Skip to main content
. 2020 Nov 5;10:19128. doi: 10.1038/s41598-020-76129-8

Table 2.

Parameters used in each method.

Feature selection algorithms
Algorithm Parameters
ttest Default parameters
Mann_Whitney Default parameters
DCor Default parameters
Boruta {perc: 100, max_iter: 100, n_estimators: 15,000, max_depth: 6}
Lasso {alpha: 0.001, max_iter: 20,000}
Lasso {alpha: 0.01, max_iter: 20,000}
ElasticNet {l1_ratio: 0.5, max_iter: 20,000, alpha: 0.001}
ElasticNet {l1_ratio: 0.5, max_iter: 20,000, alpha: 0.01}
RandomForestClassifier {n_estimators: 10,000, max_depth: null}
RidgeCV default parameters
SVM(SVC) {kernel: linear, C: 1}
Recursive feature selection with random forest {n_estimators: 500, max_depth: null}
Recursive feature selection with SVM (SVC) {kernel = linear}
Class prediction algorithms
Algorithm Parameters
RandomForestClassifier {n_estimators = 1000, max_depth = 4}
SVC {C = 1, kernel = 'linear'}
LogisticRegression {max_iter = 20,000}
Lasso {max_iter = 20,000, alpha = .001}
ElasticNet {max_iter = 20,000, alpha = .001, l1_ratio = .5}