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Abstract

Rare genetic variants are abundant across the human genome, and identifying their function and 

phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in 
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identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically 

driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and 

alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal 

informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates 

multiple genomic and transcriptomic signals to predict variant function, validated these predictions 

in additional cohorts and through experimental assays, and used them to assess RVs in the UK 

Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands 

of RVs to diverse molecular effects and provide evidence to associate RVs affecting the 

transcriptome with human traits.

Graphical Abstract

INTRODUCTION: The human genome contains tens of thousands of rare (minor allele frequency 

<1%) variants, some of which contribute to disease risk. Using 838 samples with whole-genome 

and multitissue transcriptome sequencing data in the Genotype-Tissue Expression (GTEx) project 

version 8, we assessed how rare genetic variants contribute to extreme patterns in gene expression 

(eOutliers), allelic expression (aseOutliers), and alternative splicing (sOutliers). We integrated 

these three signals across 49 tissues with genomic annotations to prioritize high-impact rare 

variants (RVs) that associate with human traits.

RATIONALE: Outlier gene expression aids in identifying functional RVs. Transcriptome 

sequencing provides diverse measurements beyond gene expression, including allele-specific 

expression and alternative splicing, which can provide additional insight into RV functional 

effects.

RESULTS: After identifying multitissue eOutliers, aseOutliers, and sOutliers, we found that 

outlier individuals of each type were significantly more likely to carry an RV near the 

corresponding gene. Among eOutliers, we observed strong enrichment of rare structural variants. 

sOutliers were particularly enriched for RVs that disrupted or created a splicing consensus 

sequence. aseOutliers provided the strongest enrichment signal when evaluated from just a single 

tissue.

We developed Watershed, a probabilistic model for personal genome interpretation that improves 

over standard genomic annotation–based methods for scoring RVs by integrating these three 

transcriptomic signals from the same individual and replicates in an independent cohort.

To assess whether outlier RVs identified in GTEx associate with traits, we evaluated these variants 

for association with diverse traits in the UK Biobank, the Million Veterans Program, and the 

Jackson Heart Study. We found that transcriptome-assisted prioritization identified RVs with larger 

trait effect sizes and were better predictors of effect size than genomic annotation alone.

CONCLUSION: With >800 genomes matched with transcriptomes across 49 tissues, we were 

able to study RVs that underlie extreme changes in the transcriptome. To capture the diversity of 

these extreme changes, we developed and integrated approaches to identify expression, allele-

specific expression, and alternative splicing outliers, and characterized the RV landscape 

underlying each outlier signal. We demonstrate that personal genome interpretation and RV 

discovery is enhanced by using these signals. This approach provides a new means to integrate a 
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richer set of functional RVs into models of genetic burden, improve disease gene identification, 

and enable the delivery of precision genomics. ■

Transcriptomic signatures identify functional rare genetic variation. We identified genes in 

individuals that show outlier expression, allele-specific expression, or alternative splicing and 

assessed enrichment of nearby rare variation. We integrated these three outlier signals with 

genomic annotation data to prioritize functional RVs and to intersect those variants with disease 

loci to identify potential RV trait associations.

Background

The human genome contains tens of thousands of rare [minor allele frequency (MAF) <1%] 

variants (1), some of which contribute to rare and common disease risks (2, 3). However, 

identifying functional rare variants (RVs), especially in the noncoding genome, remains 

difficult because of their low frequency and the lack of a regulatory genetic code. Outlier 

gene expression aids in identifying functional, large-effect RVs (4–8). Furthermore, 

transcriptome sequencing provides diverse measurements beyond gene expression level, 

including allele-specific expression (ASE) and alternative splicing, that have yet to be 

systematically evaluated and integrated into variant effect prediction (9–11).

Using 838 samples with both whole-genome and transcriptome samples in the Genotype-

Tissue Expression (GTEx) project version 8 (v8), we assessed how rare genetic variants 

contribute to outlier patterns in total expression (hereafter referred to simply as 

“expression”), allelic expression, and alternative splicing deep into the allele frequency (AF) 

spectrum. We integrated these three transcriptomic signals across 49 tissues, along with 

diverse genomic annotations to prioritize high-impact RVs, and assessed their relationship to 

complex traits in the UK Biobank (UKBB) (12), the Million Veterans Program (MVP) (13), 

and the Jackson Heart Study (JHS) (14). We further identified dozens of candidate RVs 

influencing well-studied disease genes, including APOE, FAAH, and MAPK3.
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Results

Detection of aberrant gene expression across multiple transcriptomic phenotypes

We quantified three transcriptional phenotypes for each gene to capture a wide range of 

functional effects caused by regulatory genetic variants. Briefly, to identify expression 

outliers (eOutliers), we generated Z scores from corrected expression data per tissue to 

determine whether a gene in an individual has extremely high or low expression (fig. S1) 

(15, 16). To identify genes with excessive allelic imbalance [allele-specific expression (ASE) 

outliers (aseOutliers)] we used ANEVA-DOT (analysis of expression variation–dosage 

outlier test; figs. S2 and S3) (16, 17). This method uses estimates of genetic variation in 

dosage of each gene in a population to identify genes for which an individual has a 

heterozygous variant with an unusually strong effect on gene regulation (17). Splicing 

outliers (sOutliers) were detected using SPOT (splicing outlier detection), an approach 

introduced here that fits a Dirichlet-Multinomial distribution directly to counts of reads split 

across alternatively spliced exon-exon junctions for each gene. SPOT then identifies 

individuals that deviate significantly from the expectation on the basis of this fitted 

distribution (figs. S4 to S6) (16). Each of the three methods was applied across all GTEx 

samples. An individual was called a multitissue outlier for a given gene if its median outlier 

statistic across all measured tissues exceeded a chosen threshold (Fig. 1A) (16). Using this 

multitissue approach for each phenotype, we found that each individual had a median of four 

eOutlier, four aseOutlier, and five sOutlier genes.

Genes with aberrant expression, ASE, and splicing are enriched for functionally distinct 
RVs

We observed that multitissue outliers for any of the three transcriptomic phenotypes were 

significantly more likely to carry a RV (MAF <1%) in the gene body or ±10 kb than 

individuals without outliers, assessed among 714 individuals with European ancestry. These 

enrichments were progressively more pronounced for rarer variants and were stronger for 

structural variants (SVs) than for single-nucleotide variants (SNVs) and indels (Fig. 1B). 

These trends were not reliant on the specific choice of the threshold used to define outliers 

(figs. S7 and S8).

We found only 35 cases in which an individual gene was a multitissue outlier for all three 

transcriptional phenotypes. All but one of these had a nearby RV, and most were annotated 

as splice variants. Among genes that were outliers for two transcriptional phenotypes in an 

individual (n = 465), the greatest overlap occurred between aseOutliers and eOutliers (n = 

319; fig. S9A). We found that aseOutliers with modest expression changes (1 < |median Z| < 

3) showed stronger enrichment for nearby RVs than those without any expression change 

(fig. S9), highlighting an important benefit of combining these phenotypes to discover 

diverse RV effects. We found that genes for which no outlier individuals were identified 

were enriched for Gene Ontology biological process terms relating to sensory perception 

and detection of chemical stimuli for all outlier types (fig. S10) (16), which is consistent 

with enrichments seen for genes that do not have any cis-expression quantitative trait loci 

(eQTLs) discovered in GTEx (18).
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We found that different types of genetic variants contribute to outliers for the three 

molecular phenotypes, although rare splice donor variants were enriched near all outlier 

types (Fig. 1C). The largest differences in variant type enrichment among the three outlier 

types were copy number variations (CNVs) and duplications, which were almost exclusively 

associated with eOutliers, and splice acceptor variants, which were enriched considerably 

more within sOutliers (fig. S11).

For all phenotypes, the proportion of outliers with a nearby RV of any category increased 

with threshold stringency (Fig. 1D). For eOutliers, aseOutliers, and sOutliers, at the strictest 

threshold of median outlier P < 1.1 × 10−7, most individuals were carrying at least one RV 

nearby the outlier gene (82 to 94%). When looking further at RVs with functional 

annotations (from the annotations listed in Fig. 1C), we found that underexpressed eOutliers 

were the most interpretable, with 88% of outlier-associated RVs having an additional 

functional annotation, whereas aseOutliers had the lowest proportion at 56% (Fig. 1D). This 

analysis provides further insight into expectations for causal RV types when an outlier effect 

of a specific magnitude is observed in an individual.

Conversely, a large proportion of genes with nearby rare genetic variants did not appear as 

outliers, even for the most predictive classes such as loss-of-function variants. The largest 

proportion of variants leading to any outlier status were rare splice donor and splice acceptor 

variants, of which only 7.2 and 6.8%, respectively, led to an sOutlier (Fig. 1E and fig. S11). 

Overall, whereas some transcriptomic effects may have been missed, the low frequency with 

which RVs of these classes led to large transcriptome changes reinforces the utility of 

incorporating functional data in variant interpretation even for specific variant classes 

already used in clinical interpretation.

Genomic position of RVs predicts the impact on expression

Although we primarily assessed RVs that occur either within an outlier gene or in a 10-kb 

surrounding window, gene regulation can occur at greater distances (19, 20). Because we 

observed the strongest enrichments for the lowest-frequency variants, we intersected 

singleton variants [(SVs); i.e., those appearing only once in GTEx and SNVs and/or indels 

that do not appear in the Genome Aggregation Database (gnomAD) (21)] with 200-kb-

length windows exclusive of other windows and upstream from outlier genes and compared 

their frequency in outlier versus nonoutlier individuals. SNV enrichments dropped off 

quickly at greater distances from the gene but remained weakly enriched for eOutliers out to 

200 kb. The same was true for rare indels, with enrichment at 200 kb only for sOutliers. SVs 

remained enriched at much longer distances, being enriched 2.33-fold as far as 800 kb to 1 

Mb upstream and up to 600 kb downstream of the gene body (Fig. 2A and fig. S12A).

RVs in promoter regions have been previously linked to outlier expression (5, 15). To extend 

these observations and to assess the types of transcription factor (TF)–binding sites that 

could lead to outliers, we tested enrichment of rare transcription start site (TSS) proximal 

variants in specific TF motifs near under- and over-eOutliers. For under-eOutliers, we saw 

an enrichment of variants in GABP, a TF that activates genes that control the cell cycle, 

differentiation, and other critical functions (22). For over-eOutliers, we saw an enrichment of 

RVs intersecting the E2F4 motif, a TF that has been reported as a transcriptional repressor 
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(23). In both under- and over-eOutliers, we saw RVs in YY1, which can act as either an 

activator or repressor, depending on context (24), and has been associated with GABP in 

coregulatory networks (Fig. 2B and fig. S12B) (25). Thus, these naturally occurring RV 

perturbations can provide information about how specific TFs can strongly up- or down-

regulate their target genes.

RVs can affect multiple genes and lead to new gene fusion

We observed that RVs can also affect multiple genes in an individual. We found a strong 

enrichment for multigene effects among eOutliers and, to a lesser degree, aseOutliers (fig. 

S13). As expected, we did not see enrichment for nearby sOutlier pairs, which are less 

subject to coregulation (26). Within a 100-kb window, neighboring eOutlier genes were 70 

times more frequent than would be expected by chance if drawing outlier pairs at random. 

They were also significantly enriched for rare CNVs, duplications, and TSS variants nearby 

one or both genes compared with individuals who had outlier expression but for only one of 

the genes (fig. S13). We also found that rare SV enrichments were present near eOutliers 

regardless of whether the SV overlapped the gene itself (fig. S14). We observed 27 examples 

of rare SVs, including deletions, duplications, and break ends, associated with eOutliers in at 

least two genes in the same individual (fig. S15 and table S1). For one of these, we observed 

evidence of a fusion transcript resulting from a deletion spanning the end of the gene 

SPTBN1 and the TSS of EML6. This deletion led to underexpression of SPTBN1 (median Z 
score = −4.67) and overexpression of EML6 (median Z score = 8.12) compared with all 

other individuals. Supporting the presence of a new germline fusion transcript, we found 

evidence of a specific transcript spanning both SPTBN1 and EML6 in multiple tissues for 

the individual with the deletion (fig. S16). For both of these genes, this individual also 

showed sOutlier signal (median SPOT P = 0.0005 for EML6 and 0.0035 for SPTBN1). The 

identification of fusion transcripts has been of particular interest in cancer diagnosis and 

prognosis (27–30), and both EML genes and SPTBN1 have been previously implicated in 

cancer-associated fusions (31, 32).

RVs in splicing consensus sequence drive splicing outliers

Previous studies have shown RVs disrupting splice sites result in outlier alternative splicing 

patterns (33, 34). We used sOutlier calls made for each LeafCutter cluster (16, 35) to assess 

enrichment of splicing-related variants more precisely. We observed extreme enrichment of 

RVs near splice sites in sOutliers. An sOutlier was 333 times more likely than a nonoutlier 

to harbor a RV within a 2-bp window around a splice site (fig. S17A) (16), with signal 

decaying at greater distances but still enriched up to 100 bp away (relative risk = 7.43). To 

obtain base pair resolution enrichments, we computed the relative risk of sOutlier RVs 

located at specific positions relative to observed donor and acceptor splice sites (16). Ten 

positions near the splice site showed significant enrichment for RVs in sOutliers compared 

with controls (Fig. 2, C and D). These positions corresponded precisely to positions that 

have also been shown to be intolerant to mutations because of their conserved role in 

splicing (we will refer to these positions as the splicing consensus sequence) (34). Among 

the most enriched positions within the splicing consensus sequence were the four essential 

splice site positions (D + 1, D + 2, A − 2, A − 1) (36), which showed an average relative risk 

of 195.
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sOutliers further captured the transcriptional consequences both for variants that disrupted a 

reference splicing consensus sequence and those that created a new splicing consensus 

sequence. Individuals with sOutlier variants in which the rare allele deviated away from the 

splicing consensus sequence showed decreased junction usage of the splice site near the 

variant, whereas individuals with variants in which the rare allele created a splicing 

consensus sequence showed increased junction usage of the splice site near the variant 

relative to nonoutliers (Fig. 2E and figs. S17B and S18) (16). We saw a related enrichment 

pattern after separating annotated and new (unannotated) splice sites (fig. S19). sOutliers 

were also enriched for RVs positioned within the polypyrimidine tract (PPT), a highly 

conserved, pyrimidine-rich region, ~5 to 35 bp upstream from acceptor splice sites (37). A 

RV was 6.25 times more likely to be located in the PPT near an sOutlier relative to a 

nonoutlier. sOutliers with a RV that changed a position in the PPT from a pyrimidine to a 

purine (i.e., disrupting an existing PPT) showed decreased junction usage of the splice site 

near the variant, whereas the inverse was true for variants that changed a position in the PPT 

from a purine to pyrimidine (Fig. 2F and fig. S20).

RVs in tissue-specific regulatory regions can lead to tissue-specific outlier expression

Although multitissue outliers offer improved power to detect RV effects, we also evaluated 

RVs from outliers detected in individual tissues. Single-tissue measurements are subject to 

greater variation than repeat measurements across tissues but are representative of most 

experimental designs. First, we performed replication analysis across all individuals with 

data available for the three methods to evaluate the degree to which outlier status detected in 

one tissue of an individual was replicated in other tissues (16). On average, we found that 

eOutlier, aseOutlier, and sOutlier status in a discovery tissue was detected in a test tissue 5.1, 

10.7, and 8.7% of the time, respectively (Fig. 3A and fig. S21). This is consistent with other 

findings that measurements of ASE are more consistent across tissues (18). Considering 

clinically accessible tissues, namely whole blood, fibroblasts, and lymphoblastoid cells, if 

we consider outliers observed for a gene in at least two of these tissues in the same 

individual, we saw average replication rates across all other tissues of 14.1, 20.9, and 15.0% 

for eOutliers, aseOutliers, and sOutliers, respectively (fig. S22). Both the higher replication 

rate for aseOutliers and the increase in outlier replication in non-accessible tissues when 

considering more than one accessible measurement are informative for the analysis of 

functional data from easily accessible tissues to understand disease states most relevant to 

other tissues.

We next evaluated the ability of single-tissue outliers from each method to prioritize RVs 

near outlier genes. Single-tissue aseOutliers were most enriched for nearby RVs, followed 

by sOutliers and then eOutliers, across all outlier cutoff thresholds (Fig. 3B and fig. S21 and 

S23A). We also observed enrichment of variants likely triggering nonsense-mediated decay 

among single-tissue eOutliers, aseOutliers, and sOutliers (Fig. 3C and fig. S23B). 

Additionally, we found that single-tissue sOutliers still showed strong enrichment for RVs in 

the splicing consensus sequence and the PPT (fig. S24).

Except for rare SVs that notably were enriched at comparable thresholds to multitissue 

eOutliers, single-tissue eOutliers show far weaker enrichments relative to multitissue outliers 
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for nearby rare SNVs and indels across all thresholds (fig. S25). To improve discovery of 

tissue-specific outliers, we leveraged the breadth of tissue data available and used observed 

patterns of correlation across tissues to detect outliers that deviate from the expected 

covariance of expression in a subset of tissues (16). A similar approach has been 

implemented to identify functional RVs on the basis of the correlation of expression among 

genes in a single tissue (5). We found that outliers identified using this approach were often 

driven by expression changes in one or a few tissues compared with multitissue eOutliers 

based on median Z scores (Fig. 3D). The correlation tissue-specific outliers were also 

enriched for nearby RVs in a 10-kb window around the gene (fig. S26C). However, these 

outliers were also enriched for RVs in enhancers that were active in the tissue(s) driving the 

outlier effect (table S2), as determined by single-tissue Z score and within a 500-kb window 

around the gene (Fig. 3E). Notably, these tissue-specific outliers were depleted for rare 

variation in enhancers annotated in other, unmatched tissues.

Prioritizing RVs by integrating genomic annotations with diverse personal transcriptomic 
signals

To incorporate diverse transcriptome signals into a method to prioritize RVs, we developed 

Watershed, an unsupervised probabilistic graphical model that integrates information from 

genomic annotations of a personal genome (table S3) with multiple signals from a matched 

personal transcriptome. Watershed provides scores that can be used for personal genome 

interpretation or for cataloging potentially impactful rare alleles, quantifying the posterior 

probability that a variant has a functional effect on each transcriptomic phenotype based on 

both whole-genome–sequencing (WGS) and RNA-sequencing (RNA-seq) signals (Fig. 4A). 

The Watershed model can be adapted to any available collection of molecular phenotypes, 

including different assays, different tissues, or different derived signals. Further, Watershed 

automatically learns Markov random field (MRF) edge weights reflecting the strength of the 

relationship between the different tissues or phenotypes included that together allow the 

model to predict functional effects accurately.

We first applied Watershed to the GTEx v8 data using the three outlier signals examined 

here, expression, ASE, and splicing (Fig. 4A) (16), for which each was first aggregated by 

taking the median across tissues for the corresponding individual. In agreement with existing 

evidence of similarity between outlier signals (fig. S9), the learned Watershed edge 

parameters were strongest between ASE and expression, followed by ASE and splicing, but 

strictly positive for all pairs of outlier signals (i.e., each outlier signal was informative of all 

other signals; Fig. 4B). To evaluate our model, we used held-out pairs of individuals that 

shared the same RV, making Watershed predictions in the first individual and evaluating 

those predictions using the second individual’s outlier status as a label (15, 16). Watershed 

outperforms methods based on genome sequence alone [our genomic annotation model 

(GAM) and combined annotation-dependent depletion (CADD); Fig. 4C and fig. S27] (38, 

39). We also compared performance of Watershed with RIVER [RNA-informed variant 

effect on regulation (15)], a simplification of the Watershed model in which each outlier 

signal is treated independently. We found that explicitly modeling the relationship between 

different molecular phenotypes provided a performance gain for Watershed (Fig. 4D, figs. 

S28 and S29, and table S4) (16). We observed that even the most predictive genomic 
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annotations only resulted in eOutliers, aseOutliers, and sOutliers 2.8, 7.9, and 14.3% of the 

time, respectively (Figs. 1E and 4C). However, integrating transcriptomic signals with 

genomic annotations from Watershed (at a posterior threshold of 0.9) detected SNVs that 

resulted in eOutliers, aseOutliers, and sOutliers with greater frequency 11.1, 33.3, and 

71.4% of the time, respectively (Fig. 4C and fig. S30).

We further extended the Watershed framework to prioritize variants on the basis of their 

predicted tissue-specific impact. We trained three “tissue-Watershed” models (one for each 

of expression, ASE, and splicing separately), in which each model considers the effects in 

all tissues jointly, sharing information in the MRF, and ultimately outputs 49 tissue-specific 

scores for each RV (figs. S29 and S31) (16). We observed that the parameters learned for 

each of the three tissue-Watershed models resembled known patterns of tissue similarity 

(Fig. 4E and fig. S32) (18). Further, using held-out individuals, the tissue-Watershed model 

outperformed a RIVER model in which each tissue is treated completely independently (P = 

2.00 × 10−5, P = 2.00 × 10−5, and P = 5.90 × 10−3 for expression, ASE, and splicing, 

respectively; one-sided binomial test; Fig. 4F and figs. S33 and S34) and a collapsed RIVER 

model trained with single median outlier statistics (P = 0.0577, P = 0.251, and P = 0.00128 

for expression, ASE, and spicing, respectively; one-sided binomial test; figs. S35 and 36). 

Critically, integrative models that incorporated transcriptomic signal and genomic 

annotations from a single tissue still outperformed methods based only on genome sequence 

annotations (Fig. 4F), supporting the benefit of collecting even a single RNA-seq sample to 

improve personal genome interpretation.

Replication and experimental validation of predicted RV transcriptome effects

We first assessed the replication of “candidate causal RVs” previously identified by the 

SardiNIA Project (6), using GTEx Watershed prioritization. Of five SardiNIA candidate 

causal RVs that were also present in a GTEx individual, four had high (>0.7) GTEx 

Watershed expression posterior probabilities (table S5). Next, we tested replication of GTEx 

RVs, prioritized by Watershed, in an independent cohort evaluating 97 whole-genome and 

matched transcriptome samples from the Amish Study of Major Affective Disorders 

(ASMAD) (40). We evaluated GTEx RVs also present in this cohort at any frequency, 

quantifying eOutlier, aseOutlier, and sOutlier signal in each ASMAD individual harboring 

one of the GTEx variants (16). For all three phenotypes, ASMAD individuals with variants 

having high (>0.8) Watershed posterior probability based on GTEx data had significantly 

more extreme outlier signals at nearby genes compared with individuals with variants having 

low (<0.01) GTEx Watershed posterior probability (expression: P = 2.729 × 10−6, ASE: P = 

2.86 × 10−3, and splicing: P = 5.86 × 10−13; Wilcoxon rank-sum test; fig. S37). Every 

variant with a high GTEx Watershed splicing posterior probability (>0.8) resulted in an 

sOutlier (P ≤ 0.01) in the ASMAD cohort. Furthermore, ASMAD individuals with variants 

having high (>0.8) GTEx Watershed posterior probability had significantly larger outlier 

signals relative to equal size sets of variants prioritized by GAM (expression: P = 0.00129, 

ASE: P = 0.0287, and splicing: P = 0.00058; Wilcoxon rank-sum test; fig. S37). Overall, 

RVs prioritized by Watershed using GTEx data displayed evidence of functional effects in 

ASMAD individuals.
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We further applied both a massively parallel reporter assay (MPRA) and a CRISPR-Cas9 

assay to assess the impact of Watershed-prioritized RVs. We experimentally tested the 

regulatory effects of 52 variants with moderate Watershed expression posterior (≥0.5) and 98 

variants with low Watershed expression posterior (<0.5) using MPRA (16). We observed 

increased effect sizes for RVs with high Watershed expression posterior relative to variants 

with low expression posterior (P = 0.025; one-sided Wilcoxon rank-sum test; fig. S38 and 

table S6). Next, we assessed the functional effects of 20 variants by editing them into 

inducible-Cas9 293T cell lines. These included 14 rare stop-gained variants and six non-

eQTL common variants as negative controls. Of the 14 rare stop-gained variants, 13 had 

expression or ASE Watershed posterior >0.8, with the remaining variant [previously tested 

in (41)] having a posterior of 0.22. All control variants had Watershed posteriors <0.03. Of 

the 13 variants with a Watershed posterior >0.8, 12 showed a significant decrease in 

expression of the rare allele (P < 0.05, Bonferroni corrected; fig. S39 and table S7) (16).

Aberrant expression informs RV trait associations

We found that each individual had a median of three eOutliers, aseOutliers, and sOutliers 

(median outlier P < 0.0027) with a nearby RV. When filtering by moderate Watershed 

posterior probability (>0.5) of affecting expression, ASE, or splicing, individuals had a 

median of 17 genes with RVs predicted to affect expression, 27 predicted to affect ASE, and 

nine predicted to affect splicing (Fig. 5A). From the set of outlier calls, we found multiple 

instances of RVs influencing well-known and well-studied genes, including APOE and 

FAAH (table S8). In particular, for APOE, which has been associated with numerous 

neurological diseases and psychiatric disorders (42), we found two aseOutlier individuals 

both carrying a rare, missense variant, rs563571689, with ASE Watershed posteriors >0.95, 

not previously reported. For FAAH, which has been linked to pain sensitivity in numerous 

contexts (43, 44), we found two eOutlier individuals with a rare 5′ untranslated region 

variant, rs200388505, with ASE and expression Watershed posteriors >0.9.

To assess whether identified rare functional variants from GTEx associate with traits, we 

intersected this set with variants present in the UKBB (12). We focused on a subset of 34 

traits for which GWAS association for a UKBB trait had evidence of colocalizations with 

eQTLs and/or alternative splicing QTLs (sQTLs) in any tissue (table S9) (16, 45). GTEx has 

demonstrated that genes with RV associations for a trait are strongly enriched for their 

eQTLs colocalizing with GWAS signals for the same trait (18), indicating that QTL 

evidence can be used to guide RV analysis. Furthermore, RVs near GTEx outliers had larger 

trait association effect sizes than background RVs near the same set of genes in the UKBB 

data (P = 3.51 × 10−9; one-sided Wilcoxon rank-sum test), with a shift in median effect size 

percentile from 46 to 53%. Notably, outlier variants that fell in or nearby genes with an 

eQTL or sQTL colocalization had even larger effect sizes (median effect size percentile 

88%) than nonoutlier variants (P = 1.93 × 10−5; one-sided Wilcoxon rank-sum test) or 

outlier variants falling near any gene not matched to a colocalizing trait (P = 4.88 × 10−5; 

one-sided Wilcoxon rank-sum test; Fig. 5B).

Although most variants tested in UKBB had low Watershed posterior probabilities of 

affecting the transcriptome (fig. S40A), we hypothesized that filtering for those variants that 
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do have high posteriors would yield variants in the upper end of the effect size distribution 

for a given trait. For each variant tested in UKBB, we took the maximum Watershed 

posterior per variant and compared this with a genomic annotation-defined metric, CADD 

(38, 39). We found that Watershed posteriors were a better predictor of variant effect size 

than CADD scores for the same set of RVs in a linear model (Table 1). Across different 

Watershed posterior thresholds, we found that the proportion of variants falling in the top 

25% of RV effect sizes in colocalized regions exceeded the proportion expected by chance 

(Fig. 5C). Whereas filtering by CADD score did return some high effect size variants, this 

proportion declined at the highest thresholds (fig. S40D). Furthermore, there was very little 

overlap between variants with high Watershed posteriors and high CADD variants (fig. 

S40D), with CADD variants more likely to occur in coding regions and Watershed variants 

more frequent in noncoding regions (fig. S40D). Thus, the approaches largely identified 

distinct and complementary sets of variants for these traits.

We identified 33 rare GTEx variant trait combinations in which the variant had a Watershed 

posterior >0.5 and fell in the top 25% of variants by effect size for the given trait (table S10). 

We highlight two such examples, for asthma and high cholesterol (Fig. 5, D and E), showing 

that although RVs usually do not have the frequency to obtain genome-wide significant P 
values, when they are prioritized by the probability of affecting expression, we could 

identify those with greater estimated effect sizes on the trait (table S11). In the case of 

asthma, the RV effect sizes in UKBB were three times greater than the lead colocalized 

variant. These variants included rs146597587, which is a high-confidence loss-of-function 

splice acceptor with an overall gnomAD AF of 0.0019, and rs149045797, an intronic variant 

with a frequency of 0.0019, both of which were associated with the gene IL33, the 

expression of which has been implicated in asthma (46, 47). Previous work has identified the 

protective association between rs146597587 and asthma (48, 49), and we found that this is 

potentially mediated by outlier allelic expression of IL33 leading to moderate decreases in 

total expression, with median Z scores ranging from −1.08 to −1.77 in individuals with the 

variant, and median single-tissue Z scores across the six individuals exceeding −2 in 10 

tissues. An asthma association had also been reported recently for the other high Watershed 

asthma-associated variant rs149045797 and was in perfect linkage disequilibrium with 

rs146597587 (50). An additional high Watershed variant, rs564796245, an intronic variant in 

TTC38 with a gnomAD AF of 0.0003, had a high effect size for self-reported high 

cholesterol in the UKBB but was not previously reported. We were able to test this variant 

against four related blood lipids traits in the MVP (51). We found that for these traits, which 

included high-density lipoprotein (HDL), low-density lipoprotein, total cholesterol, and 

triglycerides, among rare (gnomAD AF <0.1%) variants within a 250-kb window of 

rs564796245, this variant was in the top 5% of variants by effect size; for HDL specifically, 

it was in the top 1% (fig. S41). We also assessed this variant’s association with the same four 

traits in the JHS (14), an African American cohort in which four individuals carried the RV. 

Here, we found that the direction of effect was consistent with MVP and UKBB for all four 

traits (tables S11 and S12), and the variant fell in the top 28th to 38th percentile of all rare 

(gnomAD AF <0.1%) variants in this region (fig. S42). Only four of the variants tested in 

UKBB had Watershed posterior probabilities >0.9 for colocalized genes, but of those, three 

showed high effect sizes for a relevant trait (table S10).
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Discussion

RVs are abundant in human genomes, yet they have remained difficult to study 

systematically. Using multitissue transcriptome and whole-genome data from GTEx v8, we 

have been able to identify and assess the properties of RVs, including SVs, that underlie 

extreme changes in expression, alternative splicing, and ASE.

We observed that each signal informs distinct classes of RVs, demonstrating the benefit of 

integrating multiple sources of personal molecular data to improve variant interpretation. We 

expanded characterization of the properties of RVs in multiple contexts, including structural 

variants affecting multiple genes, rare splice variants that disrupt or create splicing 

consensus sequences, and RVs occurring in tissue-specific enhancers leading to tissue-

specific eOutliers. Together, these provide a map of the properties of large-effect RVs, aiding 

their identification and evaluation in future studies. We note that although our approach can 

be used to identify some large-effect RVs underlying disease, it is unlikely to capture the full 

spectrum of functional RVs contributing to heritability because some effects will not 

manifest as clear transcriptome aberrations (8).

We further developed a probabilistic model for personal genome interpretation, Watershed, 

which improves standard methods by integrating multiple transcriptomic signals from the 

same individual. Relevant to ongoing efforts to identify RVs affecting human traits, we 

found that in RVs within trait-colocalized regions, filtering by Watershed posteriors can 

identify variants with larger trait effect sizes better than relying on genomic annotations 

alone. As further demonstrated by our discovery of outlier RVs in well-studied disease 

genes, application of Watershed and other integrative methods will prove increasingly 

helpful for cataloging and prioritizing RVs affecting traits, especially those at the lowest 

ends of the AF spectrum. Our results provide a means to improve the quality and extent of 

RV prioritization, with potential future impacts enhancing RV association testing and disease 

gene identification.

Materials and methods summary

Detailed materials and methods are available in the supplementary materials. Briefly, we 

used RNA-seq and WGS data from the v8 release of the GTEx project, which contains 49 

biological tissues with at least 70 samples per tissue.

For the set of RVs analyzed, we retained all SNVs and indels that passed quality control in 

the GTEx v8 variant call format file using the hg38 genome build. Structural variants were 

called on the subset of individuals available in the GTEx v7 release. We defined RVs as 

those with <1% MAF within GTEx and, for SNVs and indels, also occurring at <1% 

frequency in non-Finnish Europeans within gnomAD (21). Annotation of protein-coding 

regions and TF-binding site motifs was generated by running Ensembl VEP (v88).

We next used the RNA-seq data to make outlier calls in each tissue. Briefly, we log2-

transformed the expression values [log2(TPM + 2)], where TPM is the number of transcripts 

per million mapped reads, restricted to lincRNA and protein-coding genes with at least six 

reads and TPM >0.1 in at least 20% of individuals. We scaled the expression of each gene to 
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mean of 0 and a standard deviation of 1 to avoid the deflation of outlier values caused by 

quantile normalization. We corrected for hidden factors using PEER [probabilistic 

estimation of expression residuals (52)] to account for unmeasured technical confounders, as 

well as the top three genotype principal components, sex, and the genotype of the strongest 

cise-QTL per gene in each tissue. We rescaled the residual values per gene and used the 

resulting corrected Z scores to determine eOutliers.

ASE outlier calls in a single tissue were made using ANEVA-DOT to identify genes in each 

individual that showed excessive allelic imbalance of ASE relative to the population. Briefly, 

ANEVA-DOT relies on tissue-specific estimates of genetic variation in gene dosage, VG, 

derived by ANEVA on a reference population’s ASE data to identify genes in individual test 

samples that are likely affected by RVs with unusually large regulatory effects.

Splicing outlier calls were made in a single tissue using SPOT to identify genes in each 

individual that show abnormal splicing patterns. Briefly, For a given LeafCutter cluster in a 

given tissue, we defined a matrix, X (dim NxJ), where each row corresponds to one of N 
samples, each column corresponding to one of J exon-exon junctions mapped to the 

LeafCutter cluster, and each element was the number of raw split read counts corresponding 

to that row’s sample and that column’s exon-exon junction. We were able to compute a P 
value representing how abnormal a given sample’s splicing patterns were for the given 

LeafCutter cluster as follows:

1. Fitted parameters of Dirichlet-Multinomial distribution based on observed data X 
to capture the distribution of split read counts mapping to this LeafCutter cluster;

2. Used the fitted Dichlet-Multinomial distribution to compute the Mahalanobis 

distance for each of the N samples; and

3. Computed the Mahalanobis distance for 1,000,000 samples simulated from the 

fitted Dirichlet-Multinomial distribution and used these 1,000,000 Mahalanobis 

distances as an empirical distribution to assess the significance of the N real 

Mahalanobis distances.

To generate multitissue outlier calls for each gene and outlier type, we calculated an 

individual’s median outlier score across all tissues for which data were available, restricting 

the analysis to individuals with measurements in at least five tissues. To account for 

situations in which widespread extreme expression might occur in an individual because of 

nongenetic influences, we excluded individuals in whom the proportion of tested genes that 

were multitissue outliers, at a P-value threshold of 0.0027, exceeded 1.5 times the 

interquartile range of the distribution of proportion of outlier genes across all individuals.

For the correlation-aware outlier calls, we determined a subset of individuals and tissues 

with <75% missingness, leading to 762 individuals and 29 tissues. We imputed missing 

expression values to improve our estimate of the tissue-by-tissue covariance matrix per gene 

that would be used in outlier calling. We used K-nearest neighbors in the impute R package 

(53) with k = 200 to impute values for missing tissues per individual on a gene-by-gene 

basis. From the imputed matrix, we estimated the tissue covariance matrix for each gene. We 

calculated the Mahalanobis distance for each gene-individual pair and assigned a P value to 
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each gene individual from the chi-squared distribution, with degrees of freedom equal to the 

number of tissues available for that individual.

Watershed is a hierarchical Bayesian model that predicts the regulatory effects of RVs on a 

specific outlier signal based on the integration of multiple transcriptomic signals along with 

genomic annotations describing the RVs. Watershed models instances of gene-individual 

pairs to predict the regulatory effects of RVs nearby the gene. The Watershed model for a 

particular gene-individual pair, assuming K outlier signals, consists of three layers (Fig. 4A):

1. A set of variables G, representing the P observed genomic annotations 

aggregated over all RVs in the individual that are nearby the gene.

2. A set of binary latent variables Z = Z1, …, ZK representing the unobserved 

functional regulatory status of the RVs on each of the K outlier signals.

3. A set of categorical nodes E = E1, …, EK representing the observed outlier status 

of the gene for each of the K outlier signals.

A fully connected conditional random field (CRF) is defined over variables Z given G. 

Variables Ei are each connected only to the corresponding latent variable Zi. Specifically, the 

following conditional probability distributions together define the full Watershed model:

• Z|G ~ CRF(α, β1, …, βk, θ)

• Ek|Zk ~ Categorical(ϕk) ∀ k ∈ K

• ϕk ~ Dirichlet(C, …,C)

• βk Normal 0, 1
λ

where βk ∈ RP ∀ k ∈ K are the parameters defining the contribution of the genomic 

annotations to the CRF for each outlier signal (k), α ∈ RK are the parameters defining the 

intercept of the CRF for each outlier signal (k), θ ∈ R(Kchoose2) are the parameters defining 

the edge weights between pairs of outlier signals, ϕk ∀ k ∈ K are the parameters defining the 

categorical distributions of each outlier signal, and C and λ are hyperparameters of the 

model.

For the CRISPR assay, we selected 14 rare stop-gained variants that were good candidates, 

eight of which passed quality control through (1) filtering to rare stop-gained variants with 

expression and ASE watershed posterior >0.9, (2) filtering to multitissue outlier status in 

both, and (3) keeping four remaining candidates that lie in complex trait genes and the next 

10 with the highest individual outlier signal and Watershed posterior. Variants were tested 

using the polyclonal editing assay described in (41). Briefly, inducible-Cas9 293T cells were 

transfected with a guide RNA and a single-stranded homologous template specific to each 

variant. After sequencing, the effect size was calculated as log2[(Alt/Ref in cDNA)/(Alt/Ref 

in gDNA)] (54). These results were combined with six previously tested stop-gained and six 

non-eQTL control variants for which Watershed posteriors were available.

For the MPRA, we designed a set of synthetic DNA fragments by retrieving the genomic 

sequence corresponding to a 150-bp window centered at each variant of interest for the set of 
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eOutlier-associated RVs and controls. For each variant, a reference and alternative sequence 

was designed that corresponded to each allele. GM12878 cells were cultured, electroporated, 

and collected. MPRA plasmid library construction proceeded as described in (55). To 

assemble oligo-barcode pairings, we merged all paired-end reads using FLASH2 (56), 

requiring a minimum 10-bp overlap to retain each pair. Sequences corresponding to genomic 

fragments were mapped using STAR (57) against a reference assembled using the designed 

oligo library sequences. To count reads per individual barcode sequence, we took raw single-

end reads, extracted the 20-bp region corresponding to the random barcode, and counted the 

number of reads per individual sequence. Finally, to generate oligo-level read counts, we 

computed the sum of all barcodes for each oligo within each sample. We used negative 

binomial regression with an interaction term, implemented using DESeq2 (58), to identify 

significant allele-independent and allele-dependent regulatory effects.

To connect outlier-associated RVs to traits, we assessed genome-wide association study 

(GWAS0 summary statistics from the UKBB phase 2, made available by the Neale 

laboratory (www.nealelab.is/uk-biobank/). We subsetted the variants, either genotyped or 

imputed, in UKBB phase 2 to those that also appeared in any GTEx individuals with a 

frequency of <1% in GTEx, resulting in 45,415 SNVs. We filtered the set of GTEx RVs in 

UKBB to those in trait-colocalized regions, defined as being in a colocalized gene or within 

a 10-kb window. Colocalization calls are detailed in (45).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Enrichment of RVs underlying aberrant expression, splicing, and ASE.
(A) RNA-seq data in 838 individuals were combined across 49 tissues and used to identify 

shared tissue expression, ASE, and alternative splicing outliers. (B) Relative risk of new (not 

in gnomAD), singleton, doubleton, rare (MAF <1%), and low-frequency (MAF 1 to 5%) 

variants in a 10-kb window around the outlier genes across all data types compared with 

nonoutlier individuals for the same genes. Outliers were defined as those with values >3 SDs 

from the mean (|median Z| > 3) or, equivalently, a median P < 0.0027. Bars represent the 

95% confidence interval. (C) Assigning each outlier its most consequential nearby RV, the 

relative risk for different categories of RVs falling within 10 kb of each outlier type. The 

inset panel shows enrichments for a subset of variant categories on a log(2)-transformed y-

axis scale for better visibility. (D) Proportion of outliers at a given threshold that have a 

nearby RV in the given category. eOutlier |median Z scores| were converted to P values using 
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the cumulative probability density function for the normal distribution. TE, transposable 

element; INV, inversion; BND, break end; DEL, deletion; DUP, duplication. (E) Proportion 

of RVs in a given category that lead to an outlier at a P-value threshold of 0.0027 across 

types.
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Fig. 2. RV enrichments in specific genomic positions.
(A) Relative risk of SNVs and indels (not found in gnomAD), and SVs (singleton in GTEx) 

at varying distances upstream of outlier genes (bins exclusive) across data types. (B) 

Proportion of eOutliers with TSS RVs in promoter motifs within 1000 bp. Under and over 

bins are defined with a median Z score threshold of 3, and controls are all individuals with a 

median Z score <3 for the same set of outlier genes. (C) Graphic summarizing positional 

nomenclature relative to observed donor and acceptor splice sites. (D) Relative risk (y-axis) 

of an sOutlier (median LeafCutter cluster P < 1 × 10−5) RV being located at a specific 

position relative to the splice site (x-axis) compared with nonoutlier RVs. Relative risk 

calculation was done separately for donor and acceptor splice sites. (E) Independent position 

weight matrices showing mutation spectra of sOutlier (median LeafCutter cluster P < 1 × 

10−5) RVs at positions relative to splice sites with negative junction usage (i.e., splice sites 

used less in outlier individuals than in nonoutliers). (F) Junction usage of a splice site is the 

natural log of the fraction of reads in a LeafCutter cluster mapping to the splice site of 

interest in sOutlier (median LeafCutter cluster P < 1 × 10−5) samples relative to the fraction 
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in nonoutlier samples aggregated across tissues by taking the median (16). Junction usage 

(y-axis) of the closest splice sites to RVs that lie within a polypyrimidine tract (A − 5, A − 

35) binned by the type of variant (x-axis).
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Fig. 3. Single-tissue outlier enrichments and replication.
(A) Median replication of outliers identified per tissue across every other tissue for each 

outlier type. (B) Relative risk point estimate for nearby rare SNVs for outliers across all 

tissues individually. (C) Relative risk enrichments for likely gene disrupting RVs nearby 

single-tissue outliers at a threshold of |Z| > 4 (equivalently SPOT or ANEVA-DOT P < 

0.000063), with one point per tissue. (D) Distribution of number of tissues with aberrant 

expression underlying expression outliers defined by median Z score (eOutliers) or 

Mahalanobis distance P value (correlation). (E) Relative risk of correlation outliers driven by 

a single tissue, defined as significant correlation outliers for which an expression change of 

the degree indicated by the point color is observed in only a single tissue (16) carrying a RV 

in enhancers annotated to that tissue within a 500-kb window of the outlier gene. Unmatched 

are defined as all tissue-specific enhancer regions regardless of outlier tissue.
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Fig. 4. Prioritizing functional RVs with Watershed.
(A) Graphic summarizing plate notation for the Watershed model when it is applied to three 

median outlier signals (expression, ASE, and splicing). (B) Symmetric heatmap showing 

learned Watershed edge parameters (weights) between pairs of outlier signals after training 

Watershed on three median outlier signals. (C) The proportion of RVs with Watershed 

posterior probability >0.9 (right) and with GAM probability greater than a threshold set to 

match the number of Watershed variants for each outlier signal (left) that lead to an outlier at 

a median P-value threshold of 0.0027 across three outlier signals (colors). Watershed and 

GAM models were evaluated on held-out pairs of individuals. (D) Precision-recall curves 

comparing performance of Watershed, RIVER, and GAM (colors) using held-out pairs of 

individuals for three median outlier signals. (E) Symmetric heatmap showing learned tissue-

Watershed edge parameters (weights) between pairs of tissue outlier signals after training 

tissue-Watershed on eOutliers across single tissues. Tissue color to tissue name mapping can 

be found in fig. S21D. (F) Area under precision recall curves [AUC(PR); y-axis] in a single 

tissue between tissue-GAM, tissue-RIVER, and tissue-Watershed (x-axis) when applied to 
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outliers across single tissues in all three outlier signals (colors). Precision recall curves in 

each tissue were generated using held-out pairs of individuals.
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Fig. 5. Trait associations for RVs underlying outlier genes.
(A) Distribution of the number of outlier genes, outlier genes with a nearby RV, and genes 

with a high Watershed posterior variant per data type. We added one to all values so that 

individuals with 0 are included. (B) Distribution of effect sizes, transformed to a percentile, 

for the set of GTEx RVs that appear in UKBB and are not outlier variants, those that are 

outlier variants, and those outlier variants that fall in colocalizing genes for the matched trait 

across 34 traits. Percentiles were calculated on the set of rare GTEx variants that overlap 

UKBB. The set of genes was restricted to those with at least one outlier individual in any 

data type and a nearby variant included in the test set (4787 variants and 1323 genes). P 
values were calculated from a one-sided Wilcoxon rank-sum test. (C) Proportion of variants 

filtered by Watershed posterior that fell in the top 25% of effect sizes for a colocalized trait 

(red) and the proportion of randomly selected variants of an equal number that also fall in 

these regions over 1000 iterations (black). (D) Manhattan plot (top) across chromosome 9 

for asthma in the UKBB, filtered for non–low-confidence variants, with two high-Watershed 

variants, rs149045797 and rs146597587, shown in pink and the lead colocalized variant, 

rs3939286, shown in blue. The variants’ effect size ranks were similarly high for both self-
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reported and diagnosed asthma, but the summary statistics are shown for asthma diagnosis 

here. The UKBB MAF versus absolute value of the effect size for all variants within 10 kb 

of the Watershed variant is also shown (bottom). (E) Manhattan plot across chromosome 22 

for self-reported high cholesterol in the UKBB, filtered to remove low confidence variants, 

with the high-Watershed variant rs564796245 shown in pink. The UKBB MAF versus 

absolute value of the effect size for all variants within 10 kb of the Watershed variant is also 

shown (bottom).
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