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Epigenetic age acceleration of early stage hepatocellular carcinoma tightly 
associated with hepatitis B virus load, immunoactivation, and improved survival
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ABSTRACT
Properly stratifying high-risk individuals with early stage hepatocellular carcinoma (HCC) is essential to 
identify patients in which the potentially therapies can be offered. To this context, we systematically 
investigated the prognostic value of epigenetic clock with early stage HCC as well as the association with 
other molecular characteristics.We computed DNA methylation (DNAm) age of 256 early stage HCC 
patients and 50 normal samples from TCGA by Horvath clock model. The characteristics of two DNAm 
age subgroups were differentiated regarding HBV expression, pathway activity, epigenomic, and genomic 
alteration. Cox regression and restricted cubic spline (RCS) analysis were utilized to evaluate the prog-
nostic value of epigenetic acceleration.DNAm age was significantly associated with chronological age in 
normal tissue but largely disrupted in tumors (P< .001), and showed significant negative correlation with 
HBV expression (P< .05). We identified two DNAm age groups (DNAmAge-ACC and DNAmAge-DEC), and 
the former presented with an immunoactive phenotype (all FDRs<0.05 in enrichment analysis), CpG island 
hypermethylation (P< .001), and lower mutation burden (P= .018). Every 10-year increase in DNAm age 
was associated with a 18% decrease in fatality after adjustment for major clinical variables; DNAmAge-ACC 
had 50% lower mortality risk than DNAmAge-DEC (HR: 0.50, 95% CI: 0.27–0.94, P= .03). RCS revealed the 
fatality risk significantly decreased as epigenetic age accelerated (P = .04). ConclusionsIn summary, we 
highlighted the prognostic value of epigenetic age acceleration for early stage HCC; better prognosis, 
relatively lower HBV load, and higher enrichment of immune signatures were tightly associated with 
epigenetic age accelerated tumors.
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Introduction

Hepatocellular carcinoma (HCC) accounts for the majority of 
primary liver cancers. Worldwide, liver cancers are the fourth 
most common cause of cancer-related death and rank sixth in 
terms of incident cases. The World Health Organization estimates 
that more than one million patients will die from liver cancer in 
2030, according to the annual projections.1 In United Stages, death 
rate of liver cancer increased by 43% (from 7.2 to 10.3 deaths per 
100,000) between 2000 and 2016,2 and in 2019, approximately 
42,030 new cases and 31,780 deaths of HCC were estimated to 
occur.3 With a 5-year survival of 18%, liver cancer is the second 
most lethal tumor, after pancreatic cancer.4 Patients suffering 
underlying liver cancer constitute the majority of hepatocellular 
carcinomas, and most of them are hepatitis B or C virus (HBV or 
HCV) infected or alcohol abused. Unfortunately, unless HCC 
could be diagnosed at an early stage, it will maintain a poor prog-
nosis. It is in this context that providing appropriate screening to 
high-risk individuals for those patients with early stage HCC is 
essential to assist identifying patients to whom potentially curative 
therapies of surgical resection, radiofrequency ablation, and liver 
transplantation can be offered.5

Age is a strong predictor of risk of HCC and other common but 
complex disease (e.g., cardiovascular and neuropathic diseases).6 

Several DNA methylation-based clocks developed recently have 
shown promise as biomarkers for biological aging,7-12 especially 
the Horvath’s clock which has been shown to be tightly and 
robustly associated with chronological age. Epigenetic age accelera-
tion, which could be measured as an vertical shift between DNAm 
age and chronological age, was reported to be correlated with the 
clinical outcomes of many diseases, including tumors.13-17

A previous study has indicated that the DNAm age of 
164 patients diagnosed with liver hepatocellular carcinoma 
was not associated with patients’ overall survival18; how-
ever, the prognostic value of the epigenetic clock in early 
stage HCC remains unexplored up to date. In this study, we 
focused on patients diagnosed with HCC at early stages (i. 
e., stage I and II) and comprehensively excavated the asso-
ciations of DNAm age with clinical outcomes, tumor clin-
icopathological features as well as molecular characteristics.

Results

DNAm age of cancerous tissue showed weak correlation 
with chronological age

A total of 374 tumor samples retrieved from TCGA was first 
collected, including 171 stage I tumors, 86 stage II tumors, 85 
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stage III tumors, and 5 stage IV tumors. Among which, we 
selected 257 samples confirmed as early-stage hepatocellular 
carcinoma for the purpose of this study, and a total of 50 
normal hepatic samples was retrieved as control (Figure 1 
(a)). One sample without record of chronological age was 
removed from analysis. Among normal samples, chronological 
age is highly correlated with DNAm age (ρ = 0.86); however, 
there is only a weak correlation between tumor tissue-based 
DNAm age and chronological age (ρ = 0.28), and alike, in 
early-stage hepatic tissues (ρ = 0.30), which indicated the 
pattern of DNA methylation observed in normal hepatic tis-
sues collapsed in tumor tissues (both, P< .001; Figure 1(b)). We 
then dichotomized the patients diagnosed with early-stage 
hepatocellular carcinoma as either epigenetic age accelerated 
(DNAmAge-ACC) or decelerated group (DNAmAge-DEC) 
according to the individual vertical shift between DNAm age 
and chronological age with a cutoff of 0 which means DNAm 
age was equal to chronological age.

Association between DNAm age, epigenetic age 
acceleration, and HBV expression

Similar to a previous literature,19 we calculated 
a comprehensive variable HBVpca by principle component 
analysis (PCA) based on four detected HBV oncoproteins to 
present the general virus expression. The first and second 
principle components were used since they covered almost all 
the variations (95.1%; Figure 2(a)). For 75 patients who 
expressed at least one of the four HBV oncoproteins, we 
found significant negative correlation between either DNAm 
age or epigenetic age acceleration and HBVpca (ρ = −0.24, 
P = .02 for DNAm age; ρ = −0.22, P = .03 for epigenetic age 
acceleration; Figure 2(b,c)), but no association could be 
observed between HBVpca and chronological age (not shown).

Cooccurrence of epigenetic age acceleration and 
immunoactivation as well as hypermethylation

For the sake of excavating molecular differences in terms of 
DNAm age status, we conducted differential expression analy-
sis and identified 117 and 201 significantly upregulated genes 
(fold change > 1.5, FDR < 0.05) for DNAm-ACC and DNAm- 
DEC groups, respectively (Figure 3(a), Table S1) and we found 
that immune-related and terms were specifically enriched in 
DNAm-ACC groups (Table S2). For instance, upregulated 
genes in DNAm-ACC group were enriched for activation of 
innate immune response (FDR = 0.003), response to inter-
feron-gamma (FDR = 0.001) and T cell differentiation (FDR 
< 0.001). Gene set enrichment analysis further detailed that 
patients with epigenetic age acceleration presented a universal 

Figure 1. Overview of sample selection, and correlations between DNAm age and 
chronological age. (a) The pie chart shows the proportion of normal samples and 
tumor samples at different stage. A total of 24 (6%) tumor samples without 
available stage information are labeled as “N/A,” (b) DNAm age of 50 normal 
hepatic samples can predict chronological age with decent correlation coefficient, 
whereas such correlation descended largely in either entire TCGA tumor cohort of 
370 samples (red or pink dots) or early stage tumors with 256 samples (pink dots). 
The top and right marginal rug line describes the distribution of chronological age 
and DNAm age, respectively.

Figure 2. Construction of HBVpca , and its association with DNAm age or epigenetic 
age acceleration. (a) Barplot demonstrates that the first and second principal 
components covered almost all the variations with a summing percentage of 
95.1%. Significant negative correlations between HBVpca and either DNAm age or 
epigenetic age acceleration are shown in (b) and (c), respectively.

Figure 3. Cooccurrence of epigenetic age acceleration and immunoactivation as 
well as hypermethylation. (a) Volcano plot of differentially expressed genes for 
DNAmAge-ACC group against DNAmAge-DEC group with 117 upregulated and 
201 down-regulated genes. GSEA identified upregulated (b) lymphocyte-related 
pathways and (c) immune response signaling pathways. GSEA further identified 
upregulated (d) other pathways related to immunoactivation for DNAmAge-ACC 
group; whereas (e) BMP signaling pathway, serine/threonine kinase signaling 
pathway and Wnt signaling pathway for DNAmAge-DEC group. (f) A total of 89 
stringent hypermethylated probes were identified for DNAmAge-ACC group. The 
heatmap based on DNA methylation M values demonstrates a cooccurrence of 
epigenetic age acceleration and CpG island hypermethylation. For the averaged 
methylation level per sample, mean methylation β value was calculated for each 
sample (per column); for the averaged methylation level per probe, mean methy-
lation β value per probe was calculated for DNAmAge-ACC and DNAmAge-DEC 
groups (per row), respectively. (g) Significant positive correlation between epige-
netic age acceleration and averaged methylation level (M values).

900 X. FAN ET AL.



immunoactive phenotype by upregulated lymphocytes path-
ways (i.e., T cells, B cells and natural killer cells; all, FDR < 0.01; 
Figure 3(b), Table S3), immune response (all, FDR < 0.05; 
Figure 2(c), Table S4), and other functions related to immu-
noactivation (i.e., tumor necrosis factor (TNF) signaling, 
defense response to virus; both, FDR = 0.01; Figure 3(d); 
Table S4); whereas DNAmAge-DEC group was enriched with 
bone morphogenic protein (BMP) signaling pathway, serine/ 
threonine kinase signaling pathway and Wingless-type (Wnt) 
signaling pathway (all, P < .05, FDR < 0.25; Figure 3(e), Table 
S4). Differential methylation analysis identified 16,219 DMPs 
located in CpG island (P< .05, FDR < 0.05; Table S5), among 
which 16,128 (99%) probes gained methylation in DNAmAge- 
ACC group while only 91 (1%) were identified for patients with 
decelerated age. Under a more stringent criteria, we selected 89 
hypermethylated probes for DNAmAge-ACC group and no 
hypomethylated probes could be identified (Figure 3(f)). As 
expected, the epigenetic age acceleration was significantly asso-
ciated with DNA methylation level in CpG island (ρ = 0.49, 
P< .001; Figure 3(g)).

Mutation landscape of two groups regarding epigenetic 
age acceleration status

To further investigate the association between epigenetic age 
acceleration and genetic alterations, we calculate tumor muta-
tion burden for each sample and found DNAm-ACC group 
presented significantly lower mutation burden (P= .018; Figure 
4(a)). We then filtered genes with a nonsynonymous mutation 
frequency ≥ 10, and identified two differentially mutated genes 
regarding epigenetic age acceleration status (Figure 4(b), Table 
S6). To be specific, DNAm-ACC group was enriched with 
DCHS1 mutation whereas mutation of CACNA1B was 

enriched in DNAm-DEC group (both, P< .01, FDR < 0.1). 
CACNA1B is a member of Voltage-gated calcium channels 
(VGCC) family; calcium ion channels also have confirmed 
roles in cellular functions, including mitogenesis, proliferation, 
differentiation, apoptosis, and metastasis, and are promising to 
be targeted for novel cancer therapy.20 Under a stringent 
threshold of q < 0.05, MutSigCV detected four common 
genes (4/8, 50%; P > .05, Representation factor: 1.8; Figure 4 
(c), Table S7–8) that significantly mutated in either 
DNAmAge-ACC and DNAmAge-DEC groups, but also 
revealed that mutations of RB1 and KEAP1 were significantly 
enriched in DNAmAge-ACC group whereas mutations of 
ARID1A and BAP1 were frequently mutated in DNAmAge- 
DEC group. However, under a loose threshold of P < .05, only 
22 SMGs were shared (22/450, 5%; P < .001, Representation 
factor: 0.2; Figure 4(d), Table S7–8), suggesting a dramatic 
alteration in genome as epigenetic age accelerated.

Association between DNAm age and overall survival

We then investigate whether epigenetic age acceleration was 
associated with patients’ clinical outcomes, and found that 
DNAmAge-ACC had significantly more favorable prognosis 
when taking OS as an outcome (P = .03; Figure 5(a)). Seperated 
survival rate could also be observed when using quartile 
DNAm age (OS: P= .04; Figure 5(b)). We found that every 10- 
year increase in DNAm age was associated with a 18% decrease 
in fatality in the Cox model adjusted for chronological age and 
tumor clinical stage (HR: 0.82, 95% CI: 0.70–0.96, P= .01; Table 

Figure 4. Mutation landscape of two DNAm age groups. (a) Violin plot shows 
lower tumor mutation burden in DNAmAge-ACC group as compared to 
DNAmAge-DEC group. (b) Mutational oncoprint depicts differential mutated 
genes for two DNAm age groups, including fisher’s exact test-based independent 
mutated genes and significantly mutated genes (SMGs) identified by MutSigCV 
algorithm. Common and group-specific SMGs under either stringent (q < 0.05) 
and loose (P < .05) criteria of MutSigCV algorithm were displayed by Venn 
diagrams in (c) and (d), respectively. Representation factor (RF) and the associated 
probability were calculated to infer the statistical significance of the overlap 
between two groups of genes where a RF < 1 indicates less overlap than expected 
of two independent groups.

Figure 5. Prognostic value of epigenetic age acceleration in early stage HCC. (a) 
Kaplan-Meier curve with log-rank test demonstrates that patients belonging to 
DNAmAge-ACC showed significantly favorable prognosis regarding overall survi-
val (OS). (b) Epigenetic age acceleration was further discretized into quartiles: Q1 
(−58.0, −18.0), Q2 (−18.0, −5.7), Q3 (−5.7, 7.3), Q4 (7.3, 46.9), and rates of (b) OS 
also well-distinguished. (c) The association between epigenetic age acceleration 
and the fatality risk of early stage HCC when adjusted for chronological age 
(binary) and tumor stage was presented with cubic spline graph of the adjusted 
HR (solid red line) and 95% CI (dotted black line). Knots: −29.4 (10th), −5.7 (50th), 
and 18.9 (90th) of the distribution of epigenetic age acceleration; reference value: 
0, which means that DNAm age equals to chronological age.
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1). Compared with the first quartile, the forth quartile (HR: 
0.28, 95% CI: 0.11–0.72, P= .007) demonstrated a longer survi-
val. Additionally, DNAmAge-ACC group had 50% lower risk 
of fatality comparing to DNAmAge-DEC group when consid-
ering other covariables (HR: 0.50, 95% CI: 0.27–0.94, P= .03). 
To further reveal the relationship between continuous epige-
netic age acceleration and OS. RCS model with 3 knots was 
harnessed and it revealed that, as 0 was chosen as reference (i. 
e., DNAm age = chronological age), the risk of fatality signifi-
cantly decreased as epigenetic age accelerated under adjust-
ment for major clinical variables (P = .04; Figure 5(c)).

Demographic characteristics

The distributions of patient BMI (categorized by WTO cri-
teria), race, ethnicity, tumor grade, clinical stage, tumor status, 
and risk factors were not different DNAmAge-ACC and 
DNAmAge-DEC groups. However, male patients were 
enriched in DNAmAge-ACC group and DNAmAge-DEC 
group has much more older patients (P = .01 for gender and 
P < .001 for age; Table 2).

Discussion

The increase in deaths due to hepatocellular carcinoma is 
a growing concern.2 The clinical management of hepatocellular 
carcinoma has improved in the past decade, particularly for 
patients at advanced stages; however, identification of new 
biomarkers to stratify patients diagnosed with HCC at early- 
stage will help personalize clinical management and surveil-
lance, and further reduce this burden of mortality.1 

Accumulating evidence suggest epigenetic age acceleration as 
a novel biomarker for cancer risk15,17,21; thus, in this study, we 
systematically examined the association of epigenetic age 

acceleration with the prognostic value as well as other mole-
cular features for early stage HCC.

The current study suggested that epigenetic deceleration, or 
a younger biological age, may induce poorer prognosis for early 
stage HCC, which contradicted previous findings that younger 
DNAm age in normal tissues was associated with health 
improving.22-25 To normal tissues, these findings could be 
rational since accelerated DNAm age stands for that the indivi-
dual is at an older biological age than chronological age, and 
such acceleration is often induced by unhealthy lifestyles, sus-
ceptible heredity, detrimental environmental factors to name 
but a few; however, this situation may not be suitable for tumor 
tissues. It is worth noting that carcinogenesis is an evolutionary 
process that involves somatic mutations, subclonal evolution, 
and formation of cancer stem cells that highly participate in 
process of proliferation and propagation.26,27 It is similar to 
normal cells that the DNAm age of tumor cells increases as 
cells propagate, which indicates that cancer cells with a lower 
DNAm age may be more likely to proliferate and develop into 

Table 1. Association of overall survival with epigenetic age acceleration for 
hepatocellular carcinoma in early stage.

DNAm age Totala

Overall survival

HR 
(95% CI)b

HR 
(95% CI)c

Continuous
(per 10 year) 232 0.83* 

(0.72–0.97)
0.82* 

(0.70–0.96)
Categorical 

(quartile)d

First 56 1.00 (ref) 1.00 (ref)
Second 59 0.64 

(0.32–1.25)
0.65 

(0.33–1.28)
Third 59 0.63 

(0.32–1.24)
0.62 

(0.30–1.29)
Forth 58 0.29** 

(0.12–0.72)
0.28** 

(0.11–0.72)
Categorical (binary)
Decelerated 140 1.00 (ref) 1.00 (ref)
Accelerated 92 0.52* 

(0.28–0.95)
0.50* 

(0.27–0.94)
aPatients with follow-up time less than 2 months were removed (n = 14) 
bNo adjustment and P value was presented with * <0.05, ** <0.01 
cAdjusted for chronological age (binary) and clinical stage (binary), and P value 

was presented with * <0.05, ** <0.01 
dPatients were divided into quartiles according to epigenetic age acceleration. 

First quartile: −58.0 to −18.0; second quartile: −18.0 to −5.7; third quartile: −5.7 
to 7.3; fourth quartile: 7.3 to 46.9 Table 2. Demographic and clinicopathological characteristics and the associations 

with DNAm age for 256 patients diagnosed with early stage hepatocellular 
carcinoma.

Characteristicsa
Total 
(%)

Epigenetic age

Pb

DNAmAge- 
ACC 

(N = 100)

DNAmAge- 
DEC 

(N = 156)

Age (Years)
Continuousc 256 

(100)
58 (47–64) 64.5 (55–72) <0.001

Category (Median)
≤61 130 (51) 66 (66) 64 (41) <0.001
>61 126 (49) 34 (34) 92 (59)
BMI (WHO) 0.42
<18.5 13 (5) 8 (8) 5 (3)
18.5–25 107 (42) 40 (40) 67 (43)
25–30 65 (25) 25 (25) 40 (26)
>30 50 (20) 19 (19) 31 (20)
Gender 0.01
Female 77 (30) 21 (21) 56 (36)
Male 179 (70) 79 (79) 100 (64)
Race 0.09
White 122 (48) 42 (42) 80 (51)
Asian 113 (44) 45 (45) 68 (44)
Others 12 (5) 8 (8) 4 (3)
Ethnicity 1.00
Hispanic or Latino 10 (4) 4 (4) 6 (4)
Not Hispanic or Latino 234 (91) 90 (90) 144 (92)
Stage 0.13
I 171 (67) 61 (61) 110 (71)
II 85 (33) 39 (39) 46 (29)
Grade 0.51
Well/Moderately 

differentiated
158 (62) 65 (65) 93 (60)

Poorly differentiated 96 (38) 35 (35) 61 (39)
Tumor status 0.89
With Tumor 82 (32) 33 (33) 49 (31)
Tumor Free 160 (63) 62 (62) 98 (63)
Risk factors 0.12
Alcohol 30 (12) 10 (10) 20 (13)
HBV 69 (27) 24 (24) 45 (29)
HCV 41 (16) 22 (22) 19 (12)
Other 19 (7) 6 (6) 13 (8)
NHPRFd 48 (19) 13 (13) 35 (22)

aSum of frequency may not equal to the total sample size due to missing values 
bFisher’s exact test for categorical data and Mann-Whitney test for continuous 

data 
cContinuous values are represented with median (IQR) 
dNo history of primary risk factors
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dreadful malignancies.8 Moreover, significantly higher burden 
of mutation existed in DNAm-Age-DEC group, which was 
consistence with the fact that lower DNAm age in cancer cells 
was converged to higher rates of genetic alterations.8 It was 
reported that increased DNAm age may play dual character 
and its effect may vary in cancers; that is to say, aging cells 
may be prevented from proliferation and cancerization, but 
chromosomal changes are likely to trigger other mutations 
that might lead to cancer progression and poorer outcomes.28 

Consistently, when adjusting major clinical factors and taking 
OS as the clinical outcome, the association between DNAm age 
and prognosis of early stage HCC was significant. More speci-
fically, patients diagnosed with early stage HCC would have 
favorable prognosis if epigenetic age was accelerated.

Up till now, HBV is accepted to be a major risk factor of 
HCC development and its viral load is being increasingly 
recognized as a prognostic factor in HCC.29 Such virus can 
cause host epigenetic changes and genetic alterations by indu-
cing DNA hypomethylation and regulating the expression fo 
cellular oncogenes and tumor suppressor genes.30,31 Recent 
meta-analysis manifested that antiviral treatment reduces liver- 
related mortality after curative therapy of HCC.32 Consistent 
with these reports, we found significant increase of HBV 
expression when epigenetic age decelerated in early stage 
HCC, and alike, we found DNAmAge-DEC group presented 
with a dramatic hypomethylation pattern in CpG islands as 
well as a significantly higer somatic mutation burden.

In addition, we also found DNAmAge-ACC group pre-
sented an immunoactive phenotype, characterized by sig-
nificant enrichment for immune signatures, such as 
lymphocyte, inflammatory and immune response. 
DNAmAge-ACC inhibited more enriched TNF signaling, 
which is concordant with previous research that TNF can 
facilitate immune-mediated virological control by mediating 
innate immune mechanisms in HBV clearance.33,34 

Therefore, we reasoned that on the one hand, the HBV- 
triggered CpG island hypomethylation may partially cause 
epigenetic age deceleration; on the other hand, a stronger 
inflammatory/immune response may help control HBV 
load and lead to a better prognosis for DNAmAge-ACC 
group. Furthermore, the enrichment analysis indicated that 
receptors serine/threonine kinase (e.g., BMP) and Wnt 
pathway may play roles in DNAmAge-DEC group. It has 
been reported that the BMP signaling pathway enables to 
modulate Wnt signaling in gastrointestinal tumor, and acti-
vation of Wnt–β-catenin signaling will promote the devel-
opment and/or progression of different diseases, including 
liver cancer.35,36

The present study has limitations. First, this investigation has 
a drawback of retrospective design, and it is also limited to one 
center (TCGA) that provided tumor samples. Second, this study 
only included adjacent-normal samples and due to the lack of 
truly normal controls, we can hardly confirm whether there is 
a difference between normal and adjacent-normal tissue. Larger 
prospective studies are required for providing more evidence.

To sum up, our findings present new evidence into prog-
nostic value of epigenetic age acceleration in early stage HCC, 

and put insight for future research into the mechanisms of age- 
associated DNAm patterns and potential therapeutic targets in 
early stage HCC treatment.

Patients and methods

Study population

Molecular data were obtained from The Cancer Genome Atlas 
Project (TCGA) patients diagnosed with liver hepatocellular 
carcinoma. Methylation data assessed by TCGA using 
Infinium 450 K arrays were downloaded from Xena Public 
Data Hubs (https://xena.ucsc.edu/public-hubs), including 377 
tumor samples and 50 normal samples. Transcriptome HTSeq- 
counts data of the TCGA-LIHC project were downloaded from 
the GDC data portal using R package “TCGAbiolinks,” includ-
ing 371 primary tumor samples and 50 normal samples. The 
raw, paired-end reads in FASTQ were also obtained for virus 
detection. Somatic mutation data and patients’ survival infor-
mation were downloaded from TCGA PanCanAtlas and were 
filtered for LIHC tumor type. Clinicopathological information 
of available patients were retrieved from cBioPortal (http:// 
www.cbioportal.org/datasets). Among all patients with full 
survival and chronological age information, 256 patients diag-
nosed with early stage hepatocellular carcinoma (i.e., patholo-
gical stage I and II) were selected for this study.

DNA methylation age and epigenetic age acceleration

We first filtered, imputed and then normalized methylation β 
matrix through BMIQ method by R package “ChAMP.”37 We 
then using R package “wateRmelon” to construct a Horvath’s 
clock model and calculate the DNA methylation age from nor-
malized methylation β values.38 We extracted chronological age 
from DNAm age individually to quantify epigenetic age accelera-
tion (i.e., vertical shift). Tests for differentially methylated probes 
(DMP) were conducted by “ChAMP” with default parameters and 
we reasoned a probe gained methylation if the difference of mean 
β value between two groups is statistically significant (false dis-
covery rate (FDR) < 0.05) and greater than 0. Moreover, if the 
average methylation level was greater than a threshold of 0.3 in 
one group but less than 0.2 in another group with FDR < 0.05, 
hypermethylated probes would be considered, and vice versa for 
hypomethylated probes. We transformed β value to M value by 
Beta2M() function for its stronger signals when presenting 
a methylation heatmap.39

Data preprocessing for transcriptome HTSeq-counts

Ensembl ID for genes (protein-coding mRNAs) was annotated in 
GENCODE27 to generate Gene Symbol names. We calculated 
the number of fragments per kilobase of nonoverlapped exon 
per million fragments mapped (FPKM) first and subsequently 
transferred FPKM into transcripts per kilobase million (TPM) 
values. To reduce noise, we kept only mRNAs with TPM equal to 
or above 1 in at least 10% of the samples for downstream analysis.
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Virus detection from RNA-Seq

VirusSeq40 algorithm was harnessed to computationally sub-
tract human sequences and generate a set of nonhuman 
sequences (e.g., viruses) in RNA-Seq. We aligned the RNA- 
Seq libraries to both human and HBV genomes to quantify the 
host and viral gene expression. Four oncoproteins of HBV, i.e., 
HBVgp3_X, HBVgp2_S, HBVgp2_pre-S1/S2, and HBVgp4_c 
were identified and presented as FPKM values. To comprehen-
sively quantify the expression level of HBV, we established 
a new variable to explain the original expression level of four 
oncoproteins that was calculated by principal component ana-
lysis (PCA) according the literature.19 The new PCA-based 
variable HBVpca was derived from the first and second princi-
pal components that represented 79.4% and 15.7% of the 
variation in the original data, respectively. The coefficients 
(normalized loading) of four oncoproteins to the first 
and second principal components are shown in Table 3. 
Mathematically, let Eij represent log2(FPKM + 1) value of 
specific oncoprotein j in sample i and Cjk denote the corre-
sponding coefficient of HPV16 oncoprotein 
(HBVj; j 2 1; 2; 3; 4f g) for principal component k 
(k 2 1; 2f g). The HPVpca can be calculated as follows: 

HBVpca ¼

E11 � � � E1j

..

. . .
. ..

.

Ei1 � � � Eij

2

6
4

3

7
5

C11 � � � C1k

..

. . .
. ..

.

Cj1 � � � Cjk

2

6
4

3

7
5

Molecular characterization of two DNA methylation age 
groups

We utilized R package “DESeq2” to perform differential expres-
sion analysis with the standard comparison mode with false 
positive rate (FDR) adjustment for multiple testing.41 We per-
formed gene set enrichment analysis (GSEA) to characterize 
specific group according to the mRNA expression profiling 
through the R package “clusterProfiler.”42,43 Mutation land-
scape was analyzed by R package “maftools” with removal of 
100 FLAGS genes first.44,45 Tumor mutation burden was cal-
culated by “maftools” per sample by considering high or mod-
erate variant consequences, including Frame_Shift_Del, 
Frame_Shift_Ins, Splice_Site, Translation_Start_Site, 
Nonsense_Mutation, Nonstop_Mutation, In_Frame_Del, 
In_Frame_Ins, and Missense_Mutation. Significantly mutated 
genes (SMGs) across the current identified groups were 
inferred by the MutSigCV_v1.41 algorithm with default 
parameters.46

Statistical analysis

All statistical tests were executed by R/3.5.2 using a Fisher’s 
exact test for categorical data, a two-sample Wilcoxon test 
(Mann-Whitney test) for continuous data and a log-rank test 
for Kaplan–Meier curve. Correlation between two continuous 
variables was measured by Pearson’s correlation coefficient. 
Fisher’s r-to-z transformation was used to calculate a value of 
z that was applied to assess the significance of the difference 
between two correlation coefficients. Representation factor and 
the associated probability were calculated to infer the statistical 
significance of the overlap between two groups of genes where 
a representation factor > 1 indicates more overlap than 
expected of two independent groups, a representation factor 
< 1 indicates less overlap than expected. We utilized the 
R package “survival” to perform survival analysis. Cox regres-
sion adjusted for confounding clinical variables was introduced 
to calculate hazard ratio (HR) for epigenetic age status regard-
ing overall survival (OS). Based on R packages “Hmisc” and 
“smoothHR,” we used the restricted cubic spline (RCS) analysis 
in the multivariate Cox regression to explore the association 
between continuous epigenetic age acceleration and patient’s 
clinical outcomes with knots set at equally spaced.47 Optimal 
number of knot for RCS analysis was first determined by 
minimizing the model’s Akaike information criterion. To 
enhance the robustness of survival-related analyses, we 
excluded 24 patients whose OS time was less than two months. 
For all statistical analyses, a P value <.05 was considered sta-
tistically significant.
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