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Rapid mono and biexponential 
3D‑T1ρ mapping of knee cartilage 
using variational networks
Marcelo V. W. Zibetti  1*, Patricia M. Johnson  1, Azadeh Sharafi  1, Kerstin Hammernik  2, 
Florian Knoll  1 & Ravinder R. Regatte  1

In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and 
biexponential spin–lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, 
reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-
based variational network (VN) and compressed sensing (CS). Both methods were compared with 
spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters 
estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) 
from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and 
coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed 
well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases 
almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential 
mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD 
of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than 
CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.

Quantitative mapping using the spin–lattice relaxation time in the rotating frame (T1ρ) has shown to be useful for 
early detection of osteoarthritis (OA)1, since T1ρ mapping is sensitive to the proteoglycan content of the cartilage2. 
Biexponential relaxation models3 can provide more specific information about the water compartments of the 
various structures in the extracellular matrix of the cartilage4. However, in order to produce T1ρ maps, many T1ρ 
weighted images must be acquired, taking a long acquisition time, especially if biexponential models are desired3. 
Predominantly, monoexponential models are used for OA, but a recent study5 suggested that biexponential map-
ping of cartilage can provide better diagnostic performance. Studies on cartilage degradation6 show that the loss 
of macromolecules changes the distribution of multiexponential relaxation components. In3,7,8 it was observed 
biexponential relaxation in the knee cartilage of healthy volunteers in T1ρ and T2 mappings.

Reducing the acquisition time of T1ρ mapping is essential for practical use. Recently, compressive sensing 
(CS) acceleration has been studied for monoexponential T1ρ

9–11 and biexponential T1ρ mapping12 of cartilage. 
These studies demonstrated that CS combined with 3 × 3 filtering can reduce acquisition time by 10 times, with 
an error of 6.5% for monoexponential models11 and 15% for biexponential models12 (errors are 10% and 20% for 
accelerated acquisitions of 6 times if no filtering is used). Clearly, previous studies showed that the biexponen-
tial T1ρ mapping error using CS is much higher than that of monoexponential T1ρ mapping error for the same 
acceleration factor, usually because biexponential mapping is a more ill-posed problem, and more sensitive to 
noise and residual artifacts.

One possible approach to improve image and parametric mapping quality is to use deep learning-based 
reconstruction methods13 such as Variational Networks (VNs)14. A VN is an unrolling-based deep MR image 
reconstruction approach developed for multi-coil imaging15, that combines a gradient-like iterative algorithm 
with learned regularization, providing a reconstruction specifically tailored for a particular set of images, in this 
case, for knee T1ρ-weighted images. In general, the trained regularizing filters, activation functions, and other 
network parameters provide the missing information, due to k-space undersampling, for the reconstruction 
process. Also, the VN uses relatively fast algorithmic implementation based on convolutional layers, enabling 
faster reconstructions than typical iterative algorithms used in CS. However, this comes at the cost of formulating 
the image reconstruction problem into a highly non-linear and non-convex optimization problem. This opens 
the question if the found local minimum generalizes to different types of data. Up to this point, all studies that 
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investigated the properties of this approach14,16–18 have focused on qualitative imaging where the actual signal 
values of the reconstructed images are arbitrarily defined. It is, therefore, an open question whether such a recon-
struction method can also be used for the estimation of quantitative biomarkers, where systematic deviations in 
signal intensities of the reconstructed images lead to erroneous parameter maps.

In this study, we compare the VN, trained with real and synthetically generated knee cartilage images, against 
CS approaches for mono and biexponential T1ρ mapping11,12. It is not our intention here to compare different deep 
learning methods for image reconstruction13,15,19,20, but compare one good representative of this class against one 
good representative of CS, which is among the current state-of-the-art methods for T1ρ mapping11,12,21. In order 
to have a fair comparison between these approaches, the VN and CS used the same pre-available data for training 
or tuning the parameters of the algorithms. Also, in both methods, the comparisons involved models using only 
spatial (S) information (2D, time-independent image reconstructions) and spatio-temporal (ST) information 
(2D + time, the whole sequence of T1ρ–weighted images jointly reconstructed). After reconstruction, complex-
valued fitting is used to find the T1ρ mapping parameters for mono and biexponential models.

Results
The comparison of the reconstruction errors, assessed using normalized root mean squared error (nRMSE), is 
shown in Fig. 1. The results for the noiseless and noisy synthetic data, where the ground truth (GT) is known, 
are shown in Fig. 1(a)–(b). In those plots, the reference method (fully-sampled reconstruction, denoted as REF) 
can also be compared with the GT, as well as the accelerated methods. The results for the knee cartilage training 
and testing group are shown in Fig. 1(c)–(d). In those plots, the accelerated methods are compared against the 
reference, since no GT is known for all knee cartilage images. Representative reconstructed images of the noisy 
synthetic case are shown in Fig. 1(e)–(h) their error against the ground truth is shown in Fig. 1(i)–(l).

In Fig. 1 we can observe that VN-S always outperforms CS-S, and VN-ST outperforms CS-ST most of the 
time. The only observed exception was the noiseless synthetic case. It is interesting to observe in Fig. 1(b) that 
VN-ST had a denoising effect and performed better than the noisy fully-sampled reference for AF ≤ 4. In Fig. 1(l) 
we can see that the error of the REF is basically noise.

In Fig. 2, the comparison of the monoexponential T1ρ mapping errors, given by the MNAD, is shown. 
The results for the noiseless and noisy synthetic data, where the GT is known, are shown in Fig. 2(a)–(b). In 
those plots, all the maps can be compared with GT. The results for the training and testing group are shown in 
Fig. 2(c)–(d). In those plots, the maps from the accelerated methods are compared against the map obtained from 
the reference, since no GT maps are available for all the knee cartilage data. Representative monoexponential 
T1ρ maps of the noisy synthetic case are shown in Fig. 2(e)–(h) their error (NAD) against the ground truth is 
shown in Fig. 2(i)–(l).

In Fig. 2 we can observe that CS-ST performed well in the noiseless case and with training data. However, 
the most relevant practical case is with synthetic noisy data and with testing data. In these cases, VN-S, VN-ST, 
and CS-ST performed equally well for monoexponential fitting. In all cases, VN-S outperformed CS-S for all AF.

The results of comparing the biexponential T1ρ mapping errors, given by the MNAD, are shown in Fig. 3. The 
results for the noiseless and noisy synthetic data, where the GT is known, are shown in Fig. 3(a)–(b). The results 
for the training and testing group are shown in Fig. 3(c)–(d).

In Fig. 3 we can observe that VN-ST performed better than the other methods most of AF in almost all cases, 
especially for high AF. This is extremely important to make biexponential T1ρ mapping practical since it is more 
sensitive to noise and artifacts than monoexponential mapping12,21,22. In Table 1, we included the results with 
in vivo data. Table 1B shows the improved MNAD provided by VN-ST with biexponential mapping.

The most relevant results for practical purposes are in Figs. 1(d), 2(d), and Fig. 3(d), where it is shown the 
performance with unseen testing data, which represents the expected performance with newly captured data.

Figure 4 shows representative maps for short time, in Fig. 4(a)–(d), for long times, in Fig. 4(e)–(h), and for 
short fractions, in Fig. 4(i)–(l), for the synthetic noise case. REF is fully sampled, and VN and CS methods use 
AF = 6.

In Fig. 5, in vivo representative maps for monoexponential times are shown in Fig. 5(a)–(d), and for biexpo-
nential short time, in Fig. 5(e)–(h), for long time, in Fig. 5(i)–(l), and for short fractions, in Fig. 5(m)–(p). Also, 
REF is fully sampled, and VN and CS methods use AF = 6.

In Fig. 6, one can see that the central tendency (mean) and variability (SD) of the exponential parameters 
of the in vivo knee cartilage, for all ROIs, for AF = 4. This information is also included by an individual ROI 
basis in the Supplementary Tables S1–S5. The p-values of the ANOVA in Supplementary Tables S1–S5 indicate 
that any difference in the mean values of the parameters obtained by the various accelerated methods is due to 
chance. This result means that the accelerated methods do not introduce any bias in the central tendency of the 
model. In addition, there is smaller variability in all accelerated methods when compared to fully sampled REF.

The coefficient of variations of different methods per AF, showing the variability of the mean parameters 
between two scans of the same volunteer, is shown in Fig. 7. Essentially, this in vivo analysis of knee cartilage 
shows that the differences observed in the parameters obtained by each method on the same volunteer when 
the scan is repeated are between 1.5 and 4.5%. The VN-ST had a larger difference for the fraction of the short 
component, a little larger than the fully sampled reference (REF). Nevertheless, all methods have shown good 
repeatability with less than 4.5% difference in the parameters between repeated scans with the same volunteer.

Discussion
In general, the use of VN is advantageous over CS, even though both approaches provide very satisfying quality 
for most AF. However, VN provided better reconstruction quality, faster image reconstruction speed, and better 
biexponential mapping quality. The only drawback is the slightly worse repeatability.
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One of the novelties in this study is the use of spatio-temporal information within the VN. The VN-ST 
improved reconstruction and fitting comparing with the use of only spatial information by VN-S. The VN-ST 
improved the nRMSE over the VN-S by nearly 9% and improved over CS-ST by nearly 12%.

The training of the regularization parameter in CS, via the coefficient β in � = β�C∗F∗S∗y�∞ , provided a 
good automatic adjustment of the regularization parameter. This perhaps helps to solve one of the long-standing 
questions related to regularizing side penalties, i.e. how to choose the regularization parameter. The training 
process was successful for the kind of regularizing penalty we used here.

Our VN methods are implemented in PyTorch and run on a GPU cluster. This is necessary to reduce the 
computational time of the training process. The CS algorithms are implemented in MATLAB and run on a 
CPU cluster. The average times for the parallel reconstruction of one data set (256 slices) are 110.5 s for CS-S 
and 133.6 s for CS-ST (CPU cluster composed by Intel i7-1.6 GHz-48 GB machines) and 8.0 s for both, VN-S 

Figure 1.   Comparison of the reconstruction error (nRMSE) using (a) only the noiseless synthetic dataset, 
(b) only the noisy synthetic dataset, (c) all training datasets, and (d) all testing datasets. Representative 
reconstructed images of the noisy synthetic case, using AF = 6, are shown in (e)–(g) and the fully-sampled 
reference in (h), and their voxel-wise absolute difference against the ground truth is shown in (i)–(l).
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and VN-ST (GPU cluster composed by NVIDIA M40-12 GB). This means a speedup of 13 times in the image 
reconstruction time for the VN compared to CS. Note that CS took on average 150 iterations to converge (max 
iterations was set to 600), while VN is equivalent to 10 iterations (or 10 layers), this means that both methods 
take roughly 0.8 s/iteration or 0.8 s/layer of processing time. It is expected a computation cost per iteration of 
the same order for both methods, which indicates that the computation advantage of VN is the small number 
of iterations (or layers) to achieve a good solution.

CS has been used in monoexponential T1ρ mapping before, some examples are combined CS and auto-
calibration reconstruction (ARC)9; integrated PCA and dictionary learning (PANDA)23 (which was compared 
to focal underdetermined system solver with PCA (k–t FOCUSS-PCA)24 and model-based dictionary learning 
(MBDL)25 in23); combined reconstruction with locally adaptive iterative support detection (k–t LAISD) and joint 
image reconstruction and sensitivity estimation in SENSE (JSENSE)10; and blind compressed sensing (BCS)26.

Figure 2.   Comparison of the monoexponential T1ρ mapping error (MNAD) using (a) only the noiseless 
synthetic dataset, (b) only the noisy synthetic dataset, (c) all the training datasets, and (d) all the testing datasets. 
Representative monoexponential T1ρ maps of the noisy synthetic case, using AF = 6, are shown in (e)–(g), and 
the fully-sampled reference in (h), and their error (NAD) against the ground truth maps are shown in (i)–(l).
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Convolutional neural networks27 have been used to directly estimate monoexponential T2 mapping param-
eters, with promising results of 6.1% of error in AF of 5 and 7.1% in AF of 8. In22 accelerated biexponential 
T1ρ mapping for brain images has improved L + S methods, but also confirming the need for improvement of 
biexponential mapping due to model instability.

In11,12 we provide a broad evaluation, using AF from 2, up to 10, comparing twelve CS methods, with and 
without pre-filtering, for mono and biexponential T1ρ mapping. For monoexponential fitting, we cannot see 
much of an improvement compared with11. Considering the results without filtering from11, we notice nearly 
the same level of MNAD per AF. The results in11 (Figure 6B, page 1483) are a little better for higher AF due to 
the optimized choice of the regularization parameter, independent for each image sequence. Here, in Table 1A, 
we observed an MNAD around 5.0% for AF of 2, which increases almost linearly with the AF to an MNAD of 
13.0% for AF of 8, with very little difference between VN-ST, VN-S, and CS-ST.

However, the results here for biexponential mapping are much better than the ones in12. One of the factors 
is the use of complex-valued fitting. In12, where magnitude-only fitting was used, the CS-ST (specified as STFD 
in12) has MNAD of 11.4% at AF = 2, and 19.0% at AF = 6. Here, complex-valued fitting was used, according to 
Table 1B the CS-ST has MNAD of 7.7% at AF = 2 and 13.2% at AF = 6, improving MNAD by around 40% on 

Figure 3.   Comparison of the biexponential T1ρ mapping error (MNAD) using (a) only the noiseless synthetic 
dataset, and (b) using only the noisy synthetic dataset, in (c) all the training datasets, and (d) all the testing 
datasets.

Table 1.   MNAD of the T1ρ maps for (A) monoexponential models using in vivo knee cartilage (testing and 
training) data and (B) biexponential models using in vivo knee cartilage data. Bold-marked results represent 
CS methods and corresponding AF that obtained MNAD below 12% on monoexponential and biexponential 
models.

AF 2 AF4 AF 6 AF8 AF 10

(A) MNAD of monoexponential mapping of knee cartilage data

CS-ST 0.050 CS-ST 0.080 CS-ST 0.106 VN-S 0.130 VN-S 0.138

VN-ST 0.051 VN-S 0.083 VN-ST 0.108 VN-ST 0.130 CS-ST 0.156

VN-S 0.054 VN-ST 0.085 VN-S 0.110 CS-ST 0.134 CS-S 0.157

CS-S 0.055 CS-S 0.091 CS-S 0.117 CS-S 0.137 VN-ST 0.158

(B) MNAD of biexponential mapping of knee cartilage data

VN-ST 0.074 VN-ST 0.104 VN-ST 0.120 VN-ST 0.131 VN-ST 0.143

CS-ST 0.077 VN-S 0.107 VN-S 0.128 VN-S 0.140 VN-S 0.147

VN-S 0.078 CS-ST 0.108 CS-ST 0.132 CS-ST 0.150 CS-ST 0.153

CS-S 0.081 CS-S 0.118 CS-S 0.141 CS-S 0.155 CS-S 0.157
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average when comparing to what was observed in12 (Table 2A, page 876). In this sense, VN-ST improved the 
results obtained by the best CS method even more. The VN-ST has MNAD of 7.4% at AF = 2 and 12.0% at AF = 6, 
improving MNAD over CS-ST by nearly 7.5% on average. In our recent study in21 it was shown that changing 
the kind of acquisition from Cartesian to golden angle radial also improves CS-ST (STFD in Tables 3A of21). This 
indicates that combining VN with radial acquisition can be a promising future approach.

Based on the results of Table 1, the VN-ST was able to reduce the error on biexponential mapping due to 
scan acceleration. Using VN-ST, biexponential mapping can be done with an error of 12% at AF = 6, very close 
to the error of nearly 11% at AF = 6 on monoexponential mapping (achieved by VN-ST, VN-S, and CS-ST). This 
is an important achievement for biexponential mapping using Cartesian acquisitions that previously had much 
higher errors compared to monoexponential mapping11,12,21.

In the meta-analysis in1, considering a pooling of several studies with biomarkers for osteoarthritis (OA), 
it was observed that the standardized mean difference of monoexponential T1ρ mapping between OA patients 
and controls ranged from 0.40 and 1.06. In the Supplementary Tables S1–S5, It is shown that up to AF = 6, none 
of the methods generated a standardized mean difference larger than 0.06, well below the difference between 
patients and controls.

This is the first study that investigates the use of the VN approach focused on quantitative parametric map-
ping. Prior studies of VN14,16–18 focused on qualitative imaging. This is an important aspect to investigate, because 
deep learning methods for image reconstruction, in general, could hallucinate structures or alter the temporal 
behavior of the signals28,29, affecting the produced quantitative maps. In this sense, the VN performed very well, 
producing quantitative parameters consistent with the ones produced by fully-sampled methods.

The number and distribution of TSLs are important. The choice of this work was based on a previous study3, 
but different distributions can be used. Also, the use of different AFs at each time point (or TSL) will be inves-
tigated in future studies.

This study evaluates the performance of VN, which is an image reconstruction algorithm based on deep learn-
ing. However, the following exponential fitting step is still an optimization step, based on the CGSTR algorithm, 
not a deep learning-based fitting. In the future, we plan to investigate neural networks also for the fitting task.

The spatio-temporal filters of the VN-ST tested in this study was only of size 11 × 11 × 3 due to memory limita-
tion (NVIDIA M40-12 GB). Larger 3D convolutional filters would require GPUs with more memory than what 
we have available at the moment, but it could significantly improve quality in future implementations of VN-ST.

Methods
Here we detail the methods used in this work, with an overview of them shown in Fig. 8.

Data acquisition.  This study was approved by New York University Langone Health’s institutional review 
board (IRB) and was health insurance portability and accountability act (HIPAA) compliant. This was a retro-
spective, non-randomized imaging study to obtain accelerated proton T1ρ relaxation mapping. All subjects gave 

Figure 4.   Representative biexponential T1ρ maps, including short time (a)–(d), long time (e)–(h), and the 
fraction of the short component (i)–(l) for the noisy synthetic case, using AF = 6 on CS-ST, VN-S, and VN-ST, 
and using the fully-sampled reconstruction as reference.
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written informed consent after explanation of the study and the protocol, as per the IRB guidelines. All the meth-
ods reported in this manuscript were performed in accordance with the institutional guidelines and regulations.

Seven in vivo human knee 3D-T1ρ-weighted datasets were acquired with 10 different spin-lock times (TSLs) 
using a modified 3D Cartesian Turbo-Flash sequence3. The MRI scans were performed using a 3 T clinical MRI 
scanner (Prisma, Siemens Healthcare, Erlangen, Germany) with a 15-channel Tx/Rx knee coil (QED, Cleveland 
OH). The 3D-T1ρ acquisition parameters were: TR/TE = 7.5 ms/4 ms, flip angle = 8°, 3D matrix size 256 × 128 × 64 
( Nx × Ny × Nz ), longitudinal magnetization restoration delay = 1020 ms, 64 k-space lines ( kz ) captured per 
preparation pulse, spin-lock frequency = 500 Hz, slice thickness = 2 mm, field of view (FOV) = 120 mm × 120 mm, 
and receiver bandwidth = 515 Hz/pixel. The readout direction ( kx ) is always fully sampled (256 samples). The 
3D matrix is separated using FFT into multiple 2D problems, and then reorganized with the 10 TSLs into 256 
problems using 2D + times systems of size 128 × 64 × 10 ( Ny × Nz × Nt).

The T1ρ-weighted scans of the knee were acquired in the sagittal plane from seven healthy volunteers 
(age = 29.6 ± 7.5 years), with 10 TSLs 2/4/6/8/10/15/25/35/45/55 ms, and a total acquisition time of 32 min. The 
T1ρ-protocol was repeated on three volunteers for repeatability evaluation.

Synthetically generated data.  We also generated six synthetic knee 3D-T1ρ-weighted datasets, where 
the T1ρ decaying and intensities are known exactly and used as ground truth. The synthetic data were created 
using previously obtained T1ρ maps from in vivo knee images. After estimating relaxation maps for all voxels, 
which were assumed as ground truth, new images and k-space data were synthetically produced, using previ-
ously estimated coil sensitivities. In this sense, they are real knee 3D-T1ρ-weighted images and not geometric-

Figure 5.   Representative monoexponential and biexponential T1ρ maps, including monoexponential time (a)–
(d), biexponential short time (e)–(h), long time (i)–(l), and the fraction of the short component (m)–(p) for the 
in vivo testing data. REF uses fully-sampled data, the VN and CS methods use AF = 6.
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shaped phantoms. This was done such that the spatial description of the synthetic images is similar to real knee 
images. However, three synthetic sequences have Gaussian noise added in the k-space, similar to the level of 
noise observed in our in vivo data acquisition (within the noise calibration acquisitions), while the other three 
sequences are noiseless. These data will be used to evaluate the performance of the methods in these two sce-
narios.

Figure 6.   Central tendency (mean, Eq. (11)) represented by the coloured bars, variability (standard deviation, 
Eq. (12)) represented by whiskers, for (a) monoexponential T1ρ values (in ms) for (b) biexponential short 
T1ρ time (in ms), (c) biexponential long T1ρ time (in ms), (d) biexponential short fraction (in %), and (e) 
biexponential long fraction (in %). The REF is fully sampled and the other methods (VN and CS) used AF = 4.

Figure 7.   Coefficient of variations of the repeatability study, considering 3 subjects where the acquisition was 
repeated on the same day, for (a) monoexponential T1ρ, (b) biexponential short fraction, (c) biexponential long 
time, (d) biexponential short time.
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Retrospective undersampling.  The 2D + time k-space data were retrospectively undersampled along the 
two-phase encoding dimensions (ky and kz). As mentioned before, the readout, or frequency encoding, direction 
kx is always fully-sampled in this protocol and it was separated after applying 1D Fourier transform. Data were 
undersampled following a 2D + time Poisson disk random pattern30. The acceleration factor (AF) is defined as 
the ratio of total k-space samples by the number of measured k-space samples. A central rectangular k-space 
area (39 × 19 for all AF) was fully sampled and used for coil sensitivity map estimation and low-order phase 
estimation31,32.

Fully‑sampled reference reconstruction.  Assuming the k-space data is generated by the model given 
by

where x ∈ C
NyNzNt is a vector that represents the reconstructed image sequence, originally of size Ny × Nz × Nt , 

with Ny being the image size in the y-axis and Nz the size in the z-axis, Nt is the number of TSLs. y is a vector that 
represents the captured k-space. For these Cartesian acquisitions, the original size of y ∈ C

NyNzNtNc is Ny × Nz× 
Nt × Nc , where Nc is the number of receive coils, and η represents the Gaussian white noise. The matrix C contains 
the coil sensitivities and phase compensation31,32. This matrix maps the image sequence of size Ny × Nz × Nt into 
multiple sensitivity-weighted image sequences of size Ny × Nz × Nt × Nc , followed by a Fourier transform F.

The reference reconstruction x̂ was obtained by applying the adjoint operator:

where the matrix C∗ , the adjoint of C , performs the coil combination and phase compensation, and F∗ is the 
inverse Fourier transform. The coil sensitivities, required for reconstruction, were estimated with ESPIRiT33, 
using the central area of the k-space (39 × 19 for all AF). We also used low-order phase information, following31,32, 
for phase compensation. Phase compensation assures the reconstructed images have nearly zero-phase for later 
complex-valued fitting in the T1ρ mapping step.

VN reconstruction algorithms.  The VN is inspired by the minimization problem34, given by

but instead, it approximates a solution by M fixed iterations of a gradient descent-like algorithm14, given by

(1)y = FCx + η,

(2)x̂ = C∗F∗y,

(3)x̂ ∈ argmin
x

�yS − SFCx�22 +
∑Nk

i=1
��i(Kix), 1�,

Figure 8.   (a) MRI acquisition model used for VN and CS reconstructions, including coil sensitivities, Fourier 
transforms, k-space sampling pattern (using Poisson disk with a fully-sampled central area), and additive white 
Gaussian noise. (b) Diagram of the process, including reconstruction, complex-valued fitting, reconstruction 
(nRMSE), and fitting (MNAD) error analysis and in vivo data analysis.
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where the vector x, matrices C and F are described in Eq. (1). The undersampling matrix S is a diagonal matrix, 
where the non-sampled k-space points have zeros in their diagonal positions; the respective elements in yS are 
replaced by zeros as well, being yS = Sy . Also, 1 ≤ m ≤ M + 1 represents the iteration index (or layer), where 
a maximum of M = 10 was chosen.

All the VN parameters, i.e. convolutional filters Km,i ( Nk = 24 ), activation functions �′

m,i , and step-sizes 
αm , are learned from data14. The VN with spatial filters only (VN-S) uses filters of size 11 × 11, and the VN with 
spatio-temporal filters (VN-ST) uses filters of size 11 × 11 × 3.

Note that the VN in Eq.  (4) resembles a general regularized reconstruction algorithm. The left term 
in (4), αmC∗F∗S∗(yS − SFCxm) , is responsible for reducing k-space error, while the right term in (4), ∑Nk

i=1K
∗
m,i�

′

m,i

(
Km,ixm

)
 , reduces undesired features in the image. However, instead of using human-designed 

spatio-temporal filters and activation functions (such components are obtained from the gradient of the cost 
function in CS methods), the VN uses convolutional filters Km,i and functions �′

m,i learned from training data. 
These components are different for each layer m.

CS reconstruction algorithms.  In this work, we used one of the best performing regularization functions 
from11,12 for CS of T1ρ mapping of knee cartilage, i.e. the l1-norm with spatio-temporal finite differences (STFD). 
This CS reconstructed method is denoted as CS-ST in this paper. We also included spatial finite difference (SFD), 
to compare CS with the spatial-only version VN. This spatial-only CS reconstructed method is denoted as CS-S.

The l1-norm31 regularized CS problems are posed as

The l1-norm, �u�1 =
∑

i|ui| , is the sum of the magnitudes, � is the regularization parameter and i denotes the 
pixel index. The transform T is the SFD, of order 1, or the STFD35–37 set to order 1 spatially and order 2 temporally. 
The CS reconstruction was performed using the new monotone fast iterative shrinkage-thresholding algorithms 
with variable acceleration (MFISTA-VA)38. All methods stopped when �xi+1 − xi�2/�xi+1�2 < 10−5 , or when 
i > 600 , i the iteration index.

Training VN parameters and regularization parameter of CS.  The datasets, composed of real data 
and synthetically generated data were divided into two groups. One group is used for training ( n = 4 real data-
sets, n = 3 synthetically generated datasets, each dataset contains 256 slices of 2D + time T1ρ image sequences), 
and the other group is used for testing ( n = 3 real datasets, n = 3 synthetically generated datasets). The training 
set totals (4+ 3)× 256 = 3072 image sequences for training the algorithms.

The training of the VN parameters was done using 50 epochs of the algorithm ADAM39, where the error ∑J
j=1 �xM,j − xref ,j�

2
2
 is minimized. The error with validation set (subset of the training data randomly chosen) 

stopped to decreasing at this iteration. The batch size for VN-S is 40 image sequences, and for VN-ST is 20 image 
sequences. These batch sizes are the largest that can fit into the GPU memory. The learning rate was set to 10−3 , 
the recommended for ADAM39. The vector xM,j is the VN reconstruction of the jth image sequence in the train-
ing set, and xref ,j is either the ground truth (if the jth image is from the synthetic dataset) or the fully-sampled 
reconstruction, from Eq. (2) (if the jth image is from the real dataset) for the same image sequence. The step 
parameters αm , convolutional filters Km,i , and activation functions �′

m,i are learned during the training process.
For CS reconstructions, the training set was used to find the regularization parameters, � , from Eq. (5). The 

parameters related to the l1-norm for each dataset was set to � = β�C∗F∗S∗y�∞ , where β is chosen such the 
error 

∑J
j=1 �x̂β ,j − xref ,j�

2
2
 is minimized where x̂β ,j is the CS reconstruction of the jth image sequence in the set. 

The best parameter β searched among 12 log spaced coefficients between 10−6 and 106 (multiplicative factor of 
12.3285), with an extra 12 steps for refinement using bisection among the best coefficients.

Exponential models and fitting algorithms.  The T1ρ relaxation is assumed to be an exponentially 
decaying process. However, the measured magnitude of the signals only shows this decaying behavior in noise-
free cases. When the signal is contaminated by noise, such as Gaussian noise, the magnitude decaying converges 
to a non-zero constant (a bias) due to Rician statistics40,41. The difficulty associated with this approach of using 
the magnitude-only fitting, such as the ones used in11,12, is that the kind of noise and the levels of noise in the 
images are different according to the kind of reconstruction method utilized (i.e. VN or CS), requiring indi-
vidualized compensation. Here, we decided to use a different approach, using complex-valued fitting41,42. In this 
case, noise is not expected to cause bias41, increasing the accuracy of the estimated exponential parameters over 
real-valued fitting using only the magnitude.

The complex-valued monoexponential model is described as

with complex-valued c(n) . Note the relaxation time τ(n) is real-valued.
The complex-valued biexponential model can be written as:

(4)xm+1 = xm −

(∑Nk

i=1
K∗

m,i�
′

m,i

(
Km,ixm

)
+ αmC

∗F∗S
∗
(
yS − SFCxm

))
,

(5)x̂ ∈ argmin
x

�yS − SFCx�22 + ��Tx�1,

(6)x(t, n) = c(n)exp

(
−

t

τ(n)

)
,
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where c(n) is complex-valued. However, the fractions of short and long components at position n, given by 
0 ≤ f s(n) ≤ 1 and fl(n) = 1− fs(n) , and the T1ρ relaxation times of the short and long components, given by 
τs(n) and τl(n) , are all real-valued.

The biexponential T1ρ parameters estimation, or simply fitting process, was done using non-linear least 
squares, using models of Eqs. (6) and (7), where the minimization was done using conjugate gradient Steihaug’s 
trust-region (CGSTR) algorithm43. The CGSTR algorithm stopped at a maximum of 2000 iterations for mono-
exponential, or 4000 iterations for biexponential, or else when normalized parameter update is lower than 10–5. 
Biexponential estimation started with monoexponential fitting results, classifying them as short (0.5-10 ms) 
or long (10-300 ms), depending on its estimated monoexponential T1ρ relaxation time. Similar to44, F-test 
was utilized for detecting mono/biexponential voxels. Voxels were assumed to have biexponential behavior if 
F-ratio > 5.14 (p value = 0.05) related to monoexponential, following the F-test method from45. This means that 
the sum of squares of the biexponential fitting process is reduced significantly compared to monoexponential 
fitting. Also, both fractions fs(n) and fl(n) need to be higher than 5% in order to be a valid biexponential in 
these experiments. voxels that did not satisfy F-ratio > 5.14 or minimum fraction of 5% were excluded from 
biexponential evaluations.

Analysis of the reconstructions.  The performance of the VN and CS methods was evaluated according 
to the quality of the reconstructed images and the quality of the estimated T1ρ parameters. Image reconstruction 
quality was assessed using normalized root mean squared error (nRMSE) against the reference (REF) method. 
Our reference method is the reconstruction of the fully-sampled data or the ground truth (for the synthetic 
phantom). When the ground truth is available, the fully-sampled reconstruction was also compared and plotted 
as REF, however, no acceleration is applied to it. The nRMSE is defined as

Analysis of the fitting.  The fitting process was applied only on each specific ROI, as shown in Fig. 9. For 
in vivo knee cartilage, 5 ROIs were employed, following3: medial femoral cartilage (MFC), medial tibial cartilage 
(MTC), lateral femoral cartilage (LFC), lateral tibial cartilage (LTC), and patellar cartilage (PC). In those regions, 
the T1ρ parameters from CS and VN reconstructions, including T1ρ times and fractions for short and long com-
ponents, were compared against the parameters obtained from the reference reconstruction (and ground truth, 
when available).

The quality was assessed using normalized absolute deviation (NAD) of the parameters11,12 obtained in each 
voxel position n, given by

where p(n) is the T1ρ time for the monoexponential model in Eq. (6) or one of the four biexponential parameters 
( fs(n), fl(n), τs(n), τl(n) ) for Eq. (7). Voxels in which any of the fractions were lower than 5% were excluded from 
the biexponential evaluation. As observed here and in3, small fractions had inaccurate estimated T1ρ parameters, 
even for fully-sampled images, leading to unrealistic NADs.

The errors in T1ρ mapping were quantified by the median of NADs (MNAD):

(7)x(t, n) = c(n)

(
fs(n)exp

(
−

t

τs(n)

)
+ fl(n)exp

(
−

t

τl(n)

))
,

(8)nRMSE
(
x̂, xref

)
=

�x̂ − xref�2

�xref�2
.

(9)NAD(n) =

∣∣p(n)− pref (n)
∣∣

(p(n)+ pref (n))/2
,

Figure 9.   The regions of interest (ROIs) consider: (a) medial femoral cartilage (MFC), in red, and medial tibial 
cartilage (MTC), in cyan; (b) lateral femoral cartilage (LFC), in yellow, and lateral tibial cartilage (LTC), in 
green; and (c) patellar cartilage (PC), in blue. In this figure only one slice is shown, each ROI extends across five 
slices.
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The ROI can comprehend a specific ROI as shown in Fig. 9, or all ROIs. In Eq. (10), MNAD of 0.1 corresponds 
to a median deviation of 10% on the parameters relative to the average between reference and evaluated value.

In vivo statistical data analysis.  In order to compare in-vivo quantitative parameters among different 
subjects and acquisition, where voxel-based metrics are not possible, we used mean parameters of an ROI, given 
by

The mean, in Eq. (11), is used as a measurement of central tendency of the parameters of the relaxation model 
(e.g., times and fractions) in the ROI. The variability of relaxation parameters are measured by the standard 
deviation (SD), given by

Analysis of variance (ANOVA) is used to evaluate if the differences between estimated 
−
p (ROI) , from 

Eq. (11), for the various accelerated methods are greater than would be expected by chance. This is shown by 
the p value  for a balanced one-way ANOVA in the Supplementary Tables S1–S5. The averaged 

−
p (ROI) and 

SD(ROI) across different volunteers are shown in Fig. 6. Supplementary Tables S1–S5 also show the standardized 
mean difference to compare with results in1.

Intra-subject repeatability is assessed using the coefficient of variation (CV), defined as CV = SD/M, being 
SD the standard deviation and M the average of 

−
p (ROI) of two scans of the same volunteer.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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