
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19218  | https://doi.org/10.1038/s41598-020-76263-3

www.nature.com/scientificreports

Metabolite activity in the anterior 
cingulate cortex during a painful 
stimulus using functional MRS
J. Archibald1,2*, E. L. MacMillan6,7,8, C. Graf1,9, P. Kozlowski1,5,6,10, C. Laule1,5,6,9,10,11 & 
J. L. K. Kramer1,3,4,5

To understand neurochemical brain responses to pain, proton magnetic resonance spectroscopy 
(1H-MRS) is used in humans in vivo to examine various metabolites. Recent MRS investigations have 
adopted a functional approach, where acquisitions of MRS are performed over time to track task-
related changes. Previous studies suggest glutamate is of primary interest, as it may play a role during 
cortical processing of noxious stimuli. The objective of this study was to examine the metabolic effect 
(i.e., glutamate) in the anterior cingulate cortex during noxious stimulation using fMRS. The analysis 
addressed changes in glutamate and glutamate + glutamine (Glx) associated with the onset of pain, 
and the degree by which fluctuations in metabolites corresponded with continuous pain outcomes. 
Results suggest healthy participants undergoing tonic noxious stimulation demonstrated increased 
concentrations of glutamate and Glx at the onset of pain. Subsequent reports of pain were not 
accompanied by corresponding changes in glutamate of Glx concentrations. An exploratory analysis 
on sex revealed large effect size changes in glutamate at pain onset in female participants, compared 
with medium-sized effects in male participants. We propose a role for glutamate in the ACC related to 
the detection of a noxious stimulus.

Non-invasive neuroimaging techniques are widely applied to gain a deeper understanding of pain in health and 
disease1–3. These approaches primarily focus on function by way of acquiring electroencephalography (EEG)4–8, 
magnetoencephalography (MEG)5,9,10, and functional magnetic resonance imaging (fMRI)11–14, and have yielded 
unprecedented insights into the temporal and spatial representation of pain in the brain. Despite major advances, 
knowledge regarding central mechanisms of pain is incomplete, highlighting a major need to develop techniques 
suitable for application in humans.

Since the late 1980s, magnetic resonance spectroscopy (MRS) has been employed as a non-invasive tool to 
quantify various metabolite levels in vivo in the brain, including n-acetyl-aspartate (NAA), total creatine (tCr), 
myo-inositol (mI), glutamate, and glutamine15. More recent investigations have adopted a “functional” approach, 
whereby acquisitions of MRS are performed in series, over time, to track task-related changes in metabolite 
levels16–23. The theoretical advantage of functional MRS is the potential to more directly measure local events and 
underlying metabolic processes16,19,22,24. This addresses a well-known limitation of conventional neuroimaging 
techniques, which reflect global activations and deactivations without a direct link to the underlying metabolic 
processes. In fMRS there is an intriguing opportunity to gain new insights into mechanisms underlying the 
processing of pain in the brain.

Several corresponding lines of evidence suggest that glutamate is a candidate biomarker for pain19,22,25–32. 
In addition to previous fMRS studies showcasing increased glutamate in response to acutely painful 
stimulation16,33–35, concentrations are altered in patient populations with chronic pain22,36–38. Emerging evidence 
also suggests that pharmacological approaches targeting glutamate receptors are effective in relieving acute39 
and chronic pain30,39,40. Glutamine is another intriguing candidate. Synthesized from glutamate, glutamine is 
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produced in the astrocytes and is an important, intermediary component of metabolism (i.e., glutamate-glu-
tamine neurotransmission cycle)41. Unfortunately, the similarity of chemical structures results in overlapping 
1H NMR spectra at 3 T41. As the separation of these is unreliable, the sum (referred to as Glx) can be quantified 
with higher accuracy41.

Among brain regions widely ascribed a role in pain11,42–45, the anterior cingulate cortex (ACC) is ideally 
positioned and composed to acquire high-quality fMRS data. This relates to voxel placement away from air/tis-
sue interfaces and bone (i.e., scalp)15 and high gray matter concentration to detect metabolites characterized by 
low signal to noise (e.g., glutamate)46. Seminal studies applying fMRS have yielded mixed results with regards 
to the metabolic effect of noxious stimulation in the ACC, including no change47–50 or increased glutamate and 
Glx levels16,21,33,34,51.

To examine glutamate in the ACC during noxious stimulation, we performed a study in healthy subjects using 
fMRS. A model of pain was used to generate tonic heat pain, during which participants rated their perceived 
intensity. Our analysis addressed changes in glutamate and Glx associated with the onset of pain, and the degree 
by which fluctuations in metabolites corresponded with continuous pain outcomes. We hypothesized that glu-
tamate concentrations in the ACC would increase and track ratings throughout the continuous presentation of 
tonic heat, reflecting a prominent role in processing pain.

Methods
Subjects.  Eighteen healthy participants (9 F/9  M, mean age = 26.28, SD = 3.68, range = 21–36  years) were 
recruited to our study. Each provided informed consent and completed a general health questionnaire. The 
experimental protocol was explained to each participant in detail before testing. All procedures conformed to 
the Declaration of Helsinki and were approved by the Research Ethics Board of the University of British Colum-
bia.

MR experiments.  Data were collected using a 3  T Philips Achieva scanner (Best, Netherlands) with a 
single-channel Transmit-Receive (T/R) head coil. Participants’ heads were immobilized using foam wedges. 
Sequences included:

(1) 3D T1 (MPRAGE, TE/TR/TI = 3.5/7.7/808 ms, shot interval = 1800 ms, 1 mm3 isotropic resolution, FOV 
(ap/rl/fh) = 256/200/150 mm3, scan time = 5:47).

(2) 1H-MRS (PRESS, baseline: TE/TR = 22/4000 ms, NSA = 32, scan time = 3:12, and 16 non-water sup-
pressed spectra were acquired; functional: TE/TR = 22/4000 ms, NSA = 16, scan time = 22:4; ACC, voxel 
size = 30/25/15 mm3 = 11.2 mL, 2nd order shimming, 16-step phase cycle with water suppression using the 
Excitation option– a Philips variant of CHESS52; a non-water suppressed acquisition preceded each complete 
phase-cycle for absolute metabolite quantification41,53 and water signal monitoring, Fig. 1A).

(3) T2-weighted (TE/TR = 90/2000 ms, FOV (ap/rl/fh) = 250/189/36 mm3, resolution = 1 × 1 × 3 mm3, scan 
time = 0.32 s) acquired before and after the fMRS scan to examine for possible subject motion and confirm 
stability of voxel placement. (See Fig. 2 for summary).

Pain stimulation paradigm.  To reduce novelty effects associated with our model of experimental pain in 
the scanner subjects underwent a familiarization period one week prior to acquiring MR data. The same experi-
mental pain procedures (outlined below) performed during MRS acquisition were performed in a laboratory 
setting.

The pain model was developed in preliminary testing and consisted of the application of 0.075% topical 
capsaicin and heat activation via thermo-pad on the volar surface of the right forearm (~ 8 × 5 cm). Capsaicin 
was applied immediately after baseline acquisition of MRS alongside a neutral thermo-pad without removing 
participants from the scanner. The thermo-pad was fixed to the skin and covered the area where capsaicin was 
applied, and activated by the influx of hot water via plastic tubing conveyed via the penetration panel. A non-
heat conducting flexible brace was used to fasten the position of the thermo-pad (Fig. 3). The functional MRS 
followed by acquiring 16 shots every 1.08 min (total = 22.4 min). After 9 min, the thermo-pad was activated 
by circulating heated water to reach a temperature of approximately 41 °C at the forearm. Capsaicin was heat-
activated for a period of 4.4 min (“heat”). Functional MRS was acquired continuously during heat application 
and for the reminder of the scan after the heat was removed (i.e., “post heat”).

Pain intensity ratings.  Participants were visually prompted for a pain intensity rating (using the 0–10 
numeric rating scale [NRS-11]) every 2 min during the functional MRS scan. Participants indicated an increase, 
decrease, or no change in perceived pain via an MRI compatible clicker. Feedback was provided by Presenta-
tion software (www.neuro​bs.com/prese​ntati​on), allowing for the collection of pain ratings throughout the fMRS 
acquisition while avoiding verbal communication with subjects and head motion. Before commencing with the 
experimental procedure, participants were familiarized with the rating device.

Data pre‑processing and quantification of metabolites.  3D T1 data was segmented into white mat-
ter, gray matter and cerebrospinal fluid using FSL BET and FAST54. Individual FIDs were pre-processed (eddy 
current correction, phase correction, frequency alignment, and visual inspection- for quality assurance) in MAT-
LAB (R2016b) using in-house code. 32 shots were averaged for each 2-min block, yielding a total of 11 spectra 
analyzed using LCModel (v6.3-1H) (Fig. 1B). The simulated basis set was obtained from Steven Provencher spe-
cific for the echo time and field strength of this study. LCModel fitting was optimized between 0.2 and 4.2 ppm. 
The corresponding interleaved non-water suppressed spectra and each participant’s brain tissue water volumes 
were used to calculate the concentration of NAA, tCr, glutamate and Glx in millimolar (mM)53,55–57. Individual 

http://www.neurobs.com/presentation
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Figure 1.   Glutamate levels in the anterior cingulate cortex (ACC). (A) Location of MRS voxel in the ACC. (B) 
Example spectrum with raw data (black), LCModel fit (blue), and the contribution of glutamate determined by 
LCModel (shown in red).
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Figure 2.   MR data acquisition and pain intervention. The functional scan was uninterrupted for 22.4 min. 
Participants provided pain ratings via an MRI compatible clicker every 2 min. T2-weighted images were 
acquired before and after the functional MRS scan series to confirm stability of voxel placement by absence of 
subject motion.
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water FID’s were fitted to a single-exponential decay curve to extrapolate the water amplitude and the FID decay 
rate (T2*). This analysis was performed to assure the water amplitude and decay constants were unaffected by 
BOLD effects.

Statistical analysis.  As a first step, a paired t-test was performed to determine changes in NAA, tCr, gluta-
mate and Glx at the onset of pain. Pain onset was defined as a NRS score ≥ 2 and was compared to the preceding 
concentration. To assess the specificity of glutamate and Glx, changes in NAA and tCr concentrations were also 
examined. Water amplitude and T2* stability during rest and pain onset were examined via a paired t-test and 
effect sizes were calculated. A Pearson correlation was performed between the change in glutamate and Glx 
concentrations (rest vs pain-onset) and the corresponding pain ratings. An exploratory analysis examined the 
effects of sex with paired t-tests. Effect sizes were calculated using Cohen’s d58 (small effect: d = 0.2, medium 
effect: d = 0.5, large effect: d = 0.8).

A linear mixed effects model was performed (using the R package lme4 Bates, Maechler & Bolker, 2012) to 
determine the relationship between glutamate or Glx concentrations and pain intensity ratings over the entire 
duration of the scan. The statistical model included random slopes and intercepts, as well as the fixed effect of 
pain ratings [ Model = lmer

(

[Glutamate]or[Glx] ∼ PainRating +
(

PainRating|Subject
))

] . All statistical tests 
were performed at an α level of 0.05 in R (version 1.1.442, R Core Team 2012).

Results
One participant (f) that underwent the familiarization phase was unable to be scanned due to MR incompatibili-
ties (metallic implant). Data from two participants (1 m; 1 f) was rejected due to excessive motion in the scanner. 
For the fifteen remaining subjects, SNR was adequate (19.54, 95% CI 18.24–20.84) and linewidth and mean error 
estimate of glutamate fit were low (3.80 Hz, 95% CI 3.20–4.42; 4%, 95% CI 3.99–4.00, respectively). Tissue meas-
ures were individually estimated for metabolite quantification (Across subjects (mean, SD): WM = 0.27 ± 0.06 
range = 0.20–0.45; GM = 0.59 ± 0.04 range = 0.50–0.66; CSF = 0.12 ± 0.05 range = 0.04–0.23). In two subjects, 1 
MRS acquisition time point had to be excluded due to excessive motion, as evidenced by a large shot to shot vari-
ations in the NAA peak frequency location and linewidth. Figure 4 represents baseline-subtracted spectra quality 
parameters for the 3 different conditions within the functional scan to illustrate the quality metrics remained the 
constant throughout testing. Table 1 summarizes average metabolites for baseline and fMRS scans. The average 
reported pain intensity rating during heat was 3.8 ± 2.0, and 4.2 ± 1.9 during post-heat. Individual pain ratings, 
glutamate and Glx concentrations during the 20-min fMRS are illustrated in Fig. 5.

Neurochemical concentrations at pain onset.  Glutamate and Glx concentrations both showed similar 
sizes in percent increases at the onset of pain (Glutamate: + 8.38%, t = 2.04, p = 0.06; Glx: + 7.25%, t = 1.74, p = 0.11) 
(Fig. 6). The change in glutamate and Glx correspond to large to medium effect sizes (Cohen’s dglutamate = 0.74 CI 
− 0.05 to 1.55; Cohen’s dGlx = 0.60 CI = − 0.18 to 1.40). There was no significant correlation between the change 
in glutamate or Glx concentrations and pain ratings (rest vs. pain onset) (Glutamate: r = − 0.36, p = 0.18; Glx: 
r = − 0.22, p = 0.42). tCr concentrations tended to increase at the onset of pain (+ 6.0%, t = 2.06, p = 0.05; Cohen’s 
dtCr = 0.83 CI = 0.02–1.64) (Fig. 6). NAA concentrations were unchanged from the onset of pain compared to rest 
(+ 2.81%, t = 0.9, p = 0.34; Cohen’s dNAA = 0.28 CI − 0.49 to 1.05). There was no significant change in the water 
amplitude (-3.0%, t = 1.45, p = 0.17, Cohen’s d = 0.18) nor T2* (0.36%, t = −  0.42, p = 0.67, Cohen’s d = −  0.02) 
values during rest and pain onset.

An exploratory analysis of sex revealed there was no difference in glutamate and Glx concentrations at 
rest (Glutamate: t = − 0.05, p-value = 0.95, CI − 1.39 to 1.32, Cohen’s d = 0.02, CI − 1.22 to 1.17; Glx: t = − 1.17, 
p-value = 0.26, CI − 2.58 to 0.76, Cohen’s d = 0.59 CI − 1.82 to 0.63), between males (Glutamate = 9.2 ± 1.4; 
Glx = 13.5 ± 1.6) and females (Glutamate = 9.2 ± 0.9; Glx = 12.6 ± 1.3). When examining changes at pain onset, 
large effect sizes were seen for glutamate in female participants (+ 8.63%, Cohen’s dfemale = 0.88, CI − 0.43 to 
2.21), compared with medium sized effects in male participants (+ 7.45%, Cohen’s dmale = 0.60 CI − 0.57 to 
1.73). Medium effect sizes are seen in Glx for both males and females (+ 6.26% Cohen’s dfemale = 0.58, CI − 0.69 

Figure 3.   In-scanner pain model. (1) Capsaicin (0.075) was applied on the skin. (2) An inactive thermo-pad 
was placed on the skin covering the area where capsaicin was applied. 3) The thermo-pad was water-activated 
(~ 41 °C).
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Figure 4.   Overview of individual (coloured lines) and mean (black line) baseline-subtracted spectra of included 
data (n = 15). The functional MRS scan series had 3 different condition (8-min pre-heat, 4-min heat, 8-min 
post-heat). A consistent high spectral quality was evidenced by high signal to noise ratio (SNR), and narrow line 
width (LW).
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to 1.87; + 8.04%, Cohen’s dmale = 0.65, CI − 0.53 to 1.83) (Fig. 6). At pain onset, the average NRS pain score was 
2.9 ± 0.9 across all subjects, and was not significantly different for females (3.0 ± 0.8) compared to males (2.8 ± 1.1; 
t = − 0.24, p-value = 0.80, CI − 1.2 to 0.9).

Neurochemical concentrations and pain intensity ratings.  Based on a linear mixed effects analysis, 
glutamate and Glx concentrations were not significantly correlated with pain intensity ratings within subjects 
across the acquisition of fMRS (Glutamate: ß = 0.059 standard error (SE) = 0.06, p = 0.39; Glx: ß = 0.08 SE = 0.12, 
p = 0.48) (Fig. 7). This suggests that, overall, neither glutamate nor Glx concentrations modulated in relation to 
the perception of pain over the entire duration of the 20-min functional scan. NAA and tCr were also not related 
to pain over the duration of our experiment (NAA: ß = -0.05 standard error (SE) = 0.04, p = 0.24; tCr: ß = -0.01 
SE = 0.05, p = 0.83).

Discussion
In the current study, the relationship between glutamate and Glx in the ACC and perception of noxious heat 
stimulation was examined using fMRS. Medium to large effect sizes were detected for increases in glutamate, 
Glx, and tCr at the transition to pain (i.e., pain onset, when NRS pain score ≥ 2 for the first time). NAA, but 
not creatine remained stable at the onset of pain. There was no overall relationship between pain ratings and 
glutamate or Glx concentrations, indicating the transient nature of increased concentrations. Our observations 
suggest a role for glutamate in the ACC in initially detecting but not tracking pain.

Glutamate and Glx concentrations changes in the ACC​.  Evidence of regional activation in the ACC 
in response to noxious stimulation dates back to seminal studies applying fMRI and PET27,59–61. These are fur-
ther supported by observations from single neuron recordings, which first raised the notion that a region of the 
ACC was selective for pain62,63. Subsequent investigations have demonstrated a more complex role, with the 
ACC, critically involved in “salience detection”64,65 and affective dimensions of pain59. On the basis that the ACC 
represents a prominent area of the “neurological signature of pain” responsive to analgesic interventions11,66,67, it 
remains a high priority area of study for pain researchers.

Five studies have previously investigated changes in glutamate and Glx in the ACC during the presentation 
of a noxious stimulus16,21,47–49, of which two have observed an increase in Glx16,21 and glutamate16. Similar to 
Mullins et.al, we applied a long-duration noxious stimulus and observed a similar percent increase in gluta-
mate compared to rest (+ 8.3% compared to Mullins et al. + 9.4%). To our knowledge, ours is the first study to 
distinguish the onset of pain from tonic appraisal. Based on our results, glutamatergic activation turns “on” 
independent of the intensity and “off ” in the presence of a stimulus that remains painful. The lack of prolonged 
increases in glutamate concentrations contrasts that overserved for fMRI in various brain regions, including the 
mid-ACC, where BOLD remains elevated for the duration of the painful stimulation68. In agreement with our 
observations, a transient increase in extracellular glutamate in the ACC​69 and elsewhere in the CNS (e.g., spinal 
cord25,28,70–75) has been reported in animal models using microdialysis following noxious stimulation induced by 
way of formalin injection. Critically, in response to formalin, the second wave of pain behaviour is not matched 
with an increase in extracellular glutamate, as is observed for the initial wave of pain behaviour. Collectively, 
this points to the glutamatergic response to noxious stimulation, captured by way of fMRS, representing one of 
the numerous “other” roles of the ACC in appraising sensory stimuli64,65,76,77.

Mechanisms underlying the tendency for glutamate to increase in response to noxious stimulation are, at this 
time, poorly understood. Glutamatergic synapses play a role in sensory transmission, including pain25,26,28,78–80. In 
the ACC, all major forms of ionotropic and metabotropic glutamate receptors have been isolated81,82. Metaboli-
cally, glutamate is stored as glutamine in astrocytes, and the balanced cycling between these two neurochemical 
is essential for normal functioning of brain cells83. In addition to functioning as a neurotransmitter, glutamate 
also serves as a metabolic precursor83. Glutamate and glutamine are compartmentalized in neurons and glia, 
respectively84 and are directly connected to neurotransmission and energy metabolism85,86.

Preliminary evidence suggests that glutamate levels may reflect neurotransmission19. One practical example 
is that NMDA antagonists significantly and paradoxically increase glutamate levels in the brain40. This could be 
explained for by NMDA receptor antagonists acting on post-synaptic neurons, preventing binding of glutamate, 
which increases the visibility of glutamate molecules to MRS (i.e., molecular tumbling rates). Available evidence 
suggests that glutamate in different locations in the neuron can be more or less visible to MRS depending on 
acquisition parameters87. A longer echo time (TE > 15 ms) is more sensitive to compartmental shift (i.e., neural 

Table 1.   Mean MRS functional metabolite values in the Anterior Cingulate Cortex (± CRLB mM). CRLB 
Cramer-Rao minimum lower bounds, tCr total creatine; Glu glutamate; Glx glutamate + Glutamine; NAA 
N-Acetyl aspartic acid.

fMRS

Mean (mM) Baseline 2 4 6 8 10 (heat) 12 (heat) 14 16 18 20

tCr 7.65 ± 0.15 8.07 ± 0.16 7.69 ± 0.15 7.79 ± 0.16 7.63 ± 0.15 7.54 ± 0.15 7.62 ± 0.15 7.26 ± 0.14 7.81 ± 0.16 7.56 ± 0.15 7.67 ± 0.15

Glu 9.90 ± 0.42 10.23 ± 0.46 9.54 ± 0.43 9.97 ± 0.46 9.73 ± 0.43 10.06 ± 0.42 9.82 ± 0.43 9.43 ± 0.42 9.92 ± 0.42 9.61 ± 0.41 9.79 ± 0.41

Glx 14.06 ± 0.55 15.17 ± 0.59 13.54 ± 0.52 14.51 ± 0.56 13.86 ± 0.56 14.24 ± 0.55 13.96 ± 0.54 13.67 ± 0.52 14.41 ± 0.53 13.96 ± 0.53 13.95 ± 0.55

NAA 9.41 ± 0.26 10.03 ± 0.28 9.60 ± 0.26 9.68 ± 0.26 9.71 ± 0.25 9.48 ± 0.26 9.49 ± 0.26 9.05 ± 0.25 9.71 ± 0.26 9.52 ± 0.24 9.58 ± 0.26
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activity), compared to tightly packed glutamate in presynaptic vesicles19,87. The increased sensitivity of a change 
in compartmentation is due to a slower T2 relaxation rate—the rate at which MRS signal decays over time, as 
glutamate is freely floating (i.e., not packed in the vesicle). This theory is highlighted by a recent meta-analysis 
comparing fMRS studies with short and long echo times; with short echo time experiments demonstrating 
smaller increases in glutamate in response to sensory stimulation compared to longer echo times (~ 2.7 versus 
6.4%)19. Our study used an echo time of 22 ms. Based on the aforementioned theory, the MRS signal may be 
more sensitive to glutamate levels moving from the presynaptic neuron to the postsynaptic neuron (i.e., com-
partmental shift).
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Other metabolites.  Our analysis focused on examining glutamate and Glx. Other metabolites such as 
NAA and tCr, which have more prominent resonances, were examined as a reference, to establish the specificity 
of changes in glutamate in response to pain. NAA was selected from other potential metabolites because turno-
ver is slow, and is not responsive to acute metabolic disturbances41 and as expected, concentrations remained 
stable, even at the onset of pain. Creatine, interestingly, increased in response to pain and did so similarly to 
glutamate and Glx. A previous study also reported a dynamic tCr response following noxious stimulation albeit 
a decrease51. Fluctuations in creatine concentrations are a major concern because tCr levels are commonly used 
as a reference in H-MRS (i.e., creatine ratios)88, including in functional studies21,34,47,50. While the essential role 
of creatine in energy metabolism and cell energetics is well-established89, emerging evidence suggests a role in 
neuromodulation and neurotransmission89–93. The mechanisms underlying changes in tCr in response to pain 
require further elucidation, our observations, as well as those previously published51, raise concerns about the 
functional stability of creatine in task-related MRS studies.

Sex effects.  In an exploratory secondary analysis, we investigated the effect of sex on changes in glutamate 
and Glx in response to pain. This analysis reflects a high priority area in pain research94, and a commitment to 
understanding the role of sex in biomedical research95. Various neuroimaging techniques have been employed 
to probe sex differences in the brain, revealing prominent variations in anatomy and function96. However, recent 
meta-research has suggested that a reporting bias may overestimate the magnitude of sex-related differences in 
the brain97. With regards to MRS, sex-related differences in resting glutamate levels have been reported in vari-
ous brain areas (e.g., hippocampus) but not in the ACC​98. To our knowledge, studies applying noxious stimula-
tion during the acquisition of fMRS have not previously examined or reported differences related to sex. Our 
results confirm similar resting glutamate and Glx concentrations in the ACC between men and women and 
nominally larger increases in glutamate and Glx in response to pain in women. Sex differences in glutamatergic 
signalling have also been reported in animal models99, with female rats tending to be more sensitive to NMDA 
receptor modulation (e.g. Ketamine)100–102. Further fMRS research should incorporate sex-based analyses to 
gain a better understanding of glutamatergic signalling in humans.

Limitations and future directions.  The most notable limitation of our study a small sample size (n = 15). 
To account for this, we have reported the results of conventional significance testing, as well as effect sizes for all 
relevant comparisons. Future studies should include a larger sample of men and women to further distinguish 
the role of excitation in the ACC in response to pain. Another limitation of our study is that we did not acquire 
GABA edited spectra. Previous fMRS studies have demonstrated the capacity to acquire estimates of GABA21,50, 
one of which has demonstrated reduced concentrations following the presentation of a noxious stimulus21. 
Reduced GABA concentrations are in agreement with our observations, insofar as this reflects increased excita-
tion. Finally, the field of MRS is rapidly evolving, and new methods of acquisition have emerged. Recent guide-
lines suggest the localization sequence semi-LASER offers reduced localization error (reducing chemical shift 
displacement) compared to PRESS15. The incorporation of simulated metabolite basis sets into the routine analy-
sis is recommended for capturing the full spectral detail from short TE acquisitions15, future studies should aim 
to incorporate these suggestions.

Conclusion
In summary, healthy participants undergoing tonic noxious stimulation demonstrated increased concentra-
tions of glutamate and Glx at the onset of pain. Subsequent reports of pain were not accompanied by increased 
glutamate or Glx concentrations. We propose a role for glutamate in ACC related to the detection of a noxious 
stimulus.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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