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Abstract

The development of small molecule modulators of NO/cGMP signaling for use in the CNS has 

lagged far behind the use of such clinical agents in the periphery, despite the central role played by 

NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is 

perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ 

and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical 

animal models, acting on GABAA and NMDA receptors, respectively, providing additional 

mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-

specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in 

the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions 

of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of 

nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and 

CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for 

allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully 

explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and 

many have stalled in clinical trials.
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1. Introduction

During the past three decades, nitric oxide (NO) has been recognized as one of the most 

versatile players in maintaining cellular homeostasis. In the CNS, NO is known to activate 

important physiological cascades involved in regulation of neuronal differentiation and 

synaptic plasticity [1]. In both neuronal and glial cells, cGMP-dependent protein kinase 

(PKG) is considered the primary NO effector by which NO mediates its downstream effects, 
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and NO-sensitive soluble guanylyl cyclase (NO-GC or sGC) is the major physiological NO 

receptor in neurons [2]. The activation of this enzyme is achieved by conformational change 

upon the binding of NO to the prosthetic heme of sGC, forming a pentacoordinate ferrous-

nitrosyl complex. The activated sGC rapidly converts GTP into the second messenger 3‘,5‘-

cyclic GMP (cGMP), which, in turn, activates PKG. Through the activation of PKG, NO/

cGMP signaling is involved in mediating CREB activation by phosphorylation of Ser133 via 

the MAPK-ERK cascade [3,4] and possibly in part by the CAMK pathway [3]. In addition, 

NO is involved in hippocampal and cortical LTP [5-8] via PKG mediated NMDA receptor 

activation [9,10]. Several lines of evidence also suggest that NO may act as a retrograde 

messenger in LTP or other forms of synaptic plasticity [11-14], modulating transmitter 

release under different conditions. Thus, although the major translational interest in NO/

cGMP signaling has been in the periphery, there is substantial therapeutic opportunity to 

modulate NO/cGMP signaling in the CNS and brain. (see Table 1)

Activation of CREB by phosphorylation is necessary for memory formation and synaptic 

strengthening [15-17] and ultimately mediates LTP by acting upon downstream genes 

involved in synaptic formation and maintenance, and in neuronal plasticity and neurogenesis 

[18,19]. Mechanistically, it is now recognized that, in coordination with cAMP/PKA 

signaling, the activation of the cGMP/PKG pathway is a crucial event that contributes to 

synaptic plasticity and memory acquisition and consolidation through CREB-mediated 

changes in gene expression [20-24]. In the CSF of patients with Alzheimer's disease (AD), 

depressed cGMP, but not cAMP levels were observed [25]. Therefore, NO/cGMP has the 

potential to restore CREB signaling and thereby play a direct role in memory-related 

synaptic processes relevant to human disease [26-28]. Based on this knowledge, targeting 

synaptic dysfunction by reactivating the NO/cGMP/CREB pathway may be beneficial in 

multiple neurodegenerative disorders.

Since NO signaling has important functions in the brain, the etiology and progression of 

neurodegenerative and cognitive disorders may be associated with: dysfunction in NO 

production and impaired cGMP signaling [25,29]; and increased phosphodiesterase (PDE) 

expression levels [30] (reviewed in Ref. [31]). Specifically, aberrant CREB signaling has 

been linked to Alzheimer's disease (AD) pathology, reflected in mouse models of familial 

AD (FAD) [32,33]. Dysfunction in CREB signaling has also been implicated in other 

cognitive disorders such as Huntington's disease (HD) [34,35], suggesting a general role in 

cognitive dysfunction. Accordingly, targeting NO/cGMP/CREB signaling is now considered 

as a viable strategy for synaptic repair and neurogenesis, and potentially for disease 

modification in neurodegenerative disorders.

NO is produced by both neuronal (nNOS) and endothelial NO synthase (eNOS), the 

interplay between the two isoforms providing an exquisite, temporal, and spatial control of 

neuronal function [36,37]. In pathological conditions, the inducible isoform (iNOS) provides 

an important contribution to NO synthesis particularly following pro-inflammatory 

stimulation [38,39]. Evidence for altered expression of NOS isoforms has been reported in 

AD, and NO is recognized for its neuroprotective properties [40,41]. Interestingly, the 

deletion of the inducible NOS2 gene in familial AD transgenic mice exacerbated AD-like 

pathology, neuronal loss, and behavioral impairments [42-44]. Additionally, chronic loss of 
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endothelial NO in late middle-aged (14–15 month old) eNOS−/− mice increased the 

amyloidogenic processing, microglial activation, and impaired performance in spatial 

memory tasks [45]. Therefore, through several mechanisms, chronic loss of endothelial NO, 

concomitant with downregulation of constitutive NOS and downstream NO/cGMP 

signaling, is implicated in cognitive decline during aging [45,46] and disease pathogenesis 

[47-50].

Importantly, activation of the NO/sGC/cGMP/CREB pathway through the application of 

either a NO donor, sGC potentiator, or cGMP analogue leads to re-establishment of normal 

levels of LTP and CREB phosphorylation [51]. Different classes of molecules targeting and 

enhancing components of NO/cGMP/CREB signaling to regulate synaptic plasticity 

represent promising disease-modifying approaches to treat cognitive dysfunction in 

neurodegenerative diseases. Although we will discuss nitrates, NO-donors, and alternative 

pharmacological agents later in this review (Fig. 1 and see Scheme 1 for structures), we 

begin by comparing two of the most exciting NO mimetic approaches to treatment of brain 

disorders including AD.

2. Nomethiazoles and nitromemantines: disease-modifying CNS 

therapeutics

Excitotoxicity and disrupted Ca2+ homeostasis have long been implicated in 

neurodegenerative disorders from ischemic stroke to AD [52]. The concept of 

pharmacologically restoring the balance between excitatory and inhibitory 

neurotransmission has been central to therapeutic strategies targeted at epilepsy and stroke 

[53-55]. In this paradigm, excitatory glutamate neurotransmission, primarily mediated at the 

NMDA receptor; and inhibitory neurotransmission, primarily mediated at the GABAA 

receptor, are primary targets. Small molecule inhibition of glutamate receptor-mediated 

currents and potentiation of GABAA receptor-mediated currents have led to a large number 

of anticonvulsant agents, some of which are used in epilepsy pharmacotherapy, and many of 

which have been explored as neuroprotective agents, for example, in stroke and AD [56-58].

Memantine has activity at a variety of neuroreceptors; however, it is best understood in its 

pharmacological use as an uncompetitive NMDA receptor antagonist, blocking NMDA 

receptor currents with IC50 ~2 μM, by binding in the open ion channel proximal to the Mg2+ 

binding site [59]. The inhibition of extrasynaptic NMDA receptor currents is thought to 

underlie the efficacy of memantine (Namenda) in moderate-to-severe AD [60]. In contrast to 

other NMDA receptor channel blockers, memantine does not cause psychotropic effects; 

however, in common with these channel blockers, memantine is an anticonvulsant [61]. 

Nitromemantines are nitrate derivatives of memantine [62], one being recently coined 

Nitrosynapsin (Fig. 2) [63].

Chlomethiazole (CMZ) is a non-benzodiazepine GABAA receptor potentiator and 

anticonvulsant. CMZ has been used clinically for treatment of seizures, epilepsy, alcoholic 

dementia and withdrawal, and is prescribed for anxiety and agitation in the elderly [64-70]. 

Under the brand name Zendra, CMZ was studied in Phase 3 clinical trials as a 

neuroprotective drug for use in ischemic stroke and spinal cord injury [71-78], and continues 
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to be recommended as a potential component of combination therapies for stroke [79]. CMZ 

potentiates the function of the inhibitory neurotransmitter GABA in the brain [80-82] and 

therefore attenuates the glutamate-induced excitotoxic cascade that leads to mitochondrial 

damage and neuronal loss [83-85]. CMZ is neuroprotective in animal models, attenuating 

levels of pro-inflammatory cytokines, including TNFα [80,82]. TNFα inhibition is itself a 

therapeutic goal for treatment of AD [86-88]. Selective pharmacological activation of 

GABAA receptors has been shown to provide neuroprotection against amyloid-β (Aβ) 

mediated toxicity [89-92], and a positive allosteric GABAA modulator is predicted to be of 

clinical utility in AD [92-94]. Nomethiazoles are nitrate analogues of CMZ [95], the most 

well described being GT-1061(NMZ) (Fig. 2).

Nitrosynapsin and NMZ would appear to be highly complementary in terms of mechanism 

of action, both adding NO mimetic activity to the complementary activity of the parent drug 

at NMDA receptors (NMDAR) and GABAA receptors (GABAAR), respectively (Fig. 2). 

Both NMZ and Nitrosynapsin have generated positive preclinical results that warrant further 

exploration in clinical trials. NMZ retains the activity of CMZ, both in GABAA receptor 

potentiation, anticonvulsant, and antiinflammatory properties; and has sedative actions, 

though less potent than CMZ [96-98]. NMZ and Nitrosynapsin are NO-chimeras, or hybrid 

nitrates, acting as NO mimetic small molecules; and we have shown that this approach adds 

procognitive and neuroprotective activity to diverse pharmacophore scaffolds: selective 

serotonin reuptake inhibitor, SSRI [99]; gamma-secretase modulator, GSM [100-102]; 

selective estrogen receptor modulator, SERM [103].

NMZ and related nitrates were able to rescue the AD-related impairment of LTP and restore 

CREB-related synaptic plasticity [96-98]; effects that were blocked by application of the 

sGC inhibitor 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) [97], indicating a 

mechanism via NO/cGMP/CREB signaling. NMZ is neuroprotective in vitro in response to 

various insults including oxygen glucose deprivation (OGD), oligomeric Aβ, and glutamate 

toxicity; and restores synaptic function in hippocampal slices, in contrast to the parent 

molecule, CMZ [97,98]. Furthermore, NMZ reversed cholinergic cognitive deficits in rats, 

and demonstrated improvement of synaptic strengthening and cognition in 4 different mouse 

models of AD [97,104]. Remarkably, in the three FAD-Tg models (APP/PS1, 3xTg, and 

5xFAD/hAPOE4), NMZ treatment attenuated hallmark pathology, and the toxic forms of Aβ 
and tau [97].

Nitrosynapsin and nitromemantines also retain the properties of the parent drug, memantine, 

and are proposed to provide dual allosteric modulation of extrasynaptic NMDA receptors 

[105]. Nitromemantines showed superior neuroprotection and efficacy at lower doses than 

memantine. In addition, nitromemantines were able to reduce Aβ-induced Ca2+ 

excitotoxicity, synaptic depression, and tau phosphorylation, and in one FAD-Tg mouse 

model significantly restored synaptic markers of hippocampal function [106]. In the MEF2C 

haploinsufficiency mouse model of human autism, Nitrosynapsin displayed promising 

results when administered b.i.d., improving excitatory and inhibitory neuronal imbalance, 

synaptic markers, LTP, and autistic-like behavior [63].
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Reports on Nitrosynapsin and NMZ show obvious commonalities; however, the NO-mimetic 

mechanism of action has been interpreted quite differently. The blockade of effects in 

hippocampal slices by ODQ in studies on NMZ and other nitrates and NO-donors has led to 

a focus on sGC activation by NMZ; whereas, ODQ has not been used in studies on 

Nitrosynapsin and nitromemantines, which have been interpreted to function exclusively via 

S-nitrosylation of specific cysteines located specifically in the extrasynaptic NMDA 

receptor. Pharmacokinetic data on nitromemantines have not been reported, nevertheless the 

dose used (2.5 mg/kg/day i.p.) [106] is comparably low to that of NMZ (1 mg/kg/day i.p. + 

20 mg/kg/day p.o). An oral dose of NMZ (20 mg/kg delivered continuously over 24 h), 

representing a procognitive dose, resulted in brain concentrations of NMZ and its 

metabolite, HMZ, of 0.73 nM and 3.41 nM, respectively (not significantly different from 

plasma concentrations) in male C57BL/6 mice. These measurements indicate that the brain 

concentration of NMZ required for memory consolidation after amnestic insult is low or 

sub-nanomolar. Using the concentration of the HMZ metabolite as a surrogate for the 

concentration of NO released from NMZ, yields [NO] ≤ 3.4 nM. These data emphasize the 

high potency and promise of the NO mimetics, NMZ and Nitrosynapsin, and since both 

deliver disease-modifying effects in animal models after 3 months treatment, the 

phenomenon of nitrate tolerance is clearly not relevant to the action of these organic nitrates 

in the CNS.

3. Nitroglycerin and NO/cGMP: migraines are not headaches

The observation that nitroglycerin (glyceryl trinitrate, GTN) exposure and ensuing nitrate 

tolerance causes headaches was made over a century ago in dynamite factories [107-112]. 

More recently, GTN was shown to induce specific headaches and other symptoms of 

migraine attacks in migraineurs, which cannot be directly linked to the very rapid 

vasodilatory effects induced by GTN [113-118]. Debilitating migraine without aura affects 

8% of Americans, with prevalence being strongly linked to age and biased threefold towards 

females. Migraine symptoms include: allodynia, a central pain sensitization following 

normally non-painful, often repetitive, stimulation; and hyperalgesia, an increased sensitivity 

to stimuli normally associated with mild pain. Mechanical allodynia/hyperalgesia caused by 

cutaneous application of Von Frey filaments to periorbital or plantar surfaces of mice mimics 

the symptoms of migraine without aura: the pain threshold (mechanical response) decreases 

as hyperalgesia increases [119,120]. In response to GTN administration, the threshold is 

lowered: more remarkably, when a single dose of GTN is administered every 2 days for 9 

days, there is a chronification of hyperalgesia, which does not rebound to the normal, 

pretreatment threshold until approximately day 15, many days after GTN has been cleared 

from the system [121].

GTN must undergo reductive bioactivation in the body to yield NO, and it is commonly 

believed that depletion of the bioactivation apparatus and concomitant induction of oxidative 

stress cause the phenomenon of clinical nitrate tolerance, possibly through peroxynitrite 

formation [122-124]. Recognizing that: (i) both oxidative stress and peroxynitrite have been 

associated with the development of migraines [125,126]; (ii) doses of GTN used in migraine 

induction are relatively high; and (iii) there is debate over the relative importance of NO 

signaling via cGMP versus S-nitrosylation, we chose to define the mechanism of action 
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using pharmacological interventions. We demonstrated that direct activation of sGC by the 

novel sGC stimulator, VL- 102, replicated the pattern and chronification of migraine-

associated hyperalgesia in mice, which was rescued by both acute and preventive clinical 

migraine treatments [120]. VL-102 treatment also increased the expression of migraine 

markers such as neuropeptide CGRP in trigeminal ganglia [120]. We also demonstrated that 

the sGC inhibitor, ODQ, completely blocked GTN induced acute and chronic hyperalgesia, 

establishing the role of the sGC-cGMP pathway in migraine. ODQ also effectively inhibited 

the established chronic migraine-associated pain in the absence of GTN or VL-102 [120]. 

Therefore, blocking this maladaptation by targeting of the sGC-cGMP pathway could 

represent an attractive approach to treat chronic migraine (Fig. 3). NOS inhibitors have been 

explored in the last two decades as potential treatment of migraine and headache. 

Specifically, the non-selective NOS inhibitor, NG-monomethyl-L-arginine hydrochloride (L-

NMMA), provided pain relief compared to placebo in chronic tension-type headache in a 

clinical study [127]. However, selective inhibition of iNOS using GW274150 was ineffective 

in treating migraine in both prevention [128] and treatment [129] paradigms, suggesting that 

an upregulation of iNOS in experimental animal models, is unlikely to be a key mediator in 

migraine pathophysiology [130,131]. The potential of NOS inhibitors in migraine has 

recently been reviewed [132]. It should also be noted that sildenafil, a PDE5 inhibitor (vide 
infra), was shown to induce both acute and chronic hyperalgesia in mice [133].

Simplistically, the potentiation of allodynia/hyperalgesia by NO/cGMP (Fig. 3) is 

reminiscent of the potentiation of LTP by NO/cGMP in memory consolidation. However, the 

patient population susceptible to migraine and the population suffering age-related dementia 

are quite different, since migraine prevalence decreases after age 50 [134].

4. Hybrid nitrates: enhanced activity?

Nitromemantines and nomethiazoles are examples of hybrid nitrates, in which a parent drug 

has been modified to incorporate an organic nitrate moiety to deliver NO mimetic activity 

together with the actions of the parent drug or pharmacophore, thus enhancing activity 

[135,136]. Considerable research has been conducted over the past 20 years by the biotech 

industry, notably NitroMed, and NicOx, to develop hybrid nitrates; however, to date only 

latanoprostene bunod (NCX-116; Scheme 1) has received FDA approval, in this case for 

topical treatment of glaucoma. NCX-116 undergoes ester hydrolysis to yield hydroxybutyl 

nitrate, with the evidence for NO release being the measurement of increased ocular cGMP 

[137].

NCX-116 is typical hybrid nitrates prodrug that links an alkyl or benzyl nitrate to a parent 

drug by a labile ester linkage. In the majority of literature examples the parent drug is a 

nonsteroidal anti-inflammatory drug (NSAIDs) such as aspirin (acetylsalicylic acid, ASA) 

[138-140]. Hybrid NO-donating NSAIDs (NO-NSAIDs) were originally conceived to 

overcome NSAID gastrotoxicity by releasing NO and overcoming the effects of COX-1 

inhibition [136,141-143]. Many preclinical studies focused on the promising spectrum of 

cancer chemo-preventive and chemotherapeutic activity reported in cell cultures and in 

animal models. Frequently, the “NO enhanced activity” of NO-NSAIDs was growth 

inhibition of cancer cell lines, multifold more potent than the parent NSAID [144,145]. 
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However, in many cases, the enhanced activity could be replicated by analogues of NO-

NSAIDS lacking any nitrate or NO-donating group [143,146-149]. Rigas, who pioneered the 

exploration of hybrid nitrates and NO-NSAIDs in cancer chemoprevention, has himself 

moved away from NO-NSAID nitrate esters to NSAID phosphate esters that have similarly 

enhanced activity relative to the parent NSAID, which is obviously unrelated to release of 

NO by the prodrug [150].

With respect to pharmacological use in the brain, two flurbiprofen containing NO-NSAIDs, 

HCT-1026 and NCX-2216, were compared and shown to have efficacy in a rat AD model 

[151]; one having been previously shown to attenuate neuroinflammation in vivo [152]. As 

in the case of NO-NSAIDs in cancer chemoprevention, these studies were stimulated by the 

epidemiology of NSAIDs associated with AD chemoprevention, and using the NO-NSAID 

modification to circumvent GI toxicity [153]. Several epidemiological studies have reported 

that long-term use of NSAIDs reduces AD risk [154], and many neuroin-flammatory 

contributors to AD pathology exist [155-157], and are considered therapeutic targets for AD 

[153,158,159]. HCT-1026 was shown to reverse scopolamine induced cognitive deficits in 

behavioral assays [102], and reduce Aβ load and microglial activation in an APP/PS1 

transgenic mouse model [160].

Flurbiprofen is one of a subset of NSAIDs reported to reduce the levels of neurotoxic Aβ42 

in cell culture and FAD-Tg mice. Hence, these NSAIDs were referred to as selective 

amyloid lowering agents (SALAs) [161-164]. The Aβ42 lowering activity of these SALAs 

required a mechanism of action associated with Aβ42 production or clearance, which was 

ascribed to γ-secretase modulator (GSM) activity [165,166]. However, the potency of these 

SALA NSAIDs was an order of magnitude lower than contemporary designer GSMs; and, 

many alternative mechanisms relevant to Aβ42 lowering have been identified for NSAIDs, 

including: activation of PPAR-γ and decreased BACE1 gene transcription [167]; inhibition 

of Rho-kinase activity [168]; and the direct interaction with APP [169].

To explore the SALA activity of NO-flurbiprofens, the mechanism of Aβ1-42 lowering was 

explored in neuronal cells expressing human Aβ, showing problematic involvement of γ-

secretase [101]. A library of flurbiprofen and NSAID analogues was tested for SALA 

activity and several flurbiprofen analogues were modified and studied as hybrid nitrates 

[170]. The hybrid nitrates possessed enhanced anti-inflammatory activity and reduced 

toxicity relative to the parent NSAIDs, and the SALA activity was attributed to the intact 

hybrid nitrate. A hybrid nitrate based upon CHF-5074/CSP-1103 was an efficacious SALA, 

which is of interest, because CHF-5074 was reported to reverse contextual memory deficits 

in an FAD-Tg mouse model, and in clinical trials, to reduce biomarkers of 

neuroinflammation in patients with mild cognitive impairment (MCI) [171] [172,173]. 

CHF-5074 continues to be studied in clinical trials [174,175]. That R-flurbiprofen failed to 

provide any benefit in either cognition or function in a large Phase 3 clinical trial [176,177], 

and the failure of trials on the related COX-2 inhibitors [178-181], are likely to dampen 

enthusiasm for pursuit of NSAIDs and NO-NSAIDs in clinical trials for AD.

NSAID NO-donating hybrids have also been reported that incorporate a diazeniumdiolate 

(NONOate) [182] or a furoxan [183]. Conversely, hybrid nitrates have been designed for 
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brain disorders, which incorporate a parent drug, other than an NSAID. These include 

hybrids of tacrine, a cholinesterase inhibitor not currently used clinically in AD [184-186], 

including one containing a ferulic acid linker [186], in simile with the linker incorporated in 

NCX-2216. Tacrine hybrid nitrates are potent inhibitors of acetylcholinesterase and butyr-

ylcholinesterase, and observed to be effective in scopolamine-induced amnesia.

5. Organic nitrates

Glyceryl trinitrate (GTN; nitroglycerin) (Fig. 4) has been used in treatment of angina 

pectoris for almost 150 years. Nitrates are believed to elicit biological effects via reductive 

bioactivation to yield NO, stimulating the production of cGMP by sGC [187]. A small 

number of enzymes have been shown to mediate NO formation from GTN; while a larger 

number are capable of converting GTN (and organic nitrates in general) to inorganic nitrite 

(NO2
−) (Fig. 4A). This reductive denitration is also mediated by proteins such as 

deoxyhemoglobin, transition metals, and certain, reactive small molecule thiols [188,189]. 

In the past decade, the biological activity of NO2
− has been recognized to have physiological 

and potential therapeutic relevance, via reduction to NO in hypoxic tissues [190]. The 

venodilator activity of organic nitrates is characterized by bioactivation to NO in hypoxic 

tissues, suggesting that NO2
− might be an intermediate in GTN bioactivation. The exact 

mechanism of nitrate bioactivation is not fully understood and likely involves more than one 

mechanism [191,192]. Since NO2
− is often measured as a metabolite of NO and is used as a 

surrogate for NO, many studies have mistaken the direct production of NO2− from nitrates as 

a measure of NO production. Organic nitrates are capable of direct oxidation of thiols such 

as cysteine, in a reaction that may yield NO or NO2
−, and convert the thiol to a disulfide, 

sulfonate, or sulfinate. This published chemistry is largely overlooked in the biomedical 

literature, but has been shown to mediate the cGMP-independent activation of PKG1α (Fig. 

4A), leading to the intriguing hypothesis that GTN nitrovasodilator activity, and indeed 

nitrate tolerance, are both mediated by oxidation of PKG1α by GTN, and not by 

bioactivation of GTN to NO [193].

The concept of using intramolecular reactions to provide models for enzyme-mediated 

reactions is well proven [194,195] and has been applied to modeling sulfhydryl-dependent 

nitrate reduction. Cysteine, at physiological pH, has low reactivity towards nitrates [196], 

therefore incorporating a thiol group adjacent to the nitrate group has been used to facilitate 

an intramolecular reaction, modeling nitrate bioactivation by cysteine-dependent enzymes/

proteins. 1,2-Dinitrooxy-3-mercapto-propane (GT-150), at neutral pH, is a spontaneous NO 

donor, generating fluxes of NO comparable to NO-donor NONOates. GT-150 acts as an NO 

donor in activating sGC and inhibiting lipid peroxidation [197,198]. The disulfanyl nitrate 

(GT-715) is a prodrug of GT-150, and with related aryl disulfanyl dinitrates liberates NO 

after prodrug activation to give GT-150 [197]. The mechanistic data on GTN, GT-150, 

GT-715, and model compounds such as tBuSNO2 [199], suggests possible sulfhydryl-

dependent mechanisms for NO release (Fig. 4B), and several transition metal facilitated 

mechanisms. However, the major nitrogen product of organic nitrate metabolism is NO2
−.

While the role of GTN and organic nitrates in the cardiovascular system has been 

extensively investigated, activity in the CNS has been more rarely pursued. Lipton's seminal 
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work on NMDA receptor function showed some nitrovasodilators to be neuroprotective in 

models of NMDA receptor-mediated excitotoxic neuronal injury [200]. GTN (25 mg/kg), 

administered i.v. during the 2 h ischemic period, reduced total infarct volume by 20% in a 

standard rat model of ischemic stroke [201]. Isosorbide dinitrate (ISDN) also provided 

neuroprotection in the rat stroke model, but required pretreatment before ischemia to 

demonstrate a neuroprotective effect [202]. The use of potent vasodilators such as GTN is 

contraindicated in stroke, because of risk of exacerbated hemorrhage, hence the GTN 

experiment required continuous co-administration of the pressor agent, phenylephrine. 

GT715, being a weaker vasodilator, with minimal effects on mean arterial pressure in the 

whole animal compared to GTN, was more potent and more effective as an activator of sGC 

in the brain, and more effective in elevating cGMP levels in hippocampal brain slices, 

compared to GTN [203]. GT-715 was shown to reduce infarct volume in the rat MCAO 

model of ischemic stroke, when administered 4 h after the ischemic event, to be a potent 

neuroprotective agent in several animal models, and to reverse cognitive deficits induced in 

animal behavioral models [40,203,204].

6. Furoxans (1,2,5-oxadiazole-N-Oxides)

Compounds containing furoxan (1,2,5-oxadiazole-N-oxide) or benzofuroxan heterocycles 

are thiol-bioactivated NO-mimetics that demonstrate bioactivation and release of NO [205]. 

The reactivity of furoxan rings can be manipulated via the incorporation of substituents 

adjacent to the furoxan ring system, potentially avoiding the cytotoxic effects of high NO 

concentrations. Lower concentrations of NO in the CNS have been shown to be 

neuroprotective [205], making furoxans an attractive candidate for CNS drug development, 

however, in the literature there are few attempts to utilize furoxans in the CNS. The furoxan 

9a (Scheme 1) was shown to restore LTP following an Aβ-induced synaptic deficit in mouse 

hippocampal slices [205], demonstrating the potential of furoxans to restore synaptic 

function. This neuroprotection could be blocked by the addition of ODQ, indicating that the 

NO/sGC/cGMP pathway was involved in the restoration of synaptic function [205].

7. Diazeniumdiolates

Diazeniumdiolates (NONOates) decompose spontaneously under physiological conditions to 

generate NO [206]. Modifications to the structure of NONOates influence the rate of NO 

generation [206-209]. DEA/NO [51,210,211] and DETA.NO [120,212,213] are amongst the 

most commonly used NO donating molecules. While NONOates have been studied as 

potential drug candidates for cardiovascular and oncologic applications, their use in the CNS 

has been largely associated with neurotoxic effects [211,214,215]. Garthwaite et al., 

concluded that prolonged exposure to NO was potentially toxic to both axons and glial cells 

in central white matter, whereas higher NO concentrations, imposed for shorter periods, 

exclusively damaged axons [216]. Paradoxically, other studies have demonstrated the 

neuroprotective effects of NONOate derived NO [217]. Lu et al. showed that the NONOate 

DETA/NO significantly improved the neurological functional outcomes of rats with 

traumatic brain injury (TBI) [213]. Fernández-Tomé et al. demonstrated DETA/NO-induced 

stimulation of sGC led to elevation of cGMP, which conferred protection against neuronal 

cell death induced by H2O2 [212]. SPER/NO was used to demonstrate that elevated 
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extracellular NO levels induced reversible axonal conduction deficits in guinea pig spinal 

cord neurons [218]. These effects were reversed on washout, at low concentration of 

SPER/NO (0.5 mM), but were only partially reversed at higher concentrations. PROLI/NO 

was used to demonstrate the effect of extracellular NO concentration on the permeability of 

the blood brain barrier (BBB) [219]: PROLI/NO selectively increased intratumoral uptake of 

radiotracers without significant changes in cerebral and tumor blood flow or arterial blood 

pressure, an effect blocked by the sGC inhibitor LY83583.

The greatest contribution to pharmacological manipulation of NO has been that of Keefer in 

his extensive development of diazeniumdiolates, designed to release NO at different rates 

and in some cases, with specific bioactivation by, for example, glutathione-S-transferase 

[220], or cytochrome P450 (CYP) [221]. A recent paper from a Merck research team 

presented a diazeniumdiolate designed to be bioactivated by CYP3A4 and to circumvent the 

development of tolerance associated with nitrates [222]. The observations in this paper on 

blood pressure lowering are important, because tolerance developed over 28 days, indicating 

that NO itself is associated with tolerance in the vascular system.

8. Sydnonimines

The sydnonimine, SIN-1, is often referred to as a source of peroxynitrite [223]. SIN-1 is 

believed to react with heme proteins and other electron acceptors in biological systems to 

produce NO. In vivo, SIN-1 will predominantly release NO rather than the superoxide. 

Molsidomine is a prodrug of SIN-1, metabolized in the liver to SIN-1 to induce slow release 

of NO [224,225]. Molsidomine crosses the BBB [226], and it has been demonstrated to 

increase its permeability [227]. Molsidomine (2–4 mg/kg) was found to be effective in 

restoring memory deficits in several animal models [228-233].

9. Nitroxyl-donors

Nitroxyl (HNO/NO−) is the reduced form of nitric oxide [234]. HNO is more reactive 

towards thiol groups, leading to the formation of sulfonamides or disulfide bonds [234-236]. 

HNO donors have been explored in cardiovascular diseases, with one example in Phase 2 

clinical trials [237,238]. In contrast to the most commonly used HNO donor, Angeli's salt 

(AS) [211,235], which spontaneously releases HNO at physiological pH and temperature, 

the clinical HNO donors are prodrugs with more controlled bioactivation characteristics. AS 

has been studied both in vitro [239-242] and in vivo [239,242] with regard to neuronal and 

brain physiology, once again showing neuroprotection [241]. In simile with the proposed 

mechanism of nitromemantines, a mechanism via HNO reaction with critical thiol groups of 

the NMDA receptor was proposed to block excessive Ca2+ influx and excitotoxicity [242].

10. S-nitrosothiols

S-Nitrosothiols are stable compounds at 37 °C and pH 7.4, however, in the presence of trace 

transition metal ions, or photolysis, release of NO can occur [243,244]. S-Nitrosocysteine 

(Cys-NO) is commonly used as a surrogate for NO in vitro, although since it readily 

undergoes transnitrosation reactions with protein-thiols, it behaves more as a nitrosonium 
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(NO+) donor than an NO donor [245]. The glutathione S-nitroso adduct, GSNO, is a 

biologically relevant mediator of NO signaling, and has been proposed as a therapeutic 

approach to stroke, via stabilization of the HIF-1alpha/VEGF pathway [246]. 

Transnitrosation of cysteine residues in the NMDAR receptor inhibits the receptor activity 

[247], which is argued to be central to the mechanism of action of nitromemantines, 

although direct transnitrosation is not a chemically feasible reaction for nitrates. GSNO 

reductase (GSNOR), otherwise known as formaldehyde dehydrogenase, is a class III alcohol 

dehydrogenase that is argued to regulate cellular GSNO levels be degradation of GSNO. 

Interestingly, GSNOR was reported to be upregulated in the hippocampus of aging humans 

and mice; and 8–10 week old transgenic mice overexpressing neuronal GSNOR showed a 

significant deficit in contextual fear and Y-maze tasks [248]. In these studies, focused on 

protein S-nitrosylation, the involvement of NO/sGC/cGMP signaling was not explored.

11. sGC activators and stimulators

YC-1 was the first reported positive allosteric modulator of sGC, causing a 10–20-fold 

increase in activity of sGC over basal activity, and a left-shift of the response to NO 

[196,249,250]. YC-1 and subsequent small molecules derived from this benzylindazole 

scaffold have been referred to as NO-independent sGC stimulators; differentiated from sGC 

activators, by the dependence of activators on a reduced heme moiety [249,251]. Stimulators 

allosterically inhibit dissociation of NO from the heme group of sGC and although described 

as NO-independent, these agents potentiate activation of sGC by NO, which is the likely 

mechanism of action [252,253]. In brain slices, YC-1 activates cGMP/PKG signaling to 

enhance LTP [254]. In mice, YC-1 enhanced both learning and memory in Morris water 

maze and avoidance tasks in the presence or absence of scopolamine, effects antagonized by 

NOS and PKG inhibitors [255,256]. YC-1 was also reported to attenuate glutamate-induced 

excitotocity in a cGMP-dependent manner [257]. However, some activity of YC-1 could be 

attributed to off-target effects as a PDE inhibitor [258].

Optimization and scaffold-hopping from the benzylindazole lead structure has led to highly 

potent and selective sGC stimulators [259,260]. BAY 41–2272 and BAY 41–8543 potentiate 

the effects of NO up to 200-fold [261], and Riociguat (BAY 63–2521) has had success in 

multiple clinic trials in cardiopulmonary indications [262]. The effect of BAY 63–2521 was 

studied in atherosclerotic lesions in APOE−/− mice [263], and although ApoE is highly 

relevant to AD, no CNS studies have been reported. Further structural modifications have 

led to a new family of selective sGC stimulators with a 5-(isoxazol-3-yl)-1H-pyrazole 

scaffold, exemplified by IWP-051 [264]. A 5-(isoxazol-3-yl)-1H-pyrazole photoaffinity 

probe was used to identify the binding site of IWP-051 and displacement of the probe by 

BAY 41–2272 was used to confirm this as the allosteric site for sGC stimulator binding: a 

conserved cleft between two subdomains in the sGC heme domain [265]. As yet, no peer-

reviewed publications have appeared on the activity of contemporary sGC stimulators/

activators in the CNS. As described above, YC-1 and its analogue VL-102 replicate the 

actions of NO-donors in learning and memory, and in hyperalgesia associated with 

migraines [120].
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12. sGC inhibitors

In contrast to research on sGC stimulators, few sGC inhibitors have been reported 

[266-268]. The mechanism of action of ODQ and NS2028 in inhibition of sGC requires 

binding to the ferrous-heme (FeII) in the β-subunit of the enzyme, yielding ferric-heme that 

cannot bind NO to achieve an activated state [268]. Furthermore, ODQ oxidation of sGC 

ferrous-heme may lead to conformational change and loss of ferric-heme from the β-subunit 

[269]. Unsurprisingly, there are examples of sGC inhibition by metal chelators and oxidants. 

The mechanism of action of ODQ predicts off-target actions at other ferrous-heme proteins 

and interactions with heme-proteins and enzymes such as hemoglobin and CYPs; however, 

these have not been extensively nor quantitatively explored. Feelisch et al. implicated CYPs 

as ODQ targets using the indirect evidence that ODQ inhibited nitrovasodilator bioactivation 

[270]. Similarly, 300 μM myoglobin attenuated the actions of both NO-donors and ODQ (50 

μM) in cardiomyocytes, which might be explained by the ability of myoglobin to trap NO 

and ODQ [271]. Although the chemistry of NS2028 suggests a mechanism of action 

identical to ODQ [272], examples of divergent phenotypes exist [273]. Finally, ODQ does 

not completely replicate the effects of knockout of sGC in vivo, or ex vivo [274].

The universal use of ODQ to define the involvement of sGC in physiology and 

pathophysiology is demonstrated by over 2000 publications in PubMed. However, ODQ 

itself has potential therapeutic activity. ODQ has been reported to reverse basal ganglia 

dysfunction and akinesia in animal models of Parkinson's disease (PD), reversing the 

increased striatal cGMP levels and neuronal activity in the subthalamic nucleus in the 6-

OHDA rat model of PD [266]. ODQ was also effective in improving deficits in forelimb 

akinesia induced by both 6-OHDA and MPTP [266].

13. cGMP-phosphodiesterase inhibitors

cGMP and cAMP are regulated by phosphodiesterase (PDE) enzymes: cAMP-specific 

PDE4, PDE7 and PDE8; cGMP-specific PDE5 and PDE9; and dual-substrate PDE1, PDE2 

and PDE10 [275,276]. Inhibitors of at least seven PDEs families have been implicated in 

behavioral changes related to cognition, depression, and anxiety, namely those for PDE 1, 2, 

4, 5, 9, 10, and 11 [277] (see Scheme 1). It has been reported that an increase in PDE 

expression and activity and a decrease in cGMP concentration occurs in the aging brain 

[278]; therefore brain bioavailable PDE inhibitors activating cGMP signaling are therapeutic 

targets for AD [23,46].

Research has targeted PDE5 inhibitors to elevate cGMP in the brain [279] [280]. Although 

the presence of PDE5 in neurons has been a matter of debate [281], aberrant expression of 

PDE5 in the temporal cortex of AD patients has been reported [25]. The clinical PDE5 

inhibitors sildenafil (Viagra), vardenafil (Levitra) and tadalafil (Cialis) have been widely 

studied. Sildenafil has been shown to rescue cognitive impairment in FAD-Tg mouse 

models. In an APP/PS1 mouse model, sildenafil activated cGMP/CREB signaling to 

improve synaptic function and memory, and attenuate Aβ hallmark pathology [282]. In an 

aging mouse model, sildenafil was neuroprotective and reduced neurotoxic Aβ1-42 [283]. 

Tadalafil has been proposed as a superior candidate for AD treatment, because of observed 
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brain bioavailability in primates; and both sildenafil and tadalafil were observed to restore 

behavior in the J20 mouse model (an FAD model with APP KM670/671NL, and APP 

V717F mutations). In this model, neither altered brain Aβ levels, nor improvement in tau 

pathology was reported [284-286]. The brain impenetrable PDE5 inhibitor, UK-343,664, 

improved memory in an object recognition task in rats with cognitive deficits induced by 

muscarinic or NMDA receptor blockade [287], implying a mechanism via peripheral actions 

of cGMP, in accord with high expression level of PDE5 in the smooth muscle of the 

meningeal arteries and blood vessels [284]. Research has been ongoing to optimize PDE5 

inhibitors for use in the CNS. The potent PDE5 inhibitor, YF012403, rescued LTP and 

deficits in contextual memory in the APP/PS1 FAD mouse model [288], and further 

improvements to this PDE5 inhibitor have been reported and validated in a FAD-Tg (APP/

PS1) mouse model [289].

Positive data on the combination of the pan-HDAC (histone deacetylase) inhibitor vorinostat 

with tadalafil, led to the design and testing of hybrid or chimeric PDE5 inhibitors that 

incorporate the metal chelating hydroxamate warhead standard to HDAC inhibitors [290]. 

CM- 414 is a relatively weak inhibitor of Class-I HDACs and of PDE5. In APP/PS1 and 

Tg2576 FAD-Tg mice treatment led to increased pCREB, rescued synaptic and neuronal 

function, and amelioration of Aβ and tau hallmark pathology [291]. Hydroxamate HDAC 

inhibitors have recently been shown to have off-target effects activating cell stress response 

pathways via the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) and Hypoxia-

inducible factor 1 (HIF-1), which can also contribute to efficacy in FAD models [292].

PDE9 has high affinity for cGMP [293], and is insensitive to pan- PDE inhibitors: 3-

isobutyl-1-methyl-xanthine (IBMX), vinpocetine, EHNA, enoximone, rolipram, and 

dipyridamole [294]. Selective PDE9 inhibitors, BAY73–6691 and PF-04447943, improved 

memory and synaptic plasticity in older rats [295-297]. In the Tg2576 FAD mouse model, 

PF-04447943 improved memory, LTP, and hippocampal spine density; however, in phase 2 

clinical trials, PF-04447943 did not improve cognition over placebo [298]. A novel PDE9 

inhibitor, BI-409306, recently completed Phase 1 clinical trials, and entered Phase 2 trials in 

patients with prodromal or mild to moderate AD [299].

While there are no specific PDE1 inhibitors reported in the literature, many PDE5 inhibitors 

offer some inhibition of PDE1 [300]. The PDE5/1 dual inhibitor SCH 51866, was 

unsuccessful in attenuating progression in a R6/2 mouse model of HD [301].

The PDE2 inhibitor, BAY 60–7550, in age impaired rats, produced enhanced learning, 

memory acquisition, and memory consolidation [23,302-304]. PF-05180999, a 

pyrazolopyrimidine based PDE2 inhibitor [305], underwent phase I clinical trials for the 

treatment of schizophrenia and migraine, however, was terminated prematurely due to safety 

concerns [306]. In 2005 a patent for benzo-1,4-diazepin-2-one based PDE2 inhibitors (i.e. 

ND7001), for the treatment of various diseases of the central or peripheral nervous system 

was published [307].

The opium alkaloid, papaverine, a PDE10A inhibitor has been shown to inhibit conditioned 

avoidance responding in rats and mice and to inhibit PCP–and amphetamine-stimulated 
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locomotor activity in rats [308]. However, chronic administration of papaverine led to motor 

perturbations, mild cognitive disturbance and anxiety-like behavior [309]. PF-02545920 

(Amaryllis) showed promise in HD, but a Phase II clinical trial failed [310]. The PDE10A 

inhibitor TAK-063 [311], produced dose-dependent antipsychotic-like effects in METH-

induced hyperactivity and prepulse inhibition in rodents, in contrast to PF-02545920 [312]. 

The highly potent PDE10A inhibitor from Pfizer, “compound 96“, reversed MK-801 

induced hyperactivity and conditioned avoidance response in rats [313].

14. Conclusions

As outlined in this review, there has been substantial activity over the past decade using 

selective PDE inhibitors to regulate cGMP in the CNS; however, this has not been matched 

by efforts to explore alternative therapeutic approaches to regulation of cGMP in the CNS. 

Striking progress has been made exploring sGC activators and stimulators in the periphery; 

and, as discussed in this review, extensive studies on hybrid nitrates have led to a single 

clinical drug for glaucoma.

NO/cGMP signal transduction is important for modulating synaptic transmission, plasticity, 

and memory in the brain, and this signaling pathway has been shown to be perturbed in 

many neurodegenerative disorders, making targeting of this pathway an attractive 

therapeutic strategy. The evidence strongly suggests that NO-donors and sGC modulators 

effectively regulate NO/cGMP signaling to elicit beneficial effects in many preclinical 

models of CNS disorders, in particular neurodegenerative diseases. The impressive 

preclinical data on NMZ and Nitrosynapsin, in particular, should support progress to clinical 

trials. sGC stimulators in the relatively few studies focused on the CNS have shown promise, 

often replicating the activity of NO-donors.

Despite significant advances in our understanding of NO and cGMP-dependent signaling 

mechanisms, important questions remain unsolved. Most importantly, gaps in our knowledge 

exist with the NO receptor, sGC, notably: the precise mechanism of sGC activation; the role 

of post-translational modification; modulation by allosteric ligands, such as ATP, GTP and 

endogenous sGC stimulators; and interactions with protein partners. Therefore, continued 

progress towards elucidating the structure and mechanism of sGC activation is needed to 

enable the development of novel drugs that target sGC to treat CNS disorders. For example, 

targeting the PDZ domain of the sGC α2 subunit using protein-protein interaction inhibitors 

would yield interesting chemical probes; however, this isoform of sGC, enriched in the 

brain, is poorly studied.

Modern drug discovery is dominated by development of small organic molecules that bind 

an individual protein target, with selectivity defined against specific off-target proteins. 

Increased affinity and potency is best achieved with multiple co-crystal structures of the 

protein target. The molecule preferably should be stable with a very small number of defined 

and measurable metabolites. Generally, a single mechanism of action is preferred to 

polypharmacy. The characteristics of NO-donors and sGC modulators are not compatible 

with some, or all, of these drug-like characteristics desired in modern drug discovery. NO-

donors are by design and definition metabolically labile. In addition, the extensive literature 
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on protein modification caused directly or indirectly by NO, increases the potential targets of 

any NO-donor. Tolerance to GTN, or “nitrate tolerance” is also perceived to increase risk of 

development of NO-donors, although no evidence for such a phenomenon in the CNS has 

been revealed with agents such as NMZ and Nitrosynapsin. Furthermore, based upon doses 

of NMZ and Nitrosynapsin administered chronically in preclinical animal models, the 

effective potency of these agents is very high.

In neurodegenerative disorders, but especially in AD, the high rate of Phase 3 clinical trial 

failures of drugs singularly targeting one protein and one aspect of disease neuropathology 

has been unprecedented. Targeting NO-sGC signaling in the CNS will inherently modulate 

more than one aspect of the disease, and multiple preclinical studies with PDE inhibitors and 

NO-chimeras have demonstrated this approach to be disease-modifying with respect to 

hallmark neuropathology. The pursuit of these strategies in clinical trials is eagerly awaited.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Opportunities for pharmacological intervention in canonical NO/cGMP signaling.
Under physiological conditions, NO, endogenously synthesized by nitric oxide synthase 

(NOS), stimulates soluble guanylate cyclase (sGC), increasing cGMP production above 

basal levels. cGMP binds to and activates cGMP-dependent protein kinases (PKG) and 

certain ion channels (not shown). cGMP hydrolyzing phosphodiesterases (PDEs) temporally 

and spatially regulate cGMP levels. Exogenous NO donors spontaneously release NO, or 

require bioactivation to give NO and nitrite ion (NO2
−); nitrite may provide an alternative 

source of NO after further reductive bioactivation. NOS inhibitors (NOSi), such as L-

NAME, have been extensively explored and are not discussed in this review. sGC 

stimulators directly activate or potentiate the effects NO, enhancing cGMP production by the 

ferrous-heme enzyme at low levels of bioavailable NO. sGC activators activate the NO-

unresponsive, heme-oxidized or heme-free enzyme. 1H-[1,2,4]oxadiazolo [4,3-

a]quinoxalin-1-one (ODQ) is a heme-dependent sGC inhibitor. ADMA, asymetric dimethyl 

arginine; ATP, adenosine 5′-triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, 

cyclic guanosine monophosphate; DMA, dimethyl arginine; GTP, guanosine 5′-

triphosphate; NMT, N-methyl transferase.
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Fig. 2. 
The complementary mechanisms of NMZ and Nitrosynapsin help restore the balance 

between excitatory and inhibitory neurotransmission.
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Fig. 3. 
Pharmacological activation of NO/cGMP every other day for 9 days causes chronic 

hyperalgesia that does not revert to baseline until days 13–15[120]. Thus, days after 

clearance of exogenous NO/cGMP activators, endogenous NO/cGMP signaling is 

upregulated and potentiates chronicity. Blocking sGC using ODQ restores baseline response 

on day 10. This migraine model is responsive to various anti-migraine drugs in human use.
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Fig. 4. 
Oxidation of thiols by nitrates: A) Potential mechanism of PKG1α Cys42 oxidation (and 

NO-independent activation of PKG1α) by GTN. B) Mechanism of spontaneous release of 

NO from organic nitrate, GT-150.
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Scheme 1. 
Structures of pharmacological modulators of NO/cGMP signaling.
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