechanical researches due to nerve center
control and anatomical/biomechanical constraint52. For example,
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Fig. 1 Design of the motion capture scheme. a Our wearable device is worn on human body segments of interest for motion capture by incorporating tri-
axis flow sensors with tri-axis inertial sensors. b Motion data including three-dimensional motion velocity, motion acceleration, and attitude angles can be
measured by our device. The motion velocity and motion acceleration are measured via integral-free approach by using micro flow sensor which avoids
accumulative errors. The attitude angles are then accurately determined by incorporating the motion velocity and acceleration detected by the flow sensor
with inertial quantities detected by the inertial sensors. Therefore, drift and instability problems are overcome. A neural network model is established to
characterize the natural intra-limb coordination for human lower limb and used to determine the thigh motion from the shank motion in human walking and
running.
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Fig. 2 The principle of lower limb motion capture by single wearable device. a The motion of shank is directly measured by the device worn on the shank.
b The neural network model of intra-limb coordination between shank and thigh has 30 hidden neurons and use motion information of shank as the inputs
of the network (including shank attitude angles γs, θs, motion velocity vb, and the corresponding derivatives angular rate ωb and motion acceleration ab) and
use attitude angles of thigh (γt, θt) as the outputs of the network. c The thigh motion is determined from the shank motion measured by the wearable
device incorporating with the intra-limb coordination model.
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a planar covariation law has been observed for lower limb that
describes the coordination patterns among the elevation angles of
the lower limb segments during locomotion52–55. In our study, we
validate a natural intra-limb coordination relationship generally
exists between thigh and shank in human walking and running.
The intra-limb coordination helps to solve the inverse kinematic
problem, as shown in Fig. 2.

To model this intra-limb coordination, we learn human neural
system and recognize that neural network is an appropriate
structure to model this dynamic behavior. The neural network
has been applied for complex behavior modeling of actuators and
robust control in humanoid robots41,56. Here, we use a three-
layer back propagation (BP) neural network to model intra-limb
coordination between shank and thigh motions in walking and
running, as shown in Fig. 2b. Attitude angle (elevation angle),
motion velocity, angular rate and motion acceleration of the
shank are designated as inputs of the network. And the attitude
angles of the thigh are as outputs of the network. The number of
hidden neurons is determined to be 30 by an optimization
described in “Methods” section. The neural network is trained
and validated by using abundant motion datasets of shank and
thigh in human walking and running captured by using an optical
system (VICON VERO, Vicon Motion Systems Ltd). The
established coordination model is then used to determine the
thigh motion from the shank motion in the real-time monitoring
of human lower limb motion. In other words, the motion capture
of human lower limb (both shank and thigh) is achieved by using
single device worn on shank incorporating with the neural
network model of intra-limb coordination (shown in Fig. 2). The
method simplifies the motion capture system, and reduces cost
and complexity of wearable devices.

Data fusion approach for measurements of the wearable device.
As reported in our previous work43, 2-D motion velocity can be
measured using a micro flow sensor. In this work, two micro flow
sensors (shown in Fig. 1a) are orthogonally placed to achieve tri-
axis motion velocity measurement which is derived according to

Eq. (2), where
v1bx
v1by

� �
and

v2bx
v2bz

� �
are the two-axis motion velo-

city measured by the two micro flow sensors, respectively.

vb¼
v1bxþv2bxð Þ=2

v1by
v2bz

2
64

3
75 ð2Þ

The relationship between tri-axis motion velocity vb and tri-axis
motion acceleration ab is complex due to their different decom-
position criteria in body reference frame xbybzb. The following
derivation from the geographic reference frame xnynzn is for-
mulated by

an ¼ _vn ð3Þ
Assuming the orientation matrix from xnynzn to xbybzb is T

b
n, the

orientation matrix from xbybzb to xnynzn is therefore Tn
b ¼ Tb�1

n .
The motion velocity and acceleration in xnynzn and xbybzb satisfy
Eqs. (4) and (5).

vn ¼ Tn
bvb ð4Þ

ab ¼ Tb
nan ð5Þ

Substitute Eq. (3) into Eq. (5), there is

ab ¼ Tb
n _vn ð6Þ

Equation (7) is derived by substituting Eq. (4) into Eq. (6).

ab ¼ Tb
n
_T
n
bvb þ _vb ð7Þ

According to the character of orientation matrix, it is validated
that

_T
n
b ¼ Tn

b ½ωb ´ � ð8Þ

where ωb ´½ � ¼
0 �ωbz ωby
ωbz 0 �ωbx
�ωby ωbx 0

2
4

3
5 is the skew-symmetric

matrix of angular rate in body reference frame

ωb ¼ ωbx ωby ωbz

� �T
, which can be measured by the tri-axis

gyroscope.
The relationship between vb and ab is therefore achieved by

substituting Eq. (8) into Eq. (7), where the operator × is cross
product of vector.

ab ¼ ωb ´½ �vb þ _vb ¼ ωb ´ vb þ _vb ð9Þ
According to Eq. (9), the tri-axis motion acceleration of our
device can be determined without any accumulative error by
linear algebra operation of tri-axis velocity measured by the micro
flow sensor and tri-axis angular rate measured by gyroscope.

In theory, the accelerometer output vector fb is the total
acceleration including the gravity acceleration gb and the motion
acceleration ab.

gb ¼ fb þ ab ð10Þ
To determine attitude angles with robust performance of anti-
interference, we propose a tailor-designed filter algorithm
considering natural dynamics and inherent correlation between
motion velocity and acceleration to implement data fusion of the
motion velocity detected by the flow sensor and inertial quantities
detected by the accelerometer and gyroscope. The data fusion of
velocity sensor and inertial sensors aims to suppress the errors of
the sensors (e.g., noise of velocity sensor, shock and vibration
interference in accelerometer, bias and noise of gyroscope).
Motion velocity and motion acceleration are defined as the first
part of state variables

X1 ¼
vb
ab

� �
ð11Þ

Here, a stochastic modeling approach using Gauss–Markov (GM)
model is adopted in this work to model the dynamic behavior of
the motion acceleration, as shown in Eq. (12)26, where, w1 is
white Gaussian noise having zero mean and standard deviation
σw1 for each component, η is constant.

_ab ¼ ηab þ w1 ð12Þ
According to Eqs. (9), (11), and (12), one continuous state

equation model is established as shown in Eq. (13) where wg is
the process error caused by gyroscope. And the corresponding
discrete-time model is shown in Eq. (14), where superscript k is
the kth time sample, Ts is the sampling period, Wk

1is the
corresponding process noise whose covariance matrix Qk

1 is
derived from Eq. (15), σg is the standard deviation of gyroscope
measurement, vb ´½ � is the skew-symmetric matrix of vb.

_X1 ¼
�½ωb ´ � I3

03 ηI3

� �
X1 þ

wg

w1

� �
¼ A1X1 þ

wg

w1

� �
ð13Þ

Xkþ1
1 ¼ eA1TsXk

1 þWk
1 ð14Þ

Qk
1 �

σ2gT
2
s vb ´½ �k vb ´½ �k

� �T
03

03 σ2w1T
2
s I3

2
4

3
5 ð15Þ

Gravity acceleration gb needs to be estimated for decoupling with
motion acceleration ab. Therefore, gb is defined as the second part
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of the state variables X2= gb whose evolution is described by the
following differential equation36

_gb ¼ � ωb ´½ �gb ð16Þ
The discrete-time state equation model of Eq. (16) is established
as shown in Eq. (17) under the assumption that the angular rate is
constant in the sampling period, where Wk

2 is the corresponding
process noise and its covariance matrix Qk

2 is derived from Eq.
(18), gb ´

� �
is the skew-symmetric matrix of gb.

Xkþ1
2 ¼ eð�½ωb ´ �kTsÞXk

2 þWk
2

ð17Þ

Qk
2 � σ2gT

2
s gb ´
� �k

gb ´
� �k� �T ð18Þ

The measurement variables are defined as the tri-axis motion
velocity (vbm) and total acceleration (fbm) measured by the micro
velocity sensors and the accelerometer, respectively, formulated in
Eq. (19). And the measurement equation is therefore established
as shown in Eq. (20). υ1 and υ2 are measurement noises (assumed
as white Gaussian noises) of the micro velocity sensors and the
accelerometer, respectively, having zero mean and standard
deviation συ1 and συ2, respectively.

Y ¼ vbm
fbm

� �
ð19Þ

Y ¼ I3 03 03
03 �I3 I3

� �
X1

X2

� �
þ υ1

υ2

� �
¼ CX þ υ ð20Þ

Combining Eqs. (14), (17), and (20), the discrete-time state-
space models of Kalman filter are obtained as follows

Xkþ1 ¼ ΦkXk þWk ð21Þ

Ykþ1 ¼ CkXk þ υk ð22Þ

where Φk ¼ eA1Ts 03
03 eð�½ωb ´ �kTsÞ

� �
, Wk ¼ Wk

1
Wk

2

� �
. The covariance

matrix Qk of the process noise Wk is formulated as Eq. (23)

Qk ¼ Qk
1 06 ´ 3

03 ´ 6 Qk
2

" #
ð23Þ

The covariance matrix Rk of the measurement noise υk is
calculated according to Eq. (24) with zero non-diagonal elements,
under the assumption that both the process noises and

measurement noises are uncorrelated with each other.

Rk ¼ υkðυkÞT ð24Þ
The implementation process of the data fusion algorithm is

shown in Fig. 3, where Pðkþ1Þk is the state vector prediction error,
Pk is the error of the filter output in the kth iteration, Kkþ1 is the
filter gain.

The roll angle γ and pitch angle θ are calculated by Eq. (25)57,

using the gravity acceleration components in the body frame gb ¼
gbx gby gbz

� �T
determined by the proposed data fusion

algorithm.

γ ¼ tan�1 gby
gbz

� �
θ ¼ � tan�1 gbx

gbz
cos γ

� �
8><
>: ð25Þ

Therefore, three-dimensional velocity vb can be measured, and
three-dimensional acceleration ab and attitude angles (γ and θ)
can be accurately determined by using the developed wearable
device and the proposed data fusion approach.

Dynamic motion capture in strenuous exercises. High dynamic
motion of human limbs happens not only when performing daily
activities such as walking and running but also when doing
strenuous exercises, for example boxing and kicking. To validate
the motion capture performance of the wearable device in
monitoring highly dynamic motions, experiments on motion
capture of human upper and lower limbs are carried out in vig-
orous activities of Kongfu. A subject wears a device on his wrist
and shank, respectively. He conducts boxing continuously for
about 1 min and then plays kicking for another 1 min. The
motion capture results of our device are compared with the
results of optical VICON system detected synchronously. A
conventional inertial method using typical model-based Kalman
filter for data fusion of accelerometer and gyroscope26 is also
adopted to make a comparison with our device. This inertial
method adopts a first-order GM model similar to Eq. (12) to
represent the dynamic behavior of the motion acceleration. And
data fusion of accelerometer and gyroscope is implemented by
their complementary characters based on Kalman filter to esti-
mate the motion acceleration and the gravity acceleration.

The experimental results of the forearm and shank motion
capture in boxing and kicking motions are shown in Fig. 4 and
Fig. 5, respectively. The motion capture performance is
summarized in Supplementary Table 1. High dynamics of boxing
and kicking are observed, the motion acceleration in boxing and
kicking exceeds 120 m/s2 and 100 m/s2, respectively, as shown in
Fig. 4b and Fig. 5b. The result of the magnitude of motion
acceleration measured using our device is consistent with that
of the optical VICON, whose error is obviously less than that
using the conventional inertial method as shown in Fig. 4c and
Fig. 5c. The measurement results of tri-axis motion velocity are
shown in Fig. 4d and Fig. 5d, where the measurement error of
velocity using our device is only less than 0.11 m/s, and the results
of conventional inertial method30 exhibit unbounded drift errors
shown in Fig. 4e and Fig. 5e. Results also indicate that the
measurement errors of attitude angles determined by our
device are greatly less than that of the inertial method.
Specifically, the root-mean-square error (RMSE) of attitude
angles by our device is less than 1.70°, which halves the error
of the inertial method. And the drift error of attitude angles using
our device is negligible as the mean error (ME) is less than 0.47°.
In contrast, the drift error of attitude angles by the conventional
inertial method is larger, the ME reaches 3.19° and the RMSE

Prediction step

Correction step

Accelerometer

Micro flow sensor

Gyroscope

Sensors P(k+1)/k= Φk Pk (Φk)T + Qk

X(k+1)/k = Φk Xk

Kk+1 = P(k+1)/k (Ck)T [Ck P(k+1)/k(Ck)T + Rk]-1

Xk+1 = X(k+1)/k+ Kk+1 [Yk+1– Ck X(k+1)/k ]

Pk+1 = (I –Kk + 1Ck)P(k+1)/k

Φk

Yk+1

Fig. 3 The implementation process of the data fusion algorithm. P(k+1)/k

is state vector prediction error, Pk is the error of the filter output in the kth
iteration, Kk+1 is the filter gain.
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reaches 4.18° as shown in Fig. 4g, i, Fig. 5g, i and Supplementary
Table 1.

Motion capture in long-time running. A long-time motion
capture experiment of human running on a treadmill is further
conducted to evaluate the long-term stability and accuracy of our
device. An experienced athlete wearing our device on his shank
keeps running on a treadmill at a speed of 10 km/h for about 30
min (Fig. 6a) and then gradually slows down for about 7 min until
stop. The optical VICON system is used synchronously to pro-
vide reference of motion. As a comparison, the conventional
inertial method is also used to detect attitude angles of shank.

The experimental results of velocity, acceleration and attitude
angle measurements are shown in Fig. 6. The velocity results
shown in Fig. 6b, c indicate that the measurement errors of
velocity using our device keep less than 0.16 m/s in the long-time
motion, whereas the velocity errors using the inertial method drift
over time and reach to myriametre per second. The results of
attitude angles shown in Fig. 6g, i indicate that the attitude angles
determined by our device have negligible drift error. The RMSE is
less than 0.84° and the maximum attitude estimation error of our
device is less than 4.12°, while that of inertial method reaches
24.01°. The inertial method exhibits obvious drift in estimation of
attitude angles. The baseline drift of attitude estimation is
evaluated using Butterworth low-pass filter with cut-off frequency
of 0.05 Hz. At the end of the running for 30 min, the roll angle

and pitch angle of the shank determined by inertial method
exhibit the maximum baseline drift error of −9.7°. Removing the
baseline drift, the RMSE of the residual error is 1.73° and 2.83°
respectively for roll and pitch angles using the inertial method.

Lower limb motion capture by wearing single device on shank.
Four subjects with different ages including one patient suffering
from mild meniscus injury participate in the experiments. First,
an intra-limb coordination model of shank and thigh motions in
walking and running is established for each subject. The neural
network model training is described in “Methods” section. And
then, we use single device worn on subject shank to capture
motions of the whole lower limb. The thigh motion is determined
from the shank motion detected by our device according to the
intra-limb coordination model. In rehabilitation robot applica-
tion, especially wearable assistive soft-exosuit, the elevation angles
of lower limb (i.e., attitude angles) and joint angle of knee (i.e.,
knee angle) in the sagittal plane and the coronal plane are
requisite for automatic control of assistive locomotion. The ele-
vation angles and joint angle of the lower limb are estimated in
real time from the attitude angles of the thigh and shank. We
conduct validation experiments to monitor elevation angles and
joint angle of lower limb in human walking and running. Three
repeated validation experiments are carried out for each subject
who repeatedly walks and runs on a treadmill with a velocity
increasing from 0 to 10 km/h at an interval of 1 km/h. Subject 2 to
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Fig. 4 Boxing motion capture results of forearm wearing a device. a The subject wears a device on his wrist and conducts boxing activity. b–c The
magnitude of motion acceleration measured by our device and inertial method, respectively (b), and the corresponding errors (c). High dynamic motion
with motion acceleration more than 120m/s2 is observed. d–e The tri-axis motion velocity measured by our device and inertial method, respectively (d),
and the corresponding errors (e). f–i The attitude estimation results of roll angle γ (f) and pitch angle θ (h), respectively, and the corresponding attitude
errors by our device and inertial method respectively (g and i). Motion capture results of optical VICON system are used as reference values.
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4 carry out three repeated experiments continuously for about 26
min without any rest, while Subject 1 takes about 5-mins rest
between repeated experiments.

An experiment result for Subject 1 is shown in Fig. 7. All
experiment results for four subjects are shown in Supplementary
Figs. 1 to 4. The pitch angles of thigh θt and shank θs represent
the corresponding elevation angles of segments of lower limb in
the sagittal plane, respectively and the joint angle of knee β is
calculated by subtracting θs from θt. The deviation error of the
joint angle measured by our device from that of the optical
VICON system is denoted as the knee error Eβ, which is used to
evaluate the measurement accuracy of the limb motion capture.
Error results of four subjects are summarized in Supplementary
Table 2. The ME of knee angle is less than 0.66° and the RMSE is
less than 1.20° for all subjects. The results indicate that different
people, even the patient with knee injury (Subject 4), have their
own intra-limb coordination relationship between thigh and
shank during walking and running. The results also verify that the
neural network model enables to represent the intra-limb
coordination relationship that can be used to determine the
thigh motion from the shank motion in human walking and
running.

The influence of physical condition (e.g., fatigue) on intra-limb
coordination model of each subject is further analyzed. The
maximum deflection of shank |θs|peaks of different subjects in
each repeated experiment of lower limb motion capture is

estimated and shown in Supplementary Fig. 5, which is evaluated
by averaging peak values of |θs| during the last 25 s running on a
treadmill at velocity of 10 km/h. Maximum deflection of shank
reveals the ability of lifting heel and can be used as an indicator of
fatigue58. For Subject 1, his maximum deflection of shank in three
repeated experiments keeps consistent due to having rest between
repeated experiments. For Subject 2 to 4, their maximum
deflections of shanks show similar declining trend with time,
which indicates the fatigue increases gradually in continuously
running for nearly half an hour. Despite variation existing in
physical condition (e.g., fatigue) of subjects, the proposed
intra-limb coordination model for each subject keeps working
well as shown in Supplementary Table 2. The motion
capture results of four subjects validate the effectiveness of the
intra-limb coordination model. In addition, human gait
pattern can be also explicitly recognized according to the
elevation angles of lower limb as shown in Fig. 7. Using single
device to capture motion and gait pattern of lower limb
significantly simplifies the monitoring system, reduces cost and
lightens wearable devices.

Moreover, the maximum knee angle of the patient (Subject 4)
suffering from motor function injury is compared with the other
three healthy subjects (Subject 1 to 3), which is shown in
Supplementary Fig. 6. It can be seen that the maximum knee
angle of the patient with meniscus injury is smaller than that of
the healthy people in both walking and running. People with knee
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Fig. 5 Kicking motion capture results of shank wearing a device. a The subject wears a device on his shank and conducts kicking activity. b–c The
magnitude of motion acceleration measured by our device and inertial method, respectively (b), and the corresponding errors (c). High dynamic
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injury suffer from weakened knee flexion ability and thus exhibit
smaller maximum knee angles than healthy people in walking
and running due to pain or pathological knee constraints59.
Therefore, maximum knee angle can be used as an indicator of
knee flexion ability that has potential in diagnosis and assessment
of motor dysfunction or injury.

Discussion
Above experimental results demonstrate that the proposed
approach using the wearable device are accurate, reliable and
robust for dynamic motion capture of human limbs even in
strenuous exercises like boxing and kicking. Three-dimensional
motion velocity of limb is measured accurately in real time, which
facilitates to evaluate fine motor function of limb or perform limb
control for robots and prosthetics. Conventional inertial method
using accelerometer and gyroscope induces large errors in velocity
and attitude estimations when capturing highly dynamic motion.
The reason is that the accelerometer output is dramatically fluc-
tuated in highly dynamic motions, the attitude estimation mainly
relies on the integral calculation of the angular rate measured by
the gyroscope that results in accumulative errors. Therefore, the
inertial sensors are usually mounted on the trunks instead of limbs
to avoid dynamic interferences25,41 or only applicable to gait
recognition25. In contrast, our device measures the motion velo-
city and motion acceleration by using the flow sensors. The

velocity and attitude angles are estimated without the necessity of
integral calculation, and thus achieve drift-free and robust mea-
surements. An excellent stability and high accuracy are achieved
by our device when capturing dynamic motion of human limbs in
daily activities, such as walking, running, jumping and stepping.

The proposed intra-limb coordination model is an effective
solver to seek the optimal solution of the inverse kinematic
problem between shank and thigh by approximation. We
establish a neural network model to characterize the intra-limb
coordination of human lower limb. Attitude angles, angular
rate, motion velocity and acceleration of distal segment (shank)
are used as inputs of the network, and attitude angles of the
proximal segment (thigh) are used as outputs. The motion
capture experiments of four subjects who walk and run at dif-
ferent speeds validate the effectiveness and robustness of the
intra-limb coordination model. The intra-limb coordination
model helps to determine the thigh motion from the shank
motion. Wearing single device on shank to capture motions of
the whole lower limb is feasible, which simplifies the motion
capture system, and reduces cost and complexity of wearable
devices. Reduction of human metabolic penalty25,60,61 and
device complexity using our proposed method is analyzed in
Supplementary Fig. 7 and Supplementary Table 3. The intra-
limb coordination based motion capture approach provides a
simple and feasible way to solve the problem of dynamic
motion capture for multiple limbs.
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Fig. 6 Long-time motion capture and velocity measurement results. a The subject wearing a device on his shank keeps running on a treadmill at the speed
of 10 km/h for about 30min and then gradually stop for another 7 min. b–c The tri-axis motion velocity measured by our device and inertial method,
respectively (b), and the corresponding errors (c). d–e The magnitude of motion acceleration measured by our device and inertial method, respectively (d),
and the corresponding errors (e). High dynamic motion with motion acceleration more than 70m/s2 is observed. f–i The attitude estimation results of roll
angle γ (f) and pitch angle θ (h), respectively, and the corresponding attitude errors by our device and inertial method, respectively (g and i). Motion
capture results of optical VICON system are used as reference values.
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It is known that a neural network model is a data-driven
method. To build an accurate model, a variety of samples need to
be collected for training the network. In this work, the datasets
are obtained by using an optical VICON system as a reference
system. Due to limitations of the now available optical platform,
e.g., occlusion problem, we have not conducted complex activ-
ities, for example the motions under complex terrain. The
training of the neural network model is still time-consuming and
computation-intensive, and needs to be improved. In addition,
human intra-limb coordination model is probably individual
dependent. There may exists difference between such as teenagers
and elders, or healthy and disabled people. The coordination
model may also exhibit similarity among different people when
body parameters (e.g., height and weight) are taken into account.
Comprehensive intra-limb coordination still needs to be investi-
gated in future work.

Our proposed device provides a simple solution for robust
monitoring of human limb motion in daily activities. It is
simple to set up, and free of environmental restriction. There-
fore, it has promising potential for the applications in fields of
senior care, physical rehabilitation, daily life-logging, personal
fitness and human-robot cooperation by incorporating with
Internet of Things (IOT). Preliminary experiments demonstrate
that characteristic indicators of knee flexion and shank deflec-
tion in human walking and running can be potentially used for
health assessment or motion function evaluation. The chal-
lenges of making wearable motion capture devices for IOT
based applications involve big data processing and transmis-
sion, low-power supply for sensor nodes, lowering weight/size
and cost for personal uses, etc.

As mentioned above, we will conduct motion capture experi-
ments on a variety of human activities to improve accuracy and
robustness of the intra-limb coordination neural network model
for practical applications. We will carry out researches on motion
capture under complex terrain. Besides, the performance of the
device for motion capture in the outdoor condition is going to be
further investigated. To be mentioned that the indoor wind
resistance of our device in measurements of motion acceleration

and attitude angles has been validated in our previous works43. In
future work, we will work on reducing the power consumption of
the device by optimizing the sensor and circuit configuration. In
addition, we will study human motor function assessment in daily
life and are going to use it for diagnose and prevention of motor
function injury. Research on applications in wearable exoskeleton
for improving human-robot interaction will be also carried out in
the future.

Methods
Design of the wearable device. In this work, we design a wearable motion
capture device (shown in Supplementary Fig. 8a) able to accurately measure tri-axis
motion velocity, tri-axis motion acceleration and attitude angles by incorporating a
micro velocity sensor with inertial sensors. A homemade micro velocity sensor,
comprising two micro flow sensors placed orthogonally, is used to measure tri-axis
motion velocity by detecting the motion-induced surface flow vectors. The size and
weight of micro velocity sensor is 10 × 10 × 0.05 mm3 and 0.024 g, respectively,
while the total size and weight of the wearable device is 79 × 79 × 51 mm3 and 69.1
g, respectively. The accuracy (RMSE) of the micro velocity sensor is 0.16 m/s in
motion velocity range of 0 to 3 m/s43. A commercial micro-inertial-measurement-
unit (MIMU, LSM9DS1, STMicroelectronics) comprising tri-axis accelerometer
and tri-axis gyroscope is selected to detect tri-axis acceleration and tri-axis angular
velocity due to its low cost and small size. The measuring ranges of accelerometer
and gyroscope are ±160 m/s2 and ±2000°/s, respectively to allow measurement of
high dynamic motion. The accuracies (RMSE) of accelerometer and gyroscope are
0.021 m/s2 and 0.21°/s, respectively. A conditioning circuit based on constant
temperature difference (CTD) feedback principle is designed for the homemade
micro flow sensors. A low-power Bluetooth module (DA14580, Dialog Semi-
conductor) is used for wireless data transmission. A rechargeable lithium battery is
used for power supply shown in Fig. 1. A watch-like case is designed for packaging
the device, making it wearable. The schematic diagram of the wearable device is
shown in Supplementary Fig. 8b, where the MIMU is connected with a micro
control unit (MCU, STM32L476, STMicroelectronics) through serial peripheral
interface (SPI). The outputs of the micro flow sensors and the MIMU are collected
by the MCU at a sampling frequency of 1000 Hz, processed in the MCU and
transmitted wirelessly to terminals (e.g., smart phone or PC) through Bluetooth at
a frequency of 100 Hz. The micro flow sensor has power consumption of about 30
mW. The MIMU and the Bluetooth module have power consumption of 15.2 mW
and 4 mW, respectively. The system circuit consisting of the sensors’ operation
circuit, the MCU and the power management circuit has power consumption of
about 400 mW. Therefore the total power consumption of the proposed wearable
device is about 450 mW. The device can work continuously for more than 3.5 h
utilizing a 600 mAh lithium battery. To reduce the power consumption of the
device, the MCU intelligently manages the power supply. The MCU powers down
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Fig. 7 Results of lower limb motion capture in the sagittal plane by using single device worn on the shank and determining the thigh motion from the
shank motion by the trained neural network model of intra-limb coordination. The pitch angles of thigh θt and shank θs are used to represent the
corresponding elevation angles in the sagittal plane, respectively. The joint angle of knee β in the sagittal plane is derived by subtracting θs from θt. The error of β
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the velocity sensors at quiescent state and wakes up them when detecting active
motion by the accelerometer. Therefore, highly efficient power management of the
device is achieved in real application.

The Forward-Left-Up (FLU) frame xbybzb (shown in Supplementary Fig. 8a) is
defined as the body reference frame fixed on the wearable device, where zb points to
the upward direction of the device, yb points to the left and xb points to the
forward. The geographic reference frame (xnynzn) refers to North-West-Up
(NWU), where zn points to the opposite direction of gravity, yn points to west, xn
points to north. Attitude angles of roll and pitch are denoted as γ and θ, which are
used to represent the limb posture in the human motion capture experiment.

Fabrication of micro flow sensor. The micro flow sensor (shown in Supple-
mentary Fig. 9) is made by the following steps62: (i) Spin coating a 30 μm pho-
toresist (KXN5735-LO, Rdmicro Co. Ltd.) on a polyimide substrate (AP8525R,
DuPont Co. Ltd.). (ii) Obtaining the pattern by photolithography and develop-
ment. (iii) Sputtering 30 nm thick chromium as an adhesion layer, and then
sputtering 150 nm thick platinum as the thermo-sensitive layer. (iv) The patterned
substrate is immersed in acetone for 2 h to dissolve the photoresist, and then
washed with absolute ethanol and deionized water. (v) Deposit 4 μm thick parylene
film on the patterned substrate as protective layer.

Motion velocity calculation. As shown in Supplementary Figs. 9 and 10a, the
micro flow sensor includes three central thermo-sensitive platinum ribbons
(denoted as hot film Rhi–Rhi) and three circumambient thermo-sensitive platinum
ribbons (denoted as cold film Rc1–Rc3). The hot films are electrically heated and
function as the flow sensors, the cold films act as the ambient temperature sensors
and are used for temperature compensation for the hot films. A constant tem-
perature difference (CTD) feedback circuit is adopted for each pair of hot film and
cold film in the sensor (Supplementary Fig. 10b) to achieve temperature com-
pensation57,63,64, where Ra1 and Rb1 are resistors for balancing the Wheatstone
bridge for the first pair of hot and cold films Rh1 and Rc1, Rtb1 is for adjusting the
Joule heating of hot film Rh1, and the feedback voltage U1 acts as the sensor output
of Rh1. Similarly, U2 and U3 are the corresponding sensor outputs of Rh2 and Rh3.
Thanks to the CTD circuit, the motion velocity detection is independent from
variation of the environment temperature.

The working principle of the micro flow sensor for measuring planar motion
velocity, illustrated in Supplementary Fig. 10a, is based on heat convection, where
three isolated micro thermal elements (hot films) are electrically heated and
measure motion-induced flow vf blowing over the sensor. The planar motion
velocity vb is figured out according to Eq. (26)43, where f(U) is determined
according to King’s law65 and α and β are constant parameters related to the
geometric features and working conditions of the micro flow sensor43.

U ¼ U1þU2=α1þU3=α2
3

vb ¼ �vf ¼ �f Uð Þ
ψ ¼ tan�1 α1β2�α2β1ð ÞU1þ α2þ2β2ð ÞU2� α1þ2β1ð ÞU3ffiffi

3
p ½ α1β2þα2β1ð ÞU1�α2U2�α1U3 �

	 

8>>><
>>>:

ð26Þ

Data acquisition and analytics. The data of micro flow sensors, tri-axis accel-
erometer and tri-axis gyroscope in the wearable device are collected by an integrated
MCU at a sampling frequency of 1000Hz and are filtered in a MCU. The filtered data
are transmitted wirelessly to a host computer through a Bluetooth at a frequency of
100 Hz and used to implement data fusion to figure out three-dimensional motion
velocity, acceleration and attitude in real time. The reference motion data acquired by
VICON system is collected by the host computer as well. A trigger pulse is used to
synchronize the data transmission of our device and VICON system. The intra-limb
coordination model is trained off line. And the trained intra-limb coordination model
is used to determine thigh motion from shank motion in real time.

Neural network training. The neural network model representing intra-limb coor-
dination relationship of human lower limb is trained for each subject by using training
datasets detected by optical VICON system. The training datasets are collected from a
training experiment when the subject is walking and running on a treadmill with a
velocity increasing from 0 to 10 km/h at an interval of 1 km/h. The shank motion data
are used as the inputs and the thigh motion data are used as outputs of the neural
network. The model training is carried out using iterative least square method in
MATLAB software. The number of the hidden neurons is optimized by minimizing
the RMSE of thigh attitude angles (θt and γt) using least square method. The RMSE of
θt and γt changing with the number of neurons is shown in Supplementary Fig. 11.
The RMSE decreases with neuron number and gradually reaches to steady state. And
the RMSE keeps nearly constant with more than 30 hidden neurons. Thus the three-
layer neural network is optimized to have 30 hidden neurons. The trained intra-limb
coordination model is validated by determining the thigh motion from the shank
motion data detected by our device worn on the subject who conducts walking and
running experiments similar with the training experiment. The motion data measured
by our device are compared with that of the optical VICON system as shown in Fig. 7
and Supplementary Fig. 1 to Fig. 4. Four subjects with different ages including one
patient suffering from mild meniscus injury participate in lower limb motion capture

experiment, whose information is summarized in Supplementary Table 2. Three
repeated validation experiments are conducted for each subject.

Experiments performed in studies involving human participants are approved
by the Institution Review Board of Tsinghua University (No. 20180009). And
informed consent is obtained from the human subjects to use the image and
conduct the experiments described in this paper.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
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