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ABSTRACT Clostridium algidicarnis causes blown-pack spoilage of vacuum-packed
meat. Here, we report the draft genome sequences of C. algidicarnis strains CM002
and CM003, isolated from unspoiled chilled vacuum-packed lamb. The genome sequen-
ces of CM002 and CM003 comprise 2,950,326 and 2,870,995bp, respectively, and each
have a GC content of 30.1%.

C lostridium algidicarnis belongs to the group of psychrophilic and psychrotrophic
clostridia causing blown-pack spoilage (BPS) in chilled vacuum-packed meat (1).

Despite the role of this species in BPS, genomic studies of C. algidicarnis are limited.
We report the draft genome sequences of the two nonhemolytic C. algidicarnis strains
CM002 and CM003, isolated from meat juice samples from chilled vacuum-packed
lamb (2).

The strains were isolated from two different meat juice samples following a multi-
step sample preparation process involving ethanol (50% [vol/vol]; 1 h; 30°C) and lyso-
zyme (4mg/ml; 30min; 37°C) treatment followed by anaerobic enrichment at 4°C in
prereduced peptone-yeast-glucose-starch medium for 3weeks. A loopful of the respec-
tive enriched sample was plated onto Columbia agar supplemented with 5% defibri-
nated sheep blood (CBA) and incubated further anaerobically at 4°C for 3weeks. Single
colonies were incubated anaerobically on CBA at 4°C for 2weeks for purification.
Anaerobic conditions were generated in anaerobic jars using Thermo Scientific Oxoid
AnaeroGen sachets.

A DNA blood and tissue kit (Qiagen, Hombrechtikon, Switzerland) was used to extract
genomic DNA from a single colony purified on the CBA. Illumina Nextera DNA Flex chem-
istry and a MiniSeq sequencer (Illumina, San Diego, CA, USA) were used for the prepara-
tion and sequencing of transposon-based libraries, respectively. The sequence reads were
1,335,527 and 755,507bp for CM002 and CM003, respectively. For both genome sequen-
ces, paired-end sequence outputs of 150 to 300bp were produced. Quality control was
carried out using FastQC 0.11.7 (3) before assembly using the SPAdes 3.0-based software
(4) Shovill 1.0.9 (https://github.com/tseemann/shovill). Contigsof .500bp were selected
for assembly. The assembled genomes of CM002 and CM003 comprise 2,950,326 and
2,870,995bp, respectively. Each genome has a GC content of 30.1%. The number of con-
tigs, genome coverage, contig N50 value, and contig L50 value for CM002 are 54, 45�,
185,888bp, and 6, respectively, while for CM003, they are 56, 65�, 182,926bp, and 7,
respectively. CheckM (5) was used to assess the quality of both genomes. Default parame-
ters were used for all software and Web servers.

Strain identification was carried out in silico using 16S-based identification tools (5, 6)
and whole-genome sequence-based digital DNA-DNA hybridization (dDDH) (7) and aver-
age nucleotide identity (ANI) (8) against C. algidicarnis strains B3T (GenBank accession
no. JNLN00000000) and DSM 15099 (PTIS00000000). Comparative dDDH analyses for
subspecies delimitation resulted in values ranging between 48.7 and 65.8%, which are
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below the 79% threshold (7), indicating that strains CM002 and CM003 are phylogeneti-
cally distinct.

Gene annotation and prediction were carried out using the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (9) and Rapid Annotations using Subsystems Technology
(RAST) (10). Genes encoding proteolytic, lipolytic, and saccharolytic proteins were pre-
dicted, thus providing an insight into the metabolic features of these strains that might be
involved in BPS.

Data availability. The whole-genome shotgun project for CM002 and CM003 has
been deposited at DDBJ/ENA/GenBank under the accession no. JACKWX000000000
and JACKWW000000000, respectively. The versions described in this paper are
JACKWX010000000 and JACKWW010000000, respectively. The raw sequencing reads
have been deposited in the SRA under the accession no. SRX8947912 and SRX8947913,
respectively.
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