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ABSTRACT

Objective: Standards such as the Logical Observation Identifiers Names and Codes (LOINCVR ) are critical for in-

teroperability and integrating data into common data models, but are inconsistently used. Without consistent

mapping to standards, clinical data cannot be harmonized, shared, or interpreted in a meaningful context. We

sought to develop an automated machine learning pipeline that leverages noisy labels to map laboratory data

to LOINC codes.

Materials and Methods: Across 130 sites in the Department of Veterans Affairs Corporate Data Warehouse, we

selected the 150 most commonly used laboratory tests with numeric results per site from 2000 through 2016.

Using source data text and numeric fields, we developed a machine learning model and manually validated ran-

dom samples from both labeled and unlabeled datasets.

Results: The raw laboratory data consisted of >6.5 billion test results, with 2215 distinct LOINC codes. The

model predicted the correct LOINC code in 85% of the unlabeled data and 96% of the labeled data by test fre-

quency. In the subset of labeled data where the original and model-predicted LOINC codes disagreed, the

model-predicted LOINC code was correct in 83% of the data by test frequency.

Conclusion: Using a completely automated process, we are able to assign LOINC codes to unlabeled data

with high accuracy. When the model-predicted LOINC code differed from the original LOINC code, the model

prediction was correct in the vast majority of cases. This scalable, automated algorithm may improve data

quality and interoperability, while substantially reducing the manual effort currently needed to accurately map

laboratory data.
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BACKGROUND AND SIGNIFICANCE

Multi-site, aggregate data sources are valuable for research, quality,

public health, and creating large evidence bases to answer clinical

questions.1,2 Before clinical data can be integrated, institution-

specific information must first be mapped to a standardized termi-

nology.3,4 Laboratory data, an essential domain for assessing patient

outcomes, map to the standard code system Logical Observation

Identifiers Names and Codes (LOINCVR ).5 However, mapping labo-

ratory tests to LOINC codes is time consuming and resource inten-

sive,6–8 highlighting the need for automated methods to facilitate

the mapping process.

Electronic health record (EHR) systems are a rich source of data

accumulated through routine clinical care.1 Secondary use of EHR

data for analytics, research, quality and safety measurement, and

public health is increasingly prevalent.1,9,10 The Health Information

Technology for Economic and Clinical Health (HITECH) Act11 and

the meaningful use incentive program12 facilitated widespread EHR

adoption.13 Consequently, multi-site data aggregation and centrali-

zation are feasible and increasingly common. These aggregate data

sources are important for research, quality, public health, and com-

mercial applications.1 For example, in the public health domain, ag-

gregate data analysis can facilitate early detection of emerging

epidemics.1

Common data models (CDMs), which standardize the format

and content of observational data, hold promise for facilitating inte-

gration of disparate data sources in healthcare. This process requires

mapping institution-specific information to a standardized terminol-

ogy, without which clinical data cannot be integrated, shared, or

interpreted in a meaningful context.3,4

Laboratory data are essential for performing comparative effec-

tiveness research, assessing patient outcomes, and adverse event

monitoring. The standard code system for laboratory observations,

LOINC,5 aims to facilitate data aggregation.14 Historically, EHR

implementations have used proprietary data mapping with locally

defined, idiosyncratic, ambiguous identifiers15 that make mapping

to standard terminologies challenging. Furthermore, even when

LOINC codes are used, they are often incorrectly mapped.7 As a re-

sult, accurately mapping these data to standards for incorporation

into CDMs is time consuming and resource intensive.16 Because lo-

cal laboratory test information contains the basic information re-

quired to map to a LOINC code, the mapping process can

theoretically be automated. However, no truly automated methods

currently exist. Previous studies attempting to automate LOINC

mapping relied upon a local corpus or lexical mapping.17–19 The

corpus method relies upon manually mapping local terms to LOINC

codes (eg, a local code “BILID” with description “Bilirubin, Direct”

maps to LOINC code 1968-7). The lexical method attempts to map

local terms to standard vocabularies, such as the Unified Medical

Language System (UMLS) or LOINC (eg, “AST” maps to Aspartate

Transaminase in UMLS with Concept Unique Identifier [CUI]

C0004002). Previously published corpus-based algorithms correctly

classified the single best LOINC code 50% to 79% of the time

across 3 to 5 institutions.17,18 The lexical algorithm correctly

mapped 57% to 78% of concepts (average 63%).19 While the gener-

ation of potential mappings in the latter study was automated, the

method still required an expert/clinician to choose the correct map-

ping from a list of candidates. The Regenstrief LOINC Mapping As-

sistant (RELMAVR ) provides a semi-automated platform for mapping

local terms to LOINC fields (https://loinc.org/relma), but requires

user input when test names or units are not in a normalized format.

Noisy labels have recently gained attention20,21 because they al-

leviate the need to perform time-consuming manual gold standard

adjudication for label assignment prior to training a model. Noisy

labels refer to incorrect class labels resulting from an imperfect la-

beling process (eg, serum creatinine labeled as urine creatinine). Im-

plicit in noisy labeling, a large volume of training data is necessary

to compensate for inaccuracy in labels (noise-tolerant learning).22,23

Previous studies suggest large-volume, imperfectly labeled training

data can compensate for label inaccuracy and outperform models

trained on smaller “clean” datasets,24,25 even when up to 40% of

labels are incorrect.26,27 To our knowledge, no prior studies have

used noisy labels to automate mapping of laboratory tests to LOINC

codes. Using a dataset containing a mix of labeled and unlabeled

data with an unknown labeling error rate, we hypothesized that

noisy LOINC labels could be leveraged in a machine learning algo-

rithm to automate mapping of unlabeled data and reclassification of

incorrect mappings within labeled data.

MATERIALS AND METHODS

Study setting and design
We collected laboratory data from the Department of Veterans

Affairs (VA) Corporate Data Warehouse, which aggregates data

from each VA facility’s Veterans Health Information Systems and

Technology Architecture (VistA) and Computerized Patient Record

System (CPRS) instances.28,29 Data included all inpatient and out-

patient laboratory results from 130 VA hospitals and clinics col-

lected between January 1, 2000, and December 31, 2016. This

study was approved by the Institutional Review Board and the Re-

search and Development Committee of the Tennessee Valley

Healthcare System VA.

Data collection and aggregation
Within each VA site, we selected the 150 most commonly used lab-

oratory tests with numerically reported results (eg, hemoglobin, so-

dium). We aggregated the raw data—comprised of individual

patient-level measurements—by grouping on the following ele-

ments: 1) laboratory test name identifier, 2) specimen type identi-

fier, 3) units of measurement, and 4) LOINC code. Within these

groupings, we summarized the numeric test results using mean, me-

dian, percentiles (5th, 25th, 75th, 95th), minimum, maximum,

count, and normalized frequency (the percentage of all laboratory

results at the site attributed to the specific test). Each data row

formed by aggregation comprised an instance (example shown in

Supplementary Table S1).

Ancillary data sources
We used the publicly available LOINCVR table (version 2.56) for au-

tomated feature generation, restricting to the laboratory and clinical

observation class types.5 We also used the UMLSVR REST API to gen-

erate model features containing UMLS CUIs.30

Feature engineering
Automated text processing

We processed source data test name and specimen type by first re-

moving punctuation, dates, and stop words (Figure 1A). For each to-

ken (a string of one or more alphanumeric characters separated by

white space) we computed the percent occurrence as a function of

the total number of tokens per site. Using a tunable threshold
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(4% in this study based on manual inspection), tokens occurring

above a certain frequency within a site were removed, because high-

frequency tokens (ie, “sendout”) may be uninformative for deter-

mining what a particular test signifies (Supplementary Table S2).

Feature engineering using UMLS CUIs

With the processed text, we used the UMLS REST API to obtain

UMLS CUIs for test names and specimen types, respectively

(Figure 1D). We attempted to map the test name or specimen type to

Figure 1. A) Raw source data test name and specimen type automated text processing. B) From the publicly available LOINC table, processing of LOINC Short

Name (SN) and Long Name (LN) fields and mapping of SN tokens to LN tokens/phrases, C) String distance-matching tokens from the processed source data test

names and specimen types (from A) to the tokens derived from the LOINC data preprocessing step (from B), with final mapping to the predicted LOINC Compo-

nent and System fields. D) Using the UMLS REST API to obtain UMLS CUIs for test names and specimen types (from A).
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a UMLS CUI using the “exact” match search type. If no results were

returned, we attempted a “words” search, in which a term is broken

into its component parts, and all concepts containing any words in the

term are retrieved.31 If neither of the initial searches returned results,

we iterated over the individual tokens in the test name and performed

an “exact” match search for each token. For both test name and speci-

men type, we retained the first 3 CUIs as model features (Table 1).

Automated LOINC table data preprocessing

From the publicly available LOINC table, we preprocessed the Short

Name and Long Name fields by removing punctuation, stop words,

and bracketed phrases (Figure 1B and Supplementary Figure S1).

We computed the co-occurrence between each LOINC Short Name

token and a sliding window of 1 to 3 LOINC Long Name tokens

(Supplementary Figure S2), using an upper bound of 3 because the

long-form components of most medical acronyms are � 3 words. To

create a cross-walk from LOINC Short Name tokens/acronyms to

Long Name tokens/phrases, we selected the pairing with the highest

count by co-occurrence (Supplementary Figure S3).

To handle abbreviations contained in the LOINC System field,

we used string distance matching with the Jaro-Winkler metric32–34

to find the corresponding words with the smallest edit distance in the

LOINC Long Name field. We mapped the System token to the result-

ing distance-matched Long Name token and/or acronym expansion.

Feature engineering using LOINC

Using the Jaro-Winkler and Levenshtein metrics,32–35 we string

distance-matched tokens from the processed source data test names

and specimen types to the LOINC Long Name token(s) with the

smallest edit distance (Figure 1C). For each test name and specimen

type, we concatenated the resulting Long Name tokens to form the

2 “Test Name mapped to LOINC Long Name” features (1 for each

distance-matching metric) and the 2 “Specimen Type mapped to

LOINC System” features. We distance-matched the resulting

mapped test names and specimen types to the LOINC Component

and System fields, respectively. We included the predicted Compo-

nent and System (from the 2 string distance-matching metrics) and

their corresponding match distances as model features (Table 1).

Data partitioning
We held out instances with missing specimen type and/or LOINC

code in the unlabeled dataset for a separate analysis. We combined

data instances containing LOINC codes used at only 1 site or <10

times by test frequency with the unlabeled dataset for reclassifica-

tion. In the remaining labeled dataset, we partitioned data for 5-fold

cross-validation using splits by sites.

Automating LOINC equivalence
Three levels of interoperability may exist between 2 LOINC codes.36

In Level I interoperability, the LOINC Component, Time Aspect,

Scale, Property, System, and Method are identical for 2 codes. In

Level III interoperability, 2 codes differ only in the LOINC Method

(Supplementary Table S3). In the latter scenario, 2 codes can be

used interoperably (albeit, with some meaning loss) in cases in

which the method is not considered important. In this study we did

not consider Level II interoperability, which requires data processing

to make codes comparable (eg, log conversion).

To automate the creation of equivalent LOINC code sets, we

grouped LOINC codes by Component, Property, Time Aspect, Sys-

tem, and Scale. Within these groups, we created key-value pairs for

groups with Level I (identical methods) or Level III (differing meth-

ods) interoperability (full description in Supplementary Table S3).

Using the LOINC group keys, we “rolled up” all LOINC codes pre-

sent in the original source data into corresponding LOINC keys

where possible. If the original LOINC codes were not part of an in-

teroperable LOINC group, we retained the original LOINC code as

the LOINC key.

Machine learning models
We implemented logistic regression (L1 penalized,37 L2 penalized,38

and L1/L2 penalized39), a random forest40 multiclass classifier, and

a 1-versus-rest ensemble of binary random forest classifiers. Model

building and analyses were conducted using scikit-learn in Python.41

We tuned all models with 5-fold cross-validation using the weighted

F1 score as the loss function.

Model performance
Using 5-fold cross-validation by site in the labeled dataset, we esti-

mated performance for each model with the following measures: ac-

curacy, weighted F1 score,41,42 and micro-averaged F1 score.41 We

included accuracy for intuitive interpretation. Since accuracy can be

optimistic with class imbalance (simply predicting the labels of the

most common classes), we examined the weighted F1 score and the

micro-averaged F1 score. We also calculated expected accuracy with

random guessing in proportion to label prevalence.

Within each of the 3 measures (accuracy, weighted F1, and

micro-averged F1), we evaluated performance differences among the

5 models using a 1-way anlysis of variance (ANOVA),43 followed

by independent 2-sample t tests44 between each pair of models when

Table 1. Model features

Text features Numeric features

Test Name mapped to LOINC

Long Name (JW)

Test result 5th percentile

Test Name mapped to LOINC

Long Name (LV)

Test result 25th percentile

Specimen Type mapped to

LOINC System (JW)

Test result median

Specimen Type mapped to

LOINC System (LV)

Test result mean

Predicted LOINC Component (JW) Test result 75th percentile

Component Match Distance (JW) Test result 95th percentile

Predicted LOINC Component (LV) Test result minimum

Component Match Distance (LV) Test result maximum

Predicted LOINC System (JW) Normalized test frequencya

System Match Distance (JW)

Predicted LOINC System (LV)

System Match Distance (LV)

Units

UMLS Test CUI #1

UMLS Test CUI #2

UMLS Test CUI #3

UMLS Specimen CUI #1

UMLS Specimen CUI #2

UMLS Specimen CUI #3

Abbreviations: CUI, Concept Unique Identifier; JW, Jaro-Winkler; LOINC,

Logical Observation Identifiers Names and Codes; LV, Levenshtein; UMLS,

(Unified Medical Language System).
aNormalized test frequency calculation ¼ (Test frequency/Total number of

test results within site) x 100.
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findings from the ANOVA test were significant (P< .05). We also

calculated 95% confidence intervals for the performance measures

of each of the 5 models using their mean and standard deviation

from the 5-fold cross-validation.

Model fitting and label assignment
The model has 2 potential use cases: 1) predicting labels when new

sites are added to an existing model, and 2) reclassifying incorrect

labels in retrospective multi-site data. We fit the best-performing

model to the training data during cross-validation (CV Model) for

the first use case, and to the full labeled dataset (Full Model) for

the second case. Using the CV Model and the Full Model, we

obtained the predicted LOINC keys as described above. In cases in

which the predicted LOINC code was not identical to the original

LOINC code, but the predicted LOINC code was the key for the

group containing the original LOINC code, we retained the

original LOINC code. When the predicted code was not interoper-

able with the original LOINC code, we retained the predicted

LOINC code.

Subsequently, the CV Model and the Full Model were used to

predict LOINC codes on the holdout dataset comprised of instances

with either missing or infrequently used LOINC codes.

Manual validation
We performed manual validation by randomly sampling 2 instances

from each of the 130 sites in both the labeled and unlabeled data-

sets. Using the cumulative sum of test frequency within a site, we se-

lected 1 instance with test frequency �50%, and 1 instance with test

frequency <50% (Supplementary Table S4). Adjudication label cat-

egories are described in Supplementary Tables S5–S7. We examined

the accuracy of the labels predicted in the CV Model and the Full

Model. Additionally, to explicitly evaluate model utility for reclassi-

fying incorrect LOINC codes in the dataset, we obtained a sample

of 260 instances in the labeled dataset where the predicted LOINC

code (Full Model) differed from the original source data LOINC

code. Two clinicians manually adjudicated a total of 780 records.

We report the inter-annotator agreement using Cohen’s kappa. In

the case of adjudication disagreement, we used consensus agreement

to determine the final adjudication.

Examining model performance by dataset

characteristics
From the full labeled dataset, we randomly sampled between 5 and

125 sites (in increments of 5 sites) and fit a random forest multiclass

classifier with 5-fold cross-validation split by sites to assess model

performance. Within each sampled data subset, we calculated the

number of distinct LOINC keys and the number of data instances

and examined their relationship with model performance.

All source code was developed in Python 3.6.0, and are available

at https://github.com/skparr/ml_loinc_mapping. For string distance

matching, we used the R stringdist package45,46 within Python via

the rpy2 package.47 Supplementary Table S8 contains tool options

that can be parameterized to provide flexibility for the user. Once

the user specifies the variables in the configuration file (detailed in

the README.md file), the program can be run via command line

execution of a single Python script.

RESULTS

The raw laboratory data consisted of over 6.5 billion test results,

ranging from 2.5 to 184 million results per site (median 41.2

million). After aggregating by laboratory test identifier, specimen

type identifier, units, and LOINC code, the analytic dataset con-

sisted of 140 565 instances and 2215 distinct LOINC codes. LOINC

codes were missing in 41 301 source data instances (29%), corre-

sponding to 450 million test results.

Of the 1895 distinct LOINC keys remaining after grouping, we

combined the data associated with the 707 keys used at only a single

site and the 24 low-frequency (ie, <10 times by total test frequency)

keys with the unlabeled data for reclassification.

The filtered, labeled dataset consisted of 94 845 data instances,

aggregated from approximately 6.1 billion individual test results,

with 1164 distinct LOINC keys. The dataset comprised of unlabeled

and/or infrequent tests consisted of 42 720 instances, aggregated

from approximately 462 million individual test results.

Cross-validated model performance
The random forest models (1-versus-rest and multiclass) signifi-

cantly outperformed the 3 logistic regression models in all perfor-

mance measures (Table 2). All models performed considerably

better than random guessing in proportion to the prevalence of the

1164 possible class labels, which would yield an accuracy of 0.5%.

Manual validation
Full model

Unlabeled data. Using the Full Model applied to the unlabeled data,

Cohen’s kappa for inter-rater agreement was 0.76 (Supplementary

Table S9). The model-predicted label was correct in 84.7% of

records by test frequency. Model performance by test frequency was

comparable in the infrequent (bottom 50%) and frequent (top 50%)

tests, but by instance, the model performed better on the frequent

tests (Table 3).

Table 2. Model performance in 5-fold cross-validation

Accuracy (95% CI) Weighted F1 score (95% CI) Micro-averaged F1 (95% CI)

L1 0.568 (0.559–0.578) 0.551 (0.537–0.565) 0.568 (0.559–0.578)

L2 0.606 (0.591–0.621) 0.556 (0.536–0.577) 0.606 (0.591–0.621)

L1-L2 0.607 (0.593–0.621) 0.562 (0.543–0.582) 0.607 (0.593–0.621)

RF (multiclass) 0.638 (0.622–0.653)* 0.612 (0.594–0.630)* 0.638 (0.623–0.654)*

RF (1-versus-rest) 0.649 (0.632–0.666)* 0.621 (0.601–0.640)* 0.649 (0.632–0.666)*

Abbreviations: CI, Confidence Interval. L1, L1 penalized logistic regression; L2, L2 penalized logistic regression; L1-L2, L1-L2 penalized logistic regression;

RF, random forest.

*P-values <0.05 within each of the 3 performance measures for comparisons between RF (multiclass) and, L1, L2, and L1-L2 LR models and for comparisons

between RF (1-versus-rest) and, L1, L2, and L1-L2 LR models.
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Randomly sampled labeled data. In the labeled dataset, Cohen’s

kappa was 0.82 (Supplementary Table S9). The model-predicted la-

bel was correct in 95.9% of records by test frequency, with higher

accuracy in the frequent tests than in infrequent tests (Table 4).

Targeted evaluation of discordant labels. In manual validation of

cases in which the LOINC code present in the source data (original

label) differed from the model-predicted LOINC code, Cohen’s

kappa was 0.70 (Supplementary Table S9). The model-predicted

LOINC code was correct in 83.2% by test frequency, and the

model-predicted LOINC code was better than the original label

71.5% of the time by test frequency (Supplementary Table S10).

CV model

Unlabeled data. Using the CV Model applied to the unlabeled data-

set, Cohen’s kappa was 0.73 (Supplementary Table S11). The

model-predicted label was correct in 82.3% of records by test fre-

quency, which is similar to the results from the Full Model. Com-

pared to the Full Model, the CV Model performed modestly better

in the infrequent tests and slightly worse in the frequent tests (Ta-

ble 3 and Supplementary Table S12).

Randomly sampled labeled data. Cohen’s kappa was 0.86 in the la-

beled dataset (Supplementary Table S11). The model-predicted label

was correct in 94.8% of records by test frequency, which is similar

Table 3. Manual validation in unlabeled data (Full Model)

Unlabeled Data

Bottom 50% Top 50% Total

Instances

(N¼ 130)

Tests

(N¼ 944 156)

Instances

(N¼ 130)

Tests

(N¼ 30 776 801)

Instances

(N¼ 260)

Tests

(N¼ 31 720 957)

Total Correct 87 (66.9%) 798 268 (84.5%) 108 (83.1%) 26 054 265 (84.7%) 195 (75.0%) 26 852 533 (84.7%)

Predicted Correct 70 (53.9%) 599 043 (63.4%) 106 (81.5%) 25 910 603 (84.2%) 176 (67.7%) 26 509 646 (83.6%)

No LOINC Coverage, Code Synonymous 17 (13.1%) 199 225 (21.1%) 2 (1.5%) 143 662 (0.5%) 19 (7.3%) 342 887 (1.1%)

Total Incorrect 26 (20%) 114 632 (12.1%) 19 (14.6%) 4 285 372 (13.9%) 45 (17.3%) 4 400 004 (13.9%)

Predicted Incorrect 22 (16.9%) 114 622 (12.1%) 19 (14.6%) 4 285 372 (13.9%) 41 (15.8%) 4 399 994 (13.9%)

No LOINC Coverage, Code Incorrect 4 (3.1%) 10 (<0.1%) 0 (0%) 0 (0%) 4 (1.5%) 10 (<0.1%)

Insufficient or Conflicting Information 17 (13.1%) 31 256 (3.3%) 3 (2.3%) 437 164 (1.4%) 20 (7.7%) 468 420 (1.5%)

Full Model refers to the 1-versus-rest classifier fit to the full labeled dataset.

Label definitions: Predicted Correct: model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the combina-

tion of test and specimen type in the source data, but the predicted LOINC code is the most reasonable alternative; Predicted Incorrect: model-predicted label is in-

correct; No LOINC Coverage, Code Incorrect: LOINC code does not exist for the combination of test and specimen type in the source data, and the predicted

LOINC code is not a reasonable alternative; Insufficient or Conflicting Information: either not enough source data to infer code (ie, units missing and would be

necessary to assign code), or source data conflict (ie, test name includes the word “blood” and specimen type is “urine”).

Table 4. Manual validation in randomly sampled labeled data (Full Model)

Randomly Sampled Labeled Data

Bottom 50% Top 50% Total

Instances

(N¼ 130)

Tests

(N¼ 4 678 607)

Instances

(N¼ 130)

Tests

(N¼ 136 643 970)

Instances

(N¼ 260)

Tests

(N¼ 141 322 577)

Total Correct 81 (62.3%) 3 801 382 (81.3%) 126 (96.9%) 131 790 613 (96.4%) 207 (79.6%) 135 591 995 (95.9%)

Concordant Correct 71 (54.6%) 3 763 546 (80.4%) 124 (95.4%) 129 207 143 (94.6%) 195 (75%) 132 970 689 (94.1%)

Discordant Predicted Correct 7 (5.4%) 37 612 (0.8%) 1 (0.8%) 1 565 720 (1.1%) 8 (3.1%) 1 603 332 (1.1%)

No LOINC Coverage, Code

Synonymous

3 (2.3%) 224 (<0.1%) 1 (0.8%) 1 017 750 (0.7%) 4 (1.5%) 1 017 974 (0.7%)

Total Incorrect 31 (23.8%) 876 859 (18.7%) 4 (3.1%) 4 853 357 (3.6%) 35 (13.5%) 5 730 216 (4.1%)

Concordant Incorrect 25 (19.2%) 876 829 (18.7%) 3 (2.3%) 2 782 119 (2.0%) 28 (10.8%) 3 658 948 (2.6%)

Discordant Original Correct 1 (0.8%) 1 (<0.1%) 1 (0.8%) 2 071 238 (1.5%) 2 (0.8%) 2 071 239 (1.5%)

Discordant Neither Correct 1 (0.8%) 15 (<0.1%) 0 (0%) 0 (0%) 1 (0.4%) 15 (<0.1%)

No LOINC Coverage, Code Incorrect 4 (3.1%) 14 (<0.1%) 0 (0%) 0 (0%) 4 (1.5%) 14 (<0.1%)

Insufficient or Conflicting Information 18 (13.8%) 366 (<0.1%) 0 (0%) 0 (0%) 18 (6.9%) 366 (<0.1%)

Full Model refers to the 1-versus-rest classifier fit to the full labeled dataset.

Label Definitions: Concordant Correct: model-predicted label ¼ original label and is correct; Discordant Predicted Correct: model-predicted label 6¼ original la-

bel, and model-predicted label is correct; No LOINC Coverage, Code Synonymous: LOINC code does not exist for the combination of test and specimen type in

the source data, but the predicted LOINC code is the most reasonable alternative; Concordant Incorrect: model-predicted label ¼ original label and is incorrect;

Discordant Original Correct: model-predicted label 6¼ original label, and original label is correct; Discordant Neither Correct: model-predicted label 6¼ original

label, and neither label is correct; No LOINC Coverage, Code Incorrect: LOINC code does not exist for the combination of test and specimen type in the source

data, and the predicted LOINC code is not a reasonable alternative; Insufficient or Conflicting Information: either not enough source data to infer code (ie, units

missing and would be necessary to assign code), or source data conflicts (ie, test name includes the word “blood” and specimen type is “urine”).
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to the results from the Full Model. Compared to the Full Model, in-

correct predictions in the CV Model were driven by more instances

in which the original and predicted labels disagreed and were both

incorrect (Discordant Neither Correct), but fewer instances in which

the original and predicted labels agreed and were incorrect (Concor-

dant Incorrect) (Table 4 and Supplementary Table S13).

Estimated noisy label prevalence

In manual validation of randomly sampled labeled data, noisy labels

(incorrect labels in the original source data) are comprised of the

Discordant Predicted Correct, Discordant Neither Correct, and

Concordant Incorrect categories in Table 4. Considering the 234

instances in which LOINC coverage existed for the source data,

and in which there was sufficient information to determine the

LOINC code, the noisy label prevalence is 15.8% (Supplementary

Table S14).

Examining model performance by dataset

characteristics
When the number of sites in the model ranged from 5 to 35, per-

formance improved dramatically with the addition of data in 5-

site increments (Supplementary Figure S4A). Increasing the num-

ber of sites beyond 35 (up to 125) provided modest, albeit contin-

ued, performance improvement. The number of unique LOINC

keys in the data also increased most appreciably in the range of 5

to 35 sites, plateauing when approximately 80 sites were included

in the model (Supplementary Figure S4B). As sites were added to

the dataset, the number of data instances increased linearly across

the entire range.

DISCUSSION

In this study we automated feature generation and mapping of labo-

ratory data to LOINC codes using a machine learning algorithm

that leverages noisy labels within a large, heterogeneous national

EHR system database. We were able to assign LOINC codes to

unlabeled data with reasonable performance. We demonstrated

comparable label accuracy when the model is fit to the entire dataset

or when labels are assigned during cross-validation, suggesting that

this model could be used on existing retrospective datasets or ap-

plied to new sites. While our manual validation suggested that the

prevalence of incorrect existing LOINC codes in the VA Corporate

Data Warehouse is non-trivial, inclusion of noisy labels was still ef-

fective for classifying previously unlabeled laboratory tests. Addi-

tionally, our model demonstrated utility in LOINC code

reclassification, which could serve to augment data quality. The lat-

ter finding suggests that our algorithm might achieve higher perfor-

mance if used within an iterative model training/adjudication/

re-training framework.

Our results are similar in accuracy to the best reported auto-

mated methods for laboratory test mapping.17–19 Notably, our esti-

mates of model performance may actually be conservative for 2

reasons. First, we did not exclude tests that occurred rarely (ie, <10

results during the 16-year data collection timeframe). Second, dur-

ing manual validation, we did not consider clinical equivalence in

determining label accuracy. For example, using the LOINC Groups

classification,48 tests for Glucose [Mass/volume] in Capillary blood

(LOINC code 32016-8) and Glucose [Mass/volume] in Blood

(LOINC code 2339-0) can be grouped by the parent code LG11181-

1. However, we considered a label of 2339-0 for the latter test incor-

rect, because a model would ideally assign the more specific code

32016-8 given the information in the source data. We opted for this

stringent assessment, because an ideal model would assign the most

granular label that represents the data and allow the end-user to ag-

gregate codes if desired. We chose not to use the LOINC Multi-

Axial Hierarchy table, which in some cases, groups LOINC codes

with differing property and scale. For example, tests with quantita-

tive results may be grouped with tests reported in ordinal scale.

Since we aimed to map laboratory tests in a way that would not re-

quire the end-user to filter, sort, or transform tests within a LOINC

group, we used the LOINC equivalence algorithm detailed in the

Methods section.

In this study, random forest models outperformed penalized lo-

gistic regression models, which is not surprising given that random

forests are inherently multi-class capable and robust to label noise.40

Additionally, random forest models are attractive because they auto-

matically handle non-linear relationships and high-order variable

interactions.

Strengths and novelties of this study include: (a) use of a large

(6.6 billion laboratory results) heterogeneous data source (130 sites)

for model development, (b) implementation of an automated pipe-

line, (c) generalizable application, and (d) leveraging of noisy labels.

Prior to our study, there have been no truly automated methods to

map laboratory tests to LOINC codes. Previous methods required

manual work by domain experts, either to extensively map local

terms to LOINC codes (corpus-based methods),17,18 or to choose

the correct mapping from a list of candidates generated by the map-

ping tool (lexical method).19 The method we present fully automates

the following steps: source data text processing and normalization,

acronym and abbreviation expansion, synonym detection, feature

engineering, and mapping/LOINC code assignment.

Our study is not without limitations. First, because this model

was developed using a large, national data source, our approach

may not be generalizable to organizations with fewer sites. How-

ever, in our sensitivity analysis of varying dataset characteristics,

performance was reasonable with approximately 35 sites. Further-

more, performance appears to correlate more with the number of

distinct LOINC codes in the dataset rather than the number of data

instances, suggesting that the model might perform well even in

smaller organizations with heterogeneous data. Second, we re-

stricted to common laboratory tests with numeric results at each

site, which could limit generalizability. However, because the top

150 tests were not identical across all of the 130 sites, the data used

to train and evaluate the model was heterogeneous. Additionally,

we selected the 150 most common tests per site based upon the local

laboratory test name, which could be associated with different speci-

men types and/or units, resulting in 219 to 2153 distinct combina-

tions of test name/specimen type/units per site. Furthermore, for our

manual validation, we sampled from both commonly (top 50%) and

uncommonly (bottom 50%) used tests, explicitly examining model

performance with rarer data occurrences. Because we used heteroge-

neous data with rare occurrences, the model may perform well with

addition of more tests. We did not include tests with text-reported

results due to the need for normalization. However, Hauser et al. re-

cently reported creating a scalable, generalizable tool to standardize

laboratory test fields,50 which could potentially be used in conjunc-

tion with our method to comprehensively improve data quality and

mapping. Another potential limitation is that our model uses

LOINC keys, which effectively groups similar LOINC codes via in-

teroperability. This method is likely appropriate for many use cases,

but the information contained in the method field of the individual
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LOINC codes could be important for research questions requiring

granular laboratory test information. Finally, by including noisy

labels, model performance is inherently dependent upon the quality

of the underlying labels. In this data source with an estimated noisy

label rate of 16%, model performance was reasonable, and prior re-

search suggests that higher noisy label prevalence may be tolerated

by machine learning methods.

CONCLUSION

With widespread EHR adoption, multi-site data aggregation and

centralization are feasible and increasingly common. To leverage

these data sources for research, quality assessments, and public

health, data must be represented accurately and consistently across

sites. Currently, there is a paucity of truly automated methods to

map disparate data sources to standards that facilitate consistent

data representation. The methods we describe incorporate features

created from raw source data aggregation, and as such, could be

implemented as an initial step in the transformation pipeline for

common data models. In summary, this scalable, automated algo-

rithm may improve data quality and interoperability, while substan-

tially reducing the manual effort currently required to accurately

map laboratory data.
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