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Abstract

In this paper, the problem of mining complex temporal patterns in the context of multivariate time 

series is considered. A new method called the Fast Temporal Pattern Mining with Extended 

Vertical Lists is introduced. The method is based on an extension of the level-wise property, which 

requires a more complex pattern to start at positions within a record where all of the subpatterns of 

the pattern start. The approach is built around a novel data structure called the Extended Vertical 

List that tracks positions of the first state of the pattern inside records and links them to 

appropriate positions of a specific subpattern of the pattern called the prefix. Extensive 

computational results indicate that the new method performs significantly faster than the previous 

version of the algorithm for Temporal Pattern Mining; however, the increase in speed comes at the 

expense of increased memory usage.
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1 | INTRODUCTION

Continuously expanding resources for computing, data storage, and transmission have 

enabled pattern mining in complex data sets emerging from various domains such as 

transaction databases (Agrawal, Imielinski, & Swami, 1993a; Agrawal, Imielinski, & 

Swami, 1993b), web mining (Srivastava, Cooley, Deshpande, & Tan, 2000), Internet of 
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Things (Chen et al., 2015; Tsai, Lai, Chiang, & Yang, 2014), medicine (Batal et al., 2016; 

Hauskrecht et al., 2013), fraud detection (Seeja & Zareapoor, 2014), finance (Tiple, Cavique, 

& Cavalheiro Marques, 2017), and so on. This paper demonstrates the problem of extracting 

temporal patterns (TPs) from multivariate time series records. The primary contribution of 

the paper is a faster algorithm for mining class-specific patterns that have temporal relations 

between their states. The motivation behind this contribution was to develop an algorithm 

that could be built into real-time analytical engines.

Frequent pattern mining is the problem of finding all TPs that appear frequently in a 

database (Agrawal et al., 1993a; Agrawal et al., 1993b); (Yun, Lee, & Lee, 2016). In the 

simplest case, such patterns are frequent itemsets or subsets of items that appear in a 

significant proportion of transactions of the database (Agrawal et al., 1993b). Sequential 

pattern mining is an extension of the frequent itemset mining where the order of items or 

subsets of items is available (Zaki, 2001; Ayres, Flannick, Gehrke, & Yiu, 2002). TPs arise 

in a natural way where additional temporal information (e.g., start and end times of the 

events) is available (Moskovitch & Shahar, 2015). This case is the primary focus of this 

paper. Frequent graph mining (Kuramochi & Karypis, 2001; Zaki, 2005) is another direction 

of frequent pattern mining with such applications as clustering of XML documents 

(Aggarwal, Ta, Wang, Feng, & Zaki, 2007), chemical compound classification (Deshpande, 

Kuramochi, Wale, & Karypis, 2005), and so on. Uncertain pattern mining is a relatively new 

research direction where each item is present in a database with a certain probability (Tong, 

Chen, Cheng, & Yu, 2012; Lee & Yun, 2017).

In this paper, a new algorithm called the Fast Temporal Pattern Mining with Extended 

Vertical Lists (FTPMwEVLs) for mining frequent TPs (FTPs) is introduced. The idea is to 

utilize the level-wise (Aggarwal & Han, 2014) property on the level of pattern positions 

inside records. The level-wise property states that a TP may appear only in the records 

where all of its subpatterns appear. For example, if pattern “heart rate (HR) is very high 

before blood pressure (BP) is low” is found in record i, then both its subpatterns “HR is very 

high” and “BP is low” must appear in record i. The level-wise property was used to reduce 

the search space for mining TPs (Batal et al., 2016; Moskovitch & Shahar, 2015) and similar 

notions as itemsets (Zaki, 2000) and sequential patterns (Ayres et al., 2002; Zaki, 2001) via 

the vertical data format (Zaki, 2000) that tracks the occurrences of the pattern inside records. 

We suggest a new data structure called the Extended Vertical List (EVL) that keeps track of 

positions of the first state of the TP inside the records and links them to the positions of a 

prefix of the TP (a subpattern obtained by removing the first state of the TP) inside the 

records. This idea allows to reduce the computational time of FTPMwEVL by a factor of 

several hundreds on several data sets (Section 5). The increase in speed comes at the cost of 

increased memory usage that is a common trade-off in such algorithms.

This paper continuous our previous work (Kocheturov & Pardalos, 2018) in the following 

ways: introduction of the EVL data structure, introduction of the smallest chain for faster 

pattern verification, and extensive computational results to demonstrate the effectiveness of 

the suggested approach. The algorithm is an improved version of the method for Frequent 

Pattern Mining by Batal, Valizadegan, Cooper, and Hauskrecht (2011), hereinafter referred 

to as the Fast Temporal Pattern Mining (FTPM), where the TP is defined with no additional 
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constraints. The output of the new algorithm coincides with the output of FTPM because it 

finds all FTPs. Therefore, the increased speed of mining is the main focus and the main 

result of this paper. The applicability of the mined patterns for a consecutive classification of 

the records was not analyzed.

The rest of the paper is organized as follows. We review related work and recent 

developments in Section 2. Section 3 provides a formal statement of the problem and all 

supporting definitions. We present the FTPMwEVL algorithm in Section 4 and provide the 

computational results in Section 5. Section 6 concludes the paper.

2 | RELATED WORK

The problem of mining FTPs considered in this paper deals with a special case of TPs called 

the time-interval relationship patterns that are referred to hereafter as TPs for simplicity. 

Each TP is a sequence of states, or time-interval events, with temporal relationships defined 

for each pair of the states (Definitions 1 and 2). Many multivariate time series classification 

methods are not applicable when records are composed of multivariate time series sampled 

unevenly in time. The FTP mining approach is a perfect candidate in this situation.

To define temporal relationships between states in a pattern, Allen’s 13 temporal relations 

are usually used (Allen, 1984): before, equal, meets, overlaps, during, starts, finishes, and 

the other six are obtained by inverting. The first seven relations are enough if the states are 

ordered appropriately. In this paper, only two temporal relations before and co-occurs (the 

later combines equal, meets, overlaps, during, starts, and finishes) are used because the 

initial seven relations are ambiguous in the presence of noise and temporal data with a high 

sampling frequency (Batal, Fradkin, Harrison, Moerchen, & Hauskrecht, 2012), which leads 

to the problem of pattern segmentation (Moerchen, 2006).

After converting multivariate time series records to multivariate state sequences (MSSs; 

Definition 1), the number of state intervals per sequence was at the level of several hundreds 

for the data sets studied in this paper. In this situation, the breadth-first search algorithms are 

more efficient than those using depth-first search. Several depth-first algorithms were 

introduced over the years for mining of FTPs (Moskovitch & Shahar, 2015; Patel, Hsu, & 

Lee, 2008; Papapetrou, Kollios, Sclaroff, & Gunopulos, 2009; Winarko & Roddick, 2007; 

Wu & Chen, 2007). The approach by Moskovitch et al. named KarmaLego was reported to 

outperform other depth-first search methods (Moskovitch & Shahar, 2015). KarmaLego 

failed to mine all TPs for a majority of the data sets considered in Section 5; therefore, the 

computational section presents results for FTPMwEVL and FTPM only. Both methods are 

breadth-first search. The efficiency of bread-first search comes from the fact that careful 

pattern elimination is paramount when MSSs consist of a large number of state intervals.

3 | PROBLEM DEFINITION

We follow the definitions given in Batal et al. (2011) with slight modifications for the 

presentation to be self-contained.
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Assume data set D of n records di = (x1
i , x2

i , …, xmi , yi), i = 1, …, n, where each record is 

composed of m time series xji ∈ Xj and an outcome, or class label, yi ∈ Y. We start with 

reducing dimensionality by converting each time series into a set of temporal abstractions in 

the form

(V 1, s1, e1), …, (V k, sk, ek) ,

where Vi ∈ Σ is a temporal abstraction that is in effect from start time si till end time ei, for 

example, temporal abstraction (“low”, 5, 12) means that the time variable was low from time 

moment 5 till time moment 12; Σ is the alphabet or set of possible abstractions (e.g., Σ = 

{“low,” “normal,” and “high”}). For a given set of temporal abstractions, we also require s1 

≤ e1 ≤ s2 … ≤ sk ≤ ek, meaning that no abstraction can start earlier than any previous one 

finishes.

The alphabet Σ can be defined in several ways. In this paper, we focus on value and trend 

abstractions. Value abstraction can be defined in the following ways: Σ = {↓↓, ↓, –, ↑, ↑↑}, 

where ↓↓, ↓, –, ↑, and ↑↑ stand for “very low,” “low,” “normal,” “high,” and “very high,” 

respectively. Exact ranges for transformation may be defined by a field expert. Trend 

abstractions may include Σ = {→, ↗, ↓}, where →, ↗, and ↓ stand for ”steady,” 

“increasing,” and “decreasing,” respectively. For this transformation, we used the approach 

by Keogh, Chu, Hart, and Pazzani (2004). If one decides to combine several ways and let the 

time abstractions overlap, copying the time series and applying one way per copy solve the 

issue.

Definition 1.

• S = (F, V) is a state, where F is a variable label and V ∈ Σ is an abstraction value.

• E = (F, V, s, e) is a state interval, where pair (F, V) forms a state and s and e are 

the start and end times of the state interval.

• Z = 〈E1, …, El〉 is a MSS with the states sorted according to the nondecreasing 

order of their start times: Ei.s ≤ Ei+1.s, 1 ≤ i ≤ l − 1.1

Example 1. S = (HR, ↓) is a state that indicates that temporal variable HR is at the low level. 

State interval E = (HR, ↓, 12, 15) extends the state by including information about its start 

and end time moments. Finally, an MSS combines several state intervals coming from 

different time series as in MSS Z = 〈E1 = (HR, –, 0, 3), E2 = (BP, ↓, 1, 9), E3 = (HR, ↓, 4, 7), 

E4 = (HR, –, 8, 11), E5 = (BP, –, 10, 17), E6 = (HR, ↓, 12, 14), E7 = (HR, ↓↓, 15, 19), E8 = 

(BP, ↓, 18, 22), E9 = (HR, ↓, 20, 29), E10 = (BP, ↑↑, 23, 26), E11 = (BP, ↓, 27, 31), E12 = 

(HR, –, 30, 38), and E13 = (BP, –, 32, 36)〉 (Figure 1).

For two state intervals Ei and Ej with Ei.s ≤ Ej.s, we say that Ei finishes before Ej if Ei.e < 

Ej.s and denote it as R(Ei, Ej) = b. Otherwise, we say that Ei co-occurs with Ej and denote it 

as R(Ei, Ej) = c.

1If Ei.s = Ei+1.s, an order over the time variables is assumed to resolve the ambiguity.
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TP is the next level of abstraction, which allows removing exact values of start and end 

times and focuses on temporal relationships of the state intervals.

Definition 2.

P = (〈S1, …, Sk〉, R) is a TP of size k (|P| = k) with states S1, …, Sk, where R is a (upper 

triangular) matrix describing pairwise temporal relationships between the states: Ri,j ∈ {b, 
c}, 1 ≤ i < j ≤ k.2

Definition 3.

Given MSS Z = 〈E1, E2, …, El〉 and TP P = (〈S1, …, Sk〉, R) (k ≤ l), we say that Z contains 

P, denoted as P ∈ Z, if there is a mapping π : {1, …, k} → {1, …, l} that matches every 

state Si in P to a state interval Eπ(i) in Z such that:

1. Si.F = Eπ(i).F and Si.V = Eπ(i).V, 1 ≤ i ≤ k,

2. π(i) < π(j), i < j,

3. R(Eπ(i), Eπ(j)) = Rij, i < j.

The first requirement guarantees that each state of P matches an appropriate state interval in 

Z, whereas the rest of the constraints enforce that the temporal relations in P correspond to a 

correct overlapping of the state intervals in Z.

Example 2. P = (〈S1, S2, S3〉, R) is a TP of Size 3 (Figure 2a) with states S1 = (HR, –), S2 = 

(BP, –), S3 = (HR, ↓) and relationships matrix R = (R1,2, R1,3, R2,3), where R1,2 = c, R1,3 = 

b, and R2,3 = c. The MSS in Figure 1 contains this TP because state intervals E4 = (HR, –, 8, 

11), E5 = (BP, –, 10, 17), and E6 = (HR, ↓, 12, 14) match the states of P and the time 

relationships are satisfied. For example, E4.e = 11 > 10 = E5.s, and therefore, state intervals 

4 and 5 co-occur (R(E4, E5) = c).

Definition 4.

• P  is a subpattern of P, denoted as P ⊂ P , where |P | = k, |P | = k, |P| = k, and 

k < k,, if there is mapping π: 1, …, k 1, …k  such that:

Si = Sπ(i), 1 ≤ i ≤ k , where Si and Sπ(i) are states in P  and P, respectively,

π(i) < π(i), i < j,

Ri, j = Rπ(i), π(i), 1 ≤ i ≤ k

• P  is a prefix of P, denoted as P = prefix(P), if

P ⊂ P

k = k − 1

π(i) = i + 1, i = 1, …, k

2Ri,j is defined for states i and j of the pattern. R(Ei, Ej) is computed for state intervals i and j of the MSS.
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In other words, prefix(P) is a subpattern of P obtained by removing the first state 

of P.

Example 3. TP P in Figure 2a has three subpatterns: the subpattern without the last state 

(Figure 2b), the subpattern without the middle state (Figure 2c), and its prefix, the subpattern 

without the first state (Figure 2d).

From the previous definitions, the following corollary easily follows:

Corollary 1. If P ⊂ P  and P ∈ Z, then P ∈ Z.

The goal is to mine class-specific TPs that appear in a majority of MSSs belonging to a 

particular class. For this purpose, we use the threshold θ ∈ [0, 1] and define the minimum 

support. Assume that D = {Z1 …, Zn} is a data set of n MSSs and Y = {y1, …, yc} is a set of 

possible classes. Let Di denote a set of records from D, which belong to class yi (each record 

belongs to exactly one class). Zj ∈ Di denotes that record j is in class yi.

Definition 5.

• For a given TP P and class y, the support of P in class y, denoted as support(P, 

Dy), is defined as a number of MSSs from Dy that contain P:

support(P , Dy) = Z ∈ Dy: P ∈ Z .

• P is a FTP in D if for some class y,

support(P , Dy) ≥ θ × Dy .

In other words, P is an FTP in D if the proportion of MSSs containing P is not 

smaller than threshold θ for at least one class.

Corollary 2. If P ⊂ P  and P is not FTP in D, then P is not FTP in D.

Corollary 2 is a straightforward consequence of Corollary 1 and Definition 5. It is referred to 

as the level-wise property (Aggarwal & Han, 2014). FTPM as it was given in (Batal et al., 

2011) is a breadth-search procedure for finding all FTPs. First, all FTPs of Size 1 are found. 

Then, a list of candidate TPs of Size 2 is generated. After that, each candidate TP is 

validated for being an FTP and a list of FTPs of Size 2 is formed. The procedure is repeated 

until all FTPs are found or some stopping criteria are met; for example, size is no more than 

a predefined value kmax (see Algorithm 1). Other schemes like depth-first search are 

possible, but the breadth-search paradigm is important for eliminating incoherent candidate 

TPs as it can be seen later.

Algorithm 1

The high-level description of FTPM algorithm.

Require: D, FTPs of size 1 return FTPs
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 FTPs ← FTPs of size 1

 new-FTPs ← FTPs of size 1

 while |new-FTPs| > 0 and no other criteria are met do

  candidates ← CreateCandidates(new-FTPs, FTPs of size 1)

  new-FTPs ← ∅

  for all P ∈ candidates do

   if P is FTP in D then

    new-FTPs ← new-FTPs u{P)

   end if

  end for

  FTPs ← FTPs ∪ new-FTPs

 end while

The most computationally expensive part of this framework is validating if a candidate TP is 

frequent. Thus, further careful elimination of infrequent TPs at the step of creating 

candidates is important. Based on Corollary 2, a TP is frequent only if all of its subpatterns 

are frequent. For a pattern of size k, we need to verify only if subpatterns of size k − 1 are 

frequent due to transitivity.

An idea of assigning to each FTP a list of record identifiers that contain it: P.ids = {i : P ∈ 
Zi}, reduces the search space drastically (Batal et al., 2016). It is based on the vertical data 

format (Zaki, 2000, 2001). Due to Corollary 1, a candidate TP of size k + 1 will appear only 

in records where all its subpatterns appear as well. Therefore, we need to check only its 

subpatterns of size k because record id lists of the subpatterns of smaller sizes include the 

list for at least one subpattern of size k. Such a list is called the list of potential records. For 

a given TP P, it is denoted as P.p_ids and can be computed as follows:

P . p_ids = ∩
P ∈ sub(P)

P . ids = ∩
P ∈ subk(P)

P . ids,

where sub(P) = P :P ⊂ P  and subk(P) = P :P ⊂ P and | p | = k .

If for all classes the number of the potential records is smaller than the corresponding 

minimal support values, then this pattern is not frequent, and it can be discarded.

4 | FREQUENT TEMPORAL PATTERN MINING WITH EXTENDED 

VERTICAL LISTS

In this section, we present our approach for FTP mining. The main idea is that, for given 

MSS and FTP, we keep track of positions (indices of the state intervals in the MSS) where 

the first state of the pattern appears inside the record. We say that the pattern starts at those 

positions.

Assume that FTPs of all sizes 1, …, k have been found. A coherent candidate TP P (|P| = k + 

1) constructed from FTP P0 (|P0| = k) and state S (see Batal et al, 2016 for relevant 
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discussion) has exactly k + 1 subpatterns of size k (|subk(P)| = k + 1). Some subpatterns may 

be identical: for example, all subpatterns of Size 2 are the same for the pattern with three 

identical sates (HR, –), (HR, –), and (HR, –). From subk(P), no more than k patterns (some 

may be identical) start with state S, and all of them are in

subk(P)\prefix(P) .

It is straightforward to see that P cannot start at a position i inside Z if at least one of the 

subpatterns from subk(P) \ prefix(P) does not start at the same position.

Example 4. Assume that we want to find if MSS Z (Figure 1) contains TP P (Figure 2a):

p = (HR, – ), (BP, – ), (HR, ) , R

with R1,2 = c, R1,3 = b, R2,3 = c. Pattern P has two subpatterns P1 (Figure 2b) and P2 (Figure 

2c) that have the same first state (HR, –):

P1 = (HR, – ), (BP, – ) , R1, 2 = c ,

P2 = (HR, – ), (HR, ), , R1, 2 = b ,

P1 starts at Positions 4 and 12 in Z, while P2 starts at Positions 1 and 4. Thus, P may 
potentially start only at Position 4 where both the subpatterns start. Those positions are 

potential because there are also time relationships between the states that were not checked 

yet.

Remark 1. P2 appears 5 times in MSS Z because states (HR, –) and (HR, ↓) of P2 match the 

following pairs of the state intervals of Z: (E1, E3), (E1, E6), (E1, E9), (E4, E6), and (E4, E9) 

(in all the cases, time relationship R1,2 = b is satisfied). However, we require the positions of 

the first state to be relevant only; therefore, Positions 1 and 4 are used.

One may want to store all possible appearances of P in MSS Z. However, the number of 

such appearances may grow rapidly (Remark 1). This requires significant memory storage. 

In turn, storing only starting positions of P in the MSS requires significantly less memory 

because the starting positions are always inside the intersection of the starting positions of 

the subpatterns form subk(P)\prefix(P). Therefore, the number of starting positions is a 

nonincreasing function of pattern size. Such a trade-off gives the desired speed-up under a 

reasonable memory consumption increase (Section 5).

In general, for each TP, we assign an EVL, a structure containing information on which 

MSSs contain the TP, starting positions of the TP inside the MSSs, and the indices of (or 

links to) the starting positions of the prefix of the TP inside the MSSs.
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Definition 6.

• Let P.EVL denote EVL associated with P.

• Let P.EVL[Z].pos denote starting positions of P (positions of the first state of P) 

inside MSS Z.

• Let P.EVL[Z].ind denote indices of specific starting positions of prefix(P) 

(positions of the first state of prefix(P)) inside MSS Z. For position i ∈ 
P.EVL[Z].pos, a corresponding specific index of the prefix position is the index 

of the smallest prefix position in Z, which is larger than i:

P . EV L[Z] . ind[i] = min j:P . EV L[Z] . pos[j] > p ,

where P = prefix(P) and p = P.EVL[Z].pos[i].

Example 5. TP P = (〈S1, S2, S3〉, R) (Figure 2a) has states S1 = (HR, –), S2 = (BP, –), S3 = 

(HR, ↓) and relationships matrix R = (R1,2, R1,3, R2,3), where R1,2 = c, R1,3 = b, and R2,3 = 

c. Its prefix is P0 = prefix(P) = (〈(BP, –), (HR, ↓)), (R1,2 = c)) (Figure 2d). In turn, the prefix 

of P0 consists of a single state: P00 = prefix(P0) = prefix(prefix(P)) = (〈(HR, ↓)〉, ∅).

Now, for MSS Z in Figure 1, P00.EVL[Z].pos = {3, 6, 9} because state (HR, ↓) corresponds 

to the state intervals E3, E6, and E9 of Z. P00EVL[Z].ind = ∅ because P00 does not have a 

prefix. P0.EVL[Z].pos = {5} because state (BP, –) corresponds to the state interval E5 of Z 
(Remark 1). P0.EVL[Z].ind = {2}. Finally, P.EVL[Z].pos = {4}, and P.EVL[Z].ind = {1}.

Now, we are ready to present the pseudo-code of the FTPMwEVL algorithm (Algorithm 2).

The EVL data structure allows to achieve three main results. First, it reduces the number of 

potential starting positions of a candidate TP P by intersecting the starting positions of its 

subpatterns from subk(P)\prefix(P) as in Example 4 and later linking the potential positions 

to the smallest starting positions of prefix(P). Therefore, EVL reduces the number of 

candidate TPs to check in general (see Algorithm 3 for the pseudo-code). For some MSSs 

from the data set, the set of potential starting positions may be empty after the intersection 

meaning that these MSSs will never contain P and they can be skipped.

Second, to verify that a candidate TP P is indeed inside FTP Z, we need to check that the the 

states of P match the state intervals of Z and the temporal relationships are satisfied 

according to Definition 2. However, instead of looking through all possible combinations of 

appropriate state intervals, EVL allows to check a significantly smaller amount of state 

intervals combinations: We need to check only the possible starting locations of P, from 

which we can navigate directly to the appropriate state intervals matching the first state of 

prefix(P). But these are the already found starting positions of prefix(P); therefore, we may 

skip some state intervals matching the first state of prefix(P). Then, we navigate directly to 

prefix(prefix(P)), and so on (see Algorithm 4).
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Algorithm 2

The FTPMwEVL algorithm.

Require: D, FTPs of size 1 return FTPs

 FTPs ← FTPs of size 1

 new-FTPs ← FTPs of size 1

 while |new-FTPs| > 0 and no other criteria are met do

  candidates ← CreateCandidates(new-FTPs, FTPs of size 1)

  new-FTPs ← ∅

  for all P ∈ candidates do

   exposure ← exposure(P)

   if not FindPotentialPositionsAndlndices(D,P) then

    continue

   end if

   for all id ∈ P.p_ids do

    new-positions ← ∅

    new_indices ← ∅

    i ← 1

    while i ≤ |P.EVL[id].pos| do

     pos ← P.EVL[id].pos[i]

     ind ← P.EVL[id].ind[i]

     index ← Search(prefix(P), D, id, ind, {pos}, exposure)

     if index > −1 then

      new_positions ← new_positions ∪ {pos}

      new_indices ← new_indices ∪ {index}

     end if

     i ← i + 1

    end while

    P.EVL[id].pos ← new_positions

    P.EVL[id].ind ← new_indices

    if P.EVL[id].pos = ∅ then

     P.p_ids ← P.p_ids \ id

    end if

   end for

   if P is FTP in D then

    new-FTPs ← new-FTPs ∪{P}

   end if

  end for

  FTPs ← FTPs ∪ new-FTPs

 end while

Third, EVL allows to check only a portion of the states of P. For this purpose, the find the 

smallest starting chain of P:
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Definition 7.

• P  is a smallest starting chain of P, denoted P = chain(P), if

1. k = min l: ∄j > l and i ≤ l such that Ri, j = c

2. P ⊂ P, |P | = k

3. π(i) = i, i = 1, …, k

• Exposure of P, denoted as exposure(P), is computed as follows:

exposure(P) = chain(P) + 1 if chain(P) ≠ P,
P , otherwise .

Algorithm 3

Function FindPotentialPositionsandlndices(D, P).

Require: D, P return Boolean

 subpatterns ← subk(P) \ prefix(P)

 if subpatterns = ∅ then return False

 end if

 P . p_ids = ∩P ∈ subk(P) P . ids

 if not PotentiallyFrequent(P) then return False

 end if

 for id ∈ P.p_ids do

  P . EV L[id] . pos ∩P ∈ subpatterns P . EV L[id] . pos
  i = 1

  while i ≤ |P.EVL[id].pos| do

   pos = P.EVL[id].pos[i]

   if {j : prefix(P).EVL[id].pos[j] > pos} = ∅ then

    P.EVL[id].pos ← P.EVL[id].pos \ pos

   else

    P.EVL[id].ind[i] = min{j : prefix(P).EVL[id].pos[j] > pos}

    i ← i + 1

   end if

  end while

  if P.EVL[id].pos = ∅ then

   P.p_ids ← P.p_ids \ id

  end if

 end for

 if not PotentiallyFrequent(P) then return False

 end if

 return True
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Algorithm 4

Function Search(P, D, id, ind, positions, exposure).

Require: R D, id, i, positions, exposure return Integer

 i = 1

 while i ≤ |P.EVL[id].pos| do

  if Check accumulated time relationships in D[id] then

   if exposure = 0 then return i

   end if

   pos ← P.EVL[id].pos[i]

   ind ← P.EVL[id].ind[i]

   return Search(prefix(P), D, id, ind, positions ∩ {pos}, exposure − 1)

  end if

  i ← i +1

 end while

 return − 1

In other words, by the smallest starting chain, we mean the smallest nonempty subpattern at 

the beginning of P, such that all states of it are strictly before the remaining states of P (see 

Figure 3 for an example). For many long patterns, the corresponding smallest starting chain 

may be relatively small.

When we check if P is inside an MSS, we need to traverse only the states of chain(P) and the 

first state of Pend if any is present because chain(P) may be pattern P itself. It is easy to see 

since after we have arrived at the last state of chain(P) by recursive search function 

(Algorithm 4) and checked that all time relationship between the states of chain(P) are 

satisfied, we need to verify only that all the states of Pchain are before the next state of P after 

chain(P) because all the states of chain(P) will be before all the rest of the states of P by 

transitivity. Thus, we need to check |chain(P)| + 1 first states of P, if P ≠ chain(P), and all |P| 

states of P, otherwise.

5 | COMPUTATIONAL RESULTS

To evaluate the performance of the FTPMwEVL algorithm, we tested it against FTPM on 

real-life data sets. The TP was defined as in Definition 2 for both algorithms.

All computations were carried out on a virtual server machine with 100 GB of memory and 

20 virtual cores with processor speed equivalent to 2.5 GHz each. Only one core was utilized 

for single-thread computations. C++11 was used as a programming language. All 

computation times show actual pattern mining time taken by the algorithms after any 

preprocessing steps such as loading data and converting it into the abstraction domain.

It is important to state that the returned TPs were entirely identical for both algorithms. It 

leaves computational time and memory usage as the only criteria for algorithm comparison.
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For both Tables 1 and 2, the following notation was used. In column “max k,” Inf stands for 

no upper limit on the size of TPs. In column “mem. ratio,” NA means that the memory ratio 

is not available due to the fact that FTPM algorithm was not able to find all FTPs in time 

limit.

5.1 | Acute kidney injury data set

The acute kidney injury (AKI) data set consists of n = 5,202 medical records composed of 

time series taken during surgical procedures (Korenkevych et al., 2016; Thottakkara et al., 

2016). Each record has an outcome associated with it: 1 if AKI was diagnosed after the 

surgery (2,769 records), and 0, otherwise (2,433 records).

Using the University of Florida Integrated Data Repository, we have previously assembled a 

single center cohort of perioperative patients by integrating multiple existing clinical and 

administrative databases at University of Florida Health (Korenkevych et al., 2016; 

Thottakkara et al., 2016). We included all patients admitted to the hospital for longer than 24 

hr following any operative procedure between January 1, 2000, and November 30, 2010. 

This data set was integrated with the laboratory, the pharmacy, and the blood bank databases 

and intraoperative database (Centricity Perioperative Management and Anesthesia, General 

Electric Healthcare, Inc.) to create a comprehensive intraoperative database for this cohort. 

The study was designed and approved by the Institutional Review Board of the University of 

Florida and the University of Florida Privacy Office.

Two time variables were chosen for examination: mean arterial BP and HR. The value 

abstractions were used to convert time series from time domain to abstraction domain with 

percentile values [0.1, 0.25, 0.75, 0.9] and support threshold θ (see Definition 5) ranging 

from 0.5 to 0.9. The comparative data (see Table 1) indicates the superior performance of 

FTPMwEVL from the computational time point of view. For θ = 0.7, FTPMwEVL found all 

FTPs (there were no FTPs of size more than 18) in 39.58 s using 3,134.2 MB of memory, 

whereas FTPM spent 34,280.4 s and 402.31 MB to achieve the same result. Therefore, the 

speed-up was of magnitude 866, whereas the new algorithm used only 7.79 times more 

memory. We set the computational time limit to 24 h (86,400 s). In this time frame, FTPM 

was able to mine all FTPs only for θ ≥ 0.7. For θ = 0.6, FTPMwEVL found all FTPs (no 

FTPS of size more than 22), yet FTPM managed to mine FTPs of Size 10 or lower and some 

of Size 11. In this case, FTPMwEVL took 50.25 s (not shown in the table) to mine all FTPs 

of Size 11 or lower, and the speed-up column reflects ratio 8,6400s/50.25s = 1,719.3. For θ 
= 0.5, we limited the maximum FTP size to 12 due to FTPMwEVL memory consumption 

considerations. Still, FTPM mined only FTPs of Size 7 or lower and some of Size 8 in 

86,400 s.

As can be seen in Figure 4, the EVLs start working significantly better than the regular 

vertical lists with increasing FTP size, which happens due to the better indexing strategy that 

allows eliminating more candidate TPs and validating that a TP is not an FTP faster. Table 1 

demonstrates a phenomenon of exponential growth of computational time and memory 

usage with decreasing threshold level that is the main limitation of this pattern mining 

paradigm.
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5.2 | UCR time series classification archive

The remaining data sets were taken from UCR Time Series Classification Archive (Chen et 

al., 2015). Out of 85 data sets available, only those that have two classes were picked what 

resulted in 31 data sets. In this archive, each record has only one time series that was 

converted into two series of time-interval states using both trend and value abstractions. 

Percentiles [0.1, 0.25, 0.75, 0.9] for value abstractions were used to mine patterns in the 

UCR data sets, where, for example, all values falling between percentiles 0.1 and 0.25 were 

considered as low. For trend abstractions, a segment was considered increasing if the slope 

was positive, and nonincreasing, otherwise. The support threshold θ and maximum size k 
varied in ranges [0.2, 0.8] and [5, ∞], respectively, depending on the data set complexity: 

We pushed the memory consumption of FTPMwEVL to the limit. Therefore, Table 2 reflects 

the most difficult cases from FTPMwEVL memory usage point of view.

FTPMwEVL was slower only on three data sets. The most significant speed-up of 

magnitude 3,685.85 was achieved on data set “computers.” For this case, FTPMwEVL 

found all FTPs up to the predefined maximum size k = 14 (it was set on this level due to 

memory considerations) in 446.08 s having used 26,100.1 MB of memory. FTPM mined all 

FTPs of Size 8 or lower and some of Size 9 in the time frame of 86,400 s. Similar to the AKI 

data set, the speed-up column reflects ratio 86,400s/23.44s = 3,685.85, where 23.44 s is the 

running time of FTPMwEVL to find all FTPs of Size 9 or lower. Speed-up of 30 times or 

more was achieved on four other data sets: the values in bold font. However, after removing 

these outliers, the speed-up was on the level of 2.34 on average for the remaining data sets. 

The memory consumption was 4.15 time higher for FTPMwEVL on average. In the worst 

case, 35,566.5 MB of memory was allocated to store all FTPs, which is not a concern for 

modern computational clusters.

6 | CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

In this paper, a new algorithm for mining FTPs was presented where the concept of EVL 

was utilized. It outperformed the existing approach on many real-life data sets in terms of 

computational time with minor exceptions. EVL requires more memory to be stored, which 

is a typical trade-off in such a type of algorithms. The proof of concept is that server clusters 

and personal computers have enough memory nowadays. Moreover, memory is becoming 

cheaper significantly faster than CPU, as well as the memory size becomes five times of its 

previous size every 2 years (see http://www.jcmit.com/), whereas CPU resources only 

double during the same time frame (Moore et al., 1975). Thus, the problem of using large 

amounts of memory is becoming less and less critical.

The speed-up was achieved due to EVL that works in two main directions: elimination of 

more candidate TPs and faster verification of whether a candidate TP is an FTP or not. The 

candidate elimination by EVL works under the assumption that if a pattern is an FTP than 

all, its subpatterns are FTPs as well.

For other concepts of TP like recent TP (RTP) in Batal et al. (2016), this assumption does 

not hold. Thus, the candidate elimination phase will not work here, and only less efficient 

techniques like the vertical data format should be utilized instead. Still, the concept of 
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positions and indices will work for RTPs because the prefix of an RTP is an RTP itself. 

Therefore, EVLs can give a partial speed-up for Frequent RTP Mining too. The approach 

can be generalized and applied to other domains where the notion of pattern is defined in 

other ways.

Testing the applicability of the mined FTPs for classification purposes was out of the scope 

of this paper. Therefore, full scale evaluation of the quality of the found FTPs will be 

addressed in our future research. Despite the fact that other multivariate time series 

classification algorithms are not directly applicable here, there are several feature 

engineering strategies, including different distance measures to capture associations in time 

series, to compare against the methodology of TP ining.

Presence of noise and high-frequency sampling leads to a large number of state intervals per 

MSS and, therefore, to a large number of FTPs. Therefore, the effect of smoothing and noise 

reduction strategies is expected to effect the classification performance.
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FIGURE 1. 
An example of a multivariate state sequence (MSS) with time variables heart rate (HR) and 

blood pressure (BP)
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FIGURE 2. 
Temporal pattern (TP) and its subpatterns: (a) an example of a TP, (b) the subpattern without 

the last state, (c) the subpattern without the middle state, (d) the prefix (or parent), the 

subpattern without the first state
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FIGURE 3. 
An example of a temporal pattern (TP) and its smallest starting chain
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FIGURE 4. 
Computational time in seconds for Fast Temporal Pattern Mining with Extended Vertical 

List (FTPMwEVL) and FTPM on acute kidney injury data set for mining Frequent Temporal 

Pattern of sizes from 1 to 18 (there were no FTPs of a size larger than 19), given that all 

FTPs of smaller sizes were already found. Threshold θ was set at 0.7. Total computational 

time was 3,4280.4 and 39.58 s for FTPM and FTPMwEVL, respectively. Memory usage was 

402.31 and 3,134.2 MB. Thus, FTPMwEVL achieved a significant speed-up of magnitude 

866 while consuming 7.79 times more memory
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TABLE 1

Computational time comparison of FTPMwEVL and FTPM on AKI data sets

θ Max k

FTPM FTPMwEVL

Speed-up Mem. ratiok Second MB k Second MB

0.9 Inf 7 0.16 1.86 7 0.1 15.8 1.06 8.49

0.8 Inf 12 465.5 24.92 12 2.3 198.5 204.27 7.96

0.7 Inf 18 34,280.4 402.31 18 39.6 3,134.2 866 7.79

0.6 Inf 10 >86400 NA 22 621.1 35,566.1 >1,719.3 NA

0.5 12 7 >86400 NA 12 467.8 28,950.4 >998.93 NA

Abbreviations: AKI, acute kidney injury; FTPMwEVL, Fast Temporal Pattern Mining with Extended Vertical List; NA, not applicable.
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TABLE 2

Computational time comparison of FTPMwEVL and FTPM on UCR data sets

Data set θ Max k

FTPM FTPMwEVL

Speed-up Mem. ratiok Second MB k Second MB

BeetleFly 0.8 8 8 702.0 5,577.2 8 275.5 1,8367.7 2.55 3.29

BirdChicken 0.7 Inf 18 742.9 1,564.4 18 269.9 4,873.5 2.75 3.12

Coffee 0.8 10 10 560.1 4,108.8 10 283.5 13,107.4 1.98 3.19

Computers 0.8 14 8 >86,400 NA 14 446.1 26,100.1 >3,685.8 NA

DistalPhalanx OutlineCorrect 0.7 Inf 16 160.3 1,435.1 16 113.3 5,382.6 1.41 3.75

Earthquakes 0.8 7 7 905.4 923.7 7 220.1 14,340.2 4.11 15.52

ECG200 0.6 Inf 18 2,349.7 3,225.3 18 300.5 11,863.1 7.82 3.68

ECGFiveDays 0.5 Inf 19 336.3 1,181.4 19 226.1 3,509.4 1.49 2.97

FordA 0.8 5 5 214.9 1,462.2 5 113.4 11,068.7 1.90 7.57

FordB 0.8 5 5 125.9 891.0 5 59.9 6,461.7 2.10 7.25

Gun_Point 0.2 Inf 18 35.3 129.6 18 27.0 377.7 1.31 2.91

Ham 0.8 7 7 783.8 5,894.6 7 310.5 26,318.9 2.52 4.46

HandOutlines 0.8 12 12 87.3 2,847.4 12 134.9 9,917.5 0.65 3.48

Herring 0.8 10 10 470.7 3,186.7 10 177.9 10,216.7 2.65 3.21

ItalyPowerDemand 0.2 Inf 13 1.2 16.8 13 1.4 46.4 0.86 2.75

Lighting2 0.8 8 8 50,929.9 6,080.6 8 495.1 35,555.4 102.87 5.85

MiddlePhalanx OutlineCorrect 0.7 Inf 17 301.6 2,689.2 17 184.3 9,633.6 1.64 3.58

MoteStrain 0.2 Inf 20 402.5 1,109.5 20 380.6 2,316.5 1.06 2.09

PhalangesOutlines Correct 0.5 Inf 14 96.6 1,115.3 14 71.9 4,035.1 1.34 3.62

ProximalPhalanx OutlineCorrect 0.4 Inf 19 588.0 4,271.8 19 307.5 15,383.3 1.91 3.60

ShapeletSim 0.8 7 6 >86,400 NA 7 378.1 25,489.8 >228.52 NA

SonyAIBORobot Surface 0.8 10 10 1,387.0 5,255.8 10 474.6 14,650.9 2.92 2.79

SonyAIBORobot SurfaceII 0.8 10 10 2,222.3 6,619.7 10 701.0 21,730.3 3.17 3.28

Strawberry 0.7 Inf 18 200.4 1,701.7 18 105.9 6,042.2 1.89 3.55

ToeSegmenta-tion1 0.8 8 8 754.7 2,904.8 8 181.5 11,128.0 4.16 3.83

ToeSegmenta-tion2 0.8 8 8 845.9 3,076.6 8 188.2 10,987.0 4.49 3.57

TwoLeadECG 0.2 Inf 17 15.1 93.5 17 15.2 2,43.1 0.99 2.60

wafer 0.7 Inf 11 >86,400 NA 29 275.6 10,952.4 >660.73 NA

Wine 0.7 Inf 22 481.8 4,288.6 22 354.8 14,043.6 1.36 3.27

WormsTwoClass 0.8 7 7 5,459.6 2,183.7 7 148.7 11,036.3 36.75 5.05

yoga 0.4 Inf 16 410.3 3,593.7 16 215.6 8,825.3 1.90 2.46

Abbreviations: FTPMwEVL, Fast Temporal Pattern Mining with Extended Vertical List; NA, not applicable.
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