
Extended vertical lists for temporal pattern mining from
multivariate time series

Anton Kocheturov1, Petar Momcilovic2, Azra Bihorac3, Panos M. Pardalos1

1Center for Applied Optimization, Industrial and Systems Engineering, University of Florida,
Gainesville, Florida

2Industrial and Systems Engineering, University of Florida, Gainesville, Florida

3Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida,
Gainesville, Florida

Abstract

In this paper, the problem of mining complex temporal patterns in the context of multivariate time

series is considered. A new method called the Fast Temporal Pattern Mining with Extended

Vertical Lists is introduced. The method is based on an extension of the level-wise property, which

requires a more complex pattern to start at positions within a record where all of the subpatterns of

the pattern start. The approach is built around a novel data structure called the Extended Vertical

List that tracks positions of the first state of the pattern inside records and links them to

appropriate positions of a specific subpattern of the pattern called the prefix. Extensive

computational results indicate that the new method performs significantly faster than the previous

version of the algorithm for Temporal Pattern Mining; however, the increase in speed comes at the

expense of increased memory usage.

Keywords

frequent pattern mining; level-wise property; temporal patterns; time-interval patterns; vertical
data format

1 | INTRODUCTION

Continuously expanding resources for computing, data storage, and transmission have

enabled pattern mining in complex data sets emerging from various domains such as

transaction databases (Agrawal, Imielinski, & Swami, 1993a; Agrawal, Imielinski, &

Swami, 1993b), web mining (Srivastava, Cooley, Deshpande, & Tan, 2000), Internet of

Correspondence: Anton Kocheturov, Corporate Technology, Siemens Corporation, Princeton, NJ, USA. antrubler@gmail.com.
Present Address
Anton Kocheturov, Corporate Technology, Siemens Corporation Princeton, NJ, USA.
Petar Momcilov, Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas
AUTHOR CONTRIBUTION
The authors contributed equally to the manuscript.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

HHS Public Access
Author manuscript
Expert Syst. Author manuscript; available in PMC 2020 November 06.

Published in final edited form as:
Expert Syst. 2019 October ; 36(5): . doi:10.1111/exsy.12448.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Things (Chen et al., 2015; Tsai, Lai, Chiang, & Yang, 2014), medicine (Batal et al., 2016;

Hauskrecht et al., 2013), fraud detection (Seeja & Zareapoor, 2014), finance (Tiple, Cavique,

& Cavalheiro Marques, 2017), and so on. This paper demonstrates the problem of extracting

temporal patterns (TPs) from multivariate time series records. The primary contribution of

the paper is a faster algorithm for mining class-specific patterns that have temporal relations

between their states. The motivation behind this contribution was to develop an algorithm

that could be built into real-time analytical engines.

Frequent pattern mining is the problem of finding all TPs that appear frequently in a

database (Agrawal et al., 1993a; Agrawal et al., 1993b); (Yun, Lee, & Lee, 2016). In the

simplest case, such patterns are frequent itemsets or subsets of items that appear in a

significant proportion of transactions of the database (Agrawal et al., 1993b). Sequential

pattern mining is an extension of the frequent itemset mining where the order of items or

subsets of items is available (Zaki, 2001; Ayres, Flannick, Gehrke, & Yiu, 2002). TPs arise

in a natural way where additional temporal information (e.g., start and end times of the

events) is available (Moskovitch & Shahar, 2015). This case is the primary focus of this

paper. Frequent graph mining (Kuramochi & Karypis, 2001; Zaki, 2005) is another direction

of frequent pattern mining with such applications as clustering of XML documents

(Aggarwal, Ta, Wang, Feng, & Zaki, 2007), chemical compound classification (Deshpande,

Kuramochi, Wale, & Karypis, 2005), and so on. Uncertain pattern mining is a relatively new

research direction where each item is present in a database with a certain probability (Tong,

Chen, Cheng, & Yu, 2012; Lee & Yun, 2017).

In this paper, a new algorithm called the Fast Temporal Pattern Mining with Extended

Vertical Lists (FTPMwEVLs) for mining frequent TPs (FTPs) is introduced. The idea is to

utilize the level-wise (Aggarwal & Han, 2014) property on the level of pattern positions

inside records. The level-wise property states that a TP may appear only in the records

where all of its subpatterns appear. For example, if pattern “heart rate (HR) is very high

before blood pressure (BP) is low” is found in record i, then both its subpatterns “HR is very

high” and “BP is low” must appear in record i. The level-wise property was used to reduce

the search space for mining TPs (Batal et al., 2016; Moskovitch & Shahar, 2015) and similar

notions as itemsets (Zaki, 2000) and sequential patterns (Ayres et al., 2002; Zaki, 2001) via

the vertical data format (Zaki, 2000) that tracks the occurrences of the pattern inside records.

We suggest a new data structure called the Extended Vertical List (EVL) that keeps track of

positions of the first state of the TP inside the records and links them to the positions of a

prefix of the TP (a subpattern obtained by removing the first state of the TP) inside the

records. This idea allows to reduce the computational time of FTPMwEVL by a factor of

several hundreds on several data sets (Section 5). The increase in speed comes at the cost of

increased memory usage that is a common trade-off in such algorithms.

This paper continuous our previous work (Kocheturov & Pardalos, 2018) in the following

ways: introduction of the EVL data structure, introduction of the smallest chain for faster

pattern verification, and extensive computational results to demonstrate the effectiveness of

the suggested approach. The algorithm is an improved version of the method for Frequent

Pattern Mining by Batal, Valizadegan, Cooper, and Hauskrecht (2011), hereinafter referred

to as the Fast Temporal Pattern Mining (FTPM), where the TP is defined with no additional

Kocheturov et al. Page 2

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

constraints. The output of the new algorithm coincides with the output of FTPM because it

finds all FTPs. Therefore, the increased speed of mining is the main focus and the main

result of this paper. The applicability of the mined patterns for a consecutive classification of

the records was not analyzed.

The rest of the paper is organized as follows. We review related work and recent

developments in Section 2. Section 3 provides a formal statement of the problem and all

supporting definitions. We present the FTPMwEVL algorithm in Section 4 and provide the

computational results in Section 5. Section 6 concludes the paper.

2 | RELATED WORK

The problem of mining FTPs considered in this paper deals with a special case of TPs called

the time-interval relationship patterns that are referred to hereafter as TPs for simplicity.

Each TP is a sequence of states, or time-interval events, with temporal relationships defined

for each pair of the states (Definitions 1 and 2). Many multivariate time series classification

methods are not applicable when records are composed of multivariate time series sampled

unevenly in time. The FTP mining approach is a perfect candidate in this situation.

To define temporal relationships between states in a pattern, Allen’s 13 temporal relations

are usually used (Allen, 1984): before, equal, meets, overlaps, during, starts, finishes, and

the other six are obtained by inverting. The first seven relations are enough if the states are

ordered appropriately. In this paper, only two temporal relations before and co-occurs (the

later combines equal, meets, overlaps, during, starts, and finishes) are used because the

initial seven relations are ambiguous in the presence of noise and temporal data with a high

sampling frequency (Batal, Fradkin, Harrison, Moerchen, & Hauskrecht, 2012), which leads

to the problem of pattern segmentation (Moerchen, 2006).

After converting multivariate time series records to multivariate state sequences (MSSs;

Definition 1), the number of state intervals per sequence was at the level of several hundreds

for the data sets studied in this paper. In this situation, the breadth-first search algorithms are

more efficient than those using depth-first search. Several depth-first algorithms were

introduced over the years for mining of FTPs (Moskovitch & Shahar, 2015; Patel, Hsu, &

Lee, 2008; Papapetrou, Kollios, Sclaroff, & Gunopulos, 2009; Winarko & Roddick, 2007;

Wu & Chen, 2007). The approach by Moskovitch et al. named KarmaLego was reported to

outperform other depth-first search methods (Moskovitch & Shahar, 2015). KarmaLego

failed to mine all TPs for a majority of the data sets considered in Section 5; therefore, the

computational section presents results for FTPMwEVL and FTPM only. Both methods are

breadth-first search. The efficiency of bread-first search comes from the fact that careful

pattern elimination is paramount when MSSs consist of a large number of state intervals.

3 | PROBLEM DEFINITION

We follow the definitions given in Batal et al. (2011) with slight modifications for the

presentation to be self-contained.

Kocheturov et al. Page 3

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Assume data set D of n records di = (x1
i , x2

i , …, xmi , yi), i = 1, …, n, where each record is

composed of m time series xji ∈ Xj and an outcome, or class label, yi ∈ Y. We start with

reducing dimensionality by converting each time series into a set of temporal abstractions in

the form

(V 1, s1, e1), …, (V k, sk, ek) ,

where Vi ∈ Σ is a temporal abstraction that is in effect from start time si till end time ei, for

example, temporal abstraction (“low”, 5, 12) means that the time variable was low from time

moment 5 till time moment 12; Σ is the alphabet or set of possible abstractions (e.g., Σ =

{“low,” “normal,” and “high”}). For a given set of temporal abstractions, we also require s1

≤ e1 ≤ s2 … ≤ sk ≤ ek, meaning that no abstraction can start earlier than any previous one

finishes.

The alphabet Σ can be defined in several ways. In this paper, we focus on value and trend

abstractions. Value abstraction can be defined in the following ways: Σ = {↓↓, ↓, –, ↑, ↑↑},

where ↓↓, ↓, –, ↑, and ↑↑ stand for “very low,” “low,” “normal,” “high,” and “very high,”

respectively. Exact ranges for transformation may be defined by a field expert. Trend

abstractions may include Σ = {→, ↗, ↓}, where →, ↗, and ↓ stand for ”steady,”

“increasing,” and “decreasing,” respectively. For this transformation, we used the approach

by Keogh, Chu, Hart, and Pazzani (2004). If one decides to combine several ways and let the

time abstractions overlap, copying the time series and applying one way per copy solve the

issue.

Definition 1.

• S = (F, V) is a state, where F is a variable label and V ∈ Σ is an abstraction value.

• E = (F, V, s, e) is a state interval, where pair (F, V) forms a state and s and e are

the start and end times of the state interval.

• Z = 〈E1, …, El〉 is a MSS with the states sorted according to the nondecreasing

order of their start times: Ei.s ≤ Ei+1.s, 1 ≤ i ≤ l − 1.1

Example 1. S = (HR, ↓) is a state that indicates that temporal variable HR is at the low level.

State interval E = (HR, ↓, 12, 15) extends the state by including information about its start

and end time moments. Finally, an MSS combines several state intervals coming from

different time series as in MSS Z = 〈E1 = (HR, –, 0, 3), E2 = (BP, ↓, 1, 9), E3 = (HR, ↓, 4, 7),

E4 = (HR, –, 8, 11), E5 = (BP, –, 10, 17), E6 = (HR, ↓, 12, 14), E7 = (HR, ↓↓, 15, 19), E8 =

(BP, ↓, 18, 22), E9 = (HR, ↓, 20, 29), E10 = (BP, ↑↑, 23, 26), E11 = (BP, ↓, 27, 31), E12 =

(HR, –, 30, 38), and E13 = (BP, –, 32, 36)〉 (Figure 1).

For two state intervals Ei and Ej with Ei.s ≤ Ej.s, we say that Ei finishes before Ej if Ei.e <

Ej.s and denote it as R(Ei, Ej) = b. Otherwise, we say that Ei co-occurs with Ej and denote it

as R(Ei, Ej) = c.

1If Ei.s = Ei+1.s, an order over the time variables is assumed to resolve the ambiguity.

Kocheturov et al. Page 4

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

TP is the next level of abstraction, which allows removing exact values of start and end

times and focuses on temporal relationships of the state intervals.

Definition 2.

P = (〈S1, …, Sk〉, R) is a TP of size k (|P| = k) with states S1, …, Sk, where R is a (upper

triangular) matrix describing pairwise temporal relationships between the states: Ri,j ∈ {b,
c}, 1 ≤ i < j ≤ k.2

Definition 3.

Given MSS Z = 〈E1, E2, …, El〉 and TP P = (〈S1, …, Sk〉, R) (k ≤ l), we say that Z contains

P, denoted as P ∈ Z, if there is a mapping π : {1, …, k} → {1, …, l} that matches every

state Si in P to a state interval Eπ(i) in Z such that:

1. Si.F = Eπ(i).F and Si.V = Eπ(i).V, 1 ≤ i ≤ k,

2. π(i) < π(j), i < j,

3. R(Eπ(i), Eπ(j)) = Rij, i < j.

The first requirement guarantees that each state of P matches an appropriate state interval in

Z, whereas the rest of the constraints enforce that the temporal relations in P correspond to a

correct overlapping of the state intervals in Z.

Example 2. P = (〈S1, S2, S3〉, R) is a TP of Size 3 (Figure 2a) with states S1 = (HR, –), S2 =

(BP, –), S3 = (HR, ↓) and relationships matrix R = (R1,2, R1,3, R2,3), where R1,2 = c, R1,3 =

b, and R2,3 = c. The MSS in Figure 1 contains this TP because state intervals E4 = (HR, –, 8,

11), E5 = (BP, –, 10, 17), and E6 = (HR, ↓, 12, 14) match the states of P and the time

relationships are satisfied. For example, E4.e = 11 > 10 = E5.s, and therefore, state intervals

4 and 5 co-occur (R(E4, E5) = c).

Definition 4.

• P is a subpattern of P, denoted as P ⊂ P , where |P | = k, |P | = k, |P| = k, and

k < k,, if there is mapping π: 1, …, k 1, …k such that:

Si = Sπ(i), 1 ≤ i ≤ k , where Si and Sπ(i) are states in P and P, respectively,

π(i) < π(i), i < j,

Ri, j = Rπ(i), π(i), 1 ≤ i ≤ k

• P is a prefix of P, denoted as P = prefix(P), if

P ⊂ P

k = k − 1

π(i) = i + 1, i = 1, …, k

2Ri,j is defined for states i and j of the pattern. R(Ei, Ej) is computed for state intervals i and j of the MSS.

Kocheturov et al. Page 5

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In other words, prefix(P) is a subpattern of P obtained by removing the first state

of P.

Example 3. TP P in Figure 2a has three subpatterns: the subpattern without the last state

(Figure 2b), the subpattern without the middle state (Figure 2c), and its prefix, the subpattern

without the first state (Figure 2d).

From the previous definitions, the following corollary easily follows:

Corollary 1. If P ⊂ P and P ∈ Z, then P ∈ Z.

The goal is to mine class-specific TPs that appear in a majority of MSSs belonging to a

particular class. For this purpose, we use the threshold θ ∈ [0, 1] and define the minimum

support. Assume that D = {Z1 …, Zn} is a data set of n MSSs and Y = {y1, …, yc} is a set of

possible classes. Let Di denote a set of records from D, which belong to class yi (each record

belongs to exactly one class). Zj ∈ Di denotes that record j is in class yi.

Definition 5.

• For a given TP P and class y, the support of P in class y, denoted as support(P,

Dy), is defined as a number of MSSs from Dy that contain P:

support(P , Dy) = Z ∈ Dy: P ∈ Z .

• P is a FTP in D if for some class y,

support(P , Dy) ≥ θ × Dy .

In other words, P is an FTP in D if the proportion of MSSs containing P is not

smaller than threshold θ for at least one class.

Corollary 2. If P ⊂ P and P is not FTP in D, then P is not FTP in D.

Corollary 2 is a straightforward consequence of Corollary 1 and Definition 5. It is referred to

as the level-wise property (Aggarwal & Han, 2014). FTPM as it was given in (Batal et al.,

2011) is a breadth-search procedure for finding all FTPs. First, all FTPs of Size 1 are found.

Then, a list of candidate TPs of Size 2 is generated. After that, each candidate TP is

validated for being an FTP and a list of FTPs of Size 2 is formed. The procedure is repeated

until all FTPs are found or some stopping criteria are met; for example, size is no more than

a predefined value kmax (see Algorithm 1). Other schemes like depth-first search are

possible, but the breadth-search paradigm is important for eliminating incoherent candidate

TPs as it can be seen later.

Algorithm 1

The high-level description of FTPM algorithm.

Require: D, FTPs of size 1 return FTPs

Kocheturov et al. Page 6

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 FTPs ← FTPs of size 1

 new-FTPs ← FTPs of size 1

 while |new-FTPs| > 0 and no other criteria are met do

 candidates ← CreateCandidates(new-FTPs, FTPs of size 1)

 new-FTPs ← ∅

 for all P ∈ candidates do

 if P is FTP in D then

 new-FTPs ← new-FTPs u{P)

 end if

 end for

 FTPs ← FTPs ∪ new-FTPs

 end while

The most computationally expensive part of this framework is validating if a candidate TP is

frequent. Thus, further careful elimination of infrequent TPs at the step of creating

candidates is important. Based on Corollary 2, a TP is frequent only if all of its subpatterns

are frequent. For a pattern of size k, we need to verify only if subpatterns of size k − 1 are

frequent due to transitivity.

An idea of assigning to each FTP a list of record identifiers that contain it: P.ids = {i : P ∈
Zi}, reduces the search space drastically (Batal et al., 2016). It is based on the vertical data

format (Zaki, 2000, 2001). Due to Corollary 1, a candidate TP of size k + 1 will appear only

in records where all its subpatterns appear as well. Therefore, we need to check only its

subpatterns of size k because record id lists of the subpatterns of smaller sizes include the

list for at least one subpattern of size k. Such a list is called the list of potential records. For

a given TP P, it is denoted as P.p_ids and can be computed as follows:

P . p_ids = ∩
P ∈ sub(P)

P . ids = ∩
P ∈ subk(P)

P . ids,

where sub(P) = P :P ⊂ P and subk(P) = P :P ⊂ P and | p | = k .

If for all classes the number of the potential records is smaller than the corresponding

minimal support values, then this pattern is not frequent, and it can be discarded.

4 | FREQUENT TEMPORAL PATTERN MINING WITH EXTENDED

VERTICAL LISTS

In this section, we present our approach for FTP mining. The main idea is that, for given

MSS and FTP, we keep track of positions (indices of the state intervals in the MSS) where

the first state of the pattern appears inside the record. We say that the pattern starts at those

positions.

Assume that FTPs of all sizes 1, …, k have been found. A coherent candidate TP P (|P| = k +

1) constructed from FTP P0 (|P0| = k) and state S (see Batal et al, 2016 for relevant

Kocheturov et al. Page 7

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

discussion) has exactly k + 1 subpatterns of size k (|subk(P)| = k + 1). Some subpatterns may

be identical: for example, all subpatterns of Size 2 are the same for the pattern with three

identical sates (HR, –), (HR, –), and (HR, –). From subk(P), no more than k patterns (some

may be identical) start with state S, and all of them are in

subk(P)\prefix(P) .

It is straightforward to see that P cannot start at a position i inside Z if at least one of the

subpatterns from subk(P) \ prefix(P) does not start at the same position.

Example 4. Assume that we want to find if MSS Z (Figure 1) contains TP P (Figure 2a):

p = (HR, –), (BP, –), (HR,) , R

with R1,2 = c, R1,3 = b, R2,3 = c. Pattern P has two subpatterns P1 (Figure 2b) and P2 (Figure

2c) that have the same first state (HR, –):

P1 = (HR, –), (BP, –) , R1, 2 = c ,

P2 = (HR, –), (HR,), , R1, 2 = b ,

P1 starts at Positions 4 and 12 in Z, while P2 starts at Positions 1 and 4. Thus, P may
potentially start only at Position 4 where both the subpatterns start. Those positions are

potential because there are also time relationships between the states that were not checked

yet.

Remark 1. P2 appears 5 times in MSS Z because states (HR, –) and (HR, ↓) of P2 match the

following pairs of the state intervals of Z: (E1, E3), (E1, E6), (E1, E9), (E4, E6), and (E4, E9)

(in all the cases, time relationship R1,2 = b is satisfied). However, we require the positions of

the first state to be relevant only; therefore, Positions 1 and 4 are used.

One may want to store all possible appearances of P in MSS Z. However, the number of

such appearances may grow rapidly (Remark 1). This requires significant memory storage.

In turn, storing only starting positions of P in the MSS requires significantly less memory

because the starting positions are always inside the intersection of the starting positions of

the subpatterns form subk(P)\prefix(P). Therefore, the number of starting positions is a

nonincreasing function of pattern size. Such a trade-off gives the desired speed-up under a

reasonable memory consumption increase (Section 5).

In general, for each TP, we assign an EVL, a structure containing information on which

MSSs contain the TP, starting positions of the TP inside the MSSs, and the indices of (or

links to) the starting positions of the prefix of the TP inside the MSSs.

Kocheturov et al. Page 8

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 6.

• Let P.EVL denote EVL associated with P.

• Let P.EVL[Z].pos denote starting positions of P (positions of the first state of P)

inside MSS Z.

• Let P.EVL[Z].ind denote indices of specific starting positions of prefix(P)

(positions of the first state of prefix(P)) inside MSS Z. For position i ∈
P.EVL[Z].pos, a corresponding specific index of the prefix position is the index

of the smallest prefix position in Z, which is larger than i:

P . EV L[Z] . ind[i] = min j:P . EV L[Z] . pos[j] > p ,

where P = prefix(P) and p = P.EVL[Z].pos[i].

Example 5. TP P = (〈S1, S2, S3〉, R) (Figure 2a) has states S1 = (HR, –), S2 = (BP, –), S3 =

(HR, ↓) and relationships matrix R = (R1,2, R1,3, R2,3), where R1,2 = c, R1,3 = b, and R2,3 =

c. Its prefix is P0 = prefix(P) = (〈(BP, –), (HR, ↓)), (R1,2 = c)) (Figure 2d). In turn, the prefix

of P0 consists of a single state: P00 = prefix(P0) = prefix(prefix(P)) = (〈(HR, ↓)〉, ∅).

Now, for MSS Z in Figure 1, P00.EVL[Z].pos = {3, 6, 9} because state (HR, ↓) corresponds

to the state intervals E3, E6, and E9 of Z. P00EVL[Z].ind = ∅ because P00 does not have a

prefix. P0.EVL[Z].pos = {5} because state (BP, –) corresponds to the state interval E5 of Z
(Remark 1). P0.EVL[Z].ind = {2}. Finally, P.EVL[Z].pos = {4}, and P.EVL[Z].ind = {1}.

Now, we are ready to present the pseudo-code of the FTPMwEVL algorithm (Algorithm 2).

The EVL data structure allows to achieve three main results. First, it reduces the number of

potential starting positions of a candidate TP P by intersecting the starting positions of its

subpatterns from subk(P)\prefix(P) as in Example 4 and later linking the potential positions

to the smallest starting positions of prefix(P). Therefore, EVL reduces the number of

candidate TPs to check in general (see Algorithm 3 for the pseudo-code). For some MSSs

from the data set, the set of potential starting positions may be empty after the intersection

meaning that these MSSs will never contain P and they can be skipped.

Second, to verify that a candidate TP P is indeed inside FTP Z, we need to check that the the

states of P match the state intervals of Z and the temporal relationships are satisfied

according to Definition 2. However, instead of looking through all possible combinations of

appropriate state intervals, EVL allows to check a significantly smaller amount of state

intervals combinations: We need to check only the possible starting locations of P, from

which we can navigate directly to the appropriate state intervals matching the first state of

prefix(P). But these are the already found starting positions of prefix(P); therefore, we may

skip some state intervals matching the first state of prefix(P). Then, we navigate directly to

prefix(prefix(P)), and so on (see Algorithm 4).

Kocheturov et al. Page 9

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 2

The FTPMwEVL algorithm.

Require: D, FTPs of size 1 return FTPs

 FTPs ← FTPs of size 1

 new-FTPs ← FTPs of size 1

 while |new-FTPs| > 0 and no other criteria are met do

 candidates ← CreateCandidates(new-FTPs, FTPs of size 1)

 new-FTPs ← ∅

 for all P ∈ candidates do

 exposure ← exposure(P)

 if not FindPotentialPositionsAndlndices(D,P) then

 continue

 end if

 for all id ∈ P.p_ids do

 new-positions ← ∅

 new_indices ← ∅

 i ← 1

 while i ≤ |P.EVL[id].pos| do

 pos ← P.EVL[id].pos[i]

 ind ← P.EVL[id].ind[i]

 index ← Search(prefix(P), D, id, ind, {pos}, exposure)

 if index > −1 then

 new_positions ← new_positions ∪ {pos}

 new_indices ← new_indices ∪ {index}

 end if

 i ← i + 1

 end while

 P.EVL[id].pos ← new_positions

 P.EVL[id].ind ← new_indices

 if P.EVL[id].pos = ∅ then

 P.p_ids ← P.p_ids \ id

 end if

 end for

 if P is FTP in D then

 new-FTPs ← new-FTPs ∪{P}

 end if

 end for

 FTPs ← FTPs ∪ new-FTPs

 end while

Third, EVL allows to check only a portion of the states of P. For this purpose, the find the

smallest starting chain of P:

Kocheturov et al. Page 10

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Definition 7.

• P is a smallest starting chain of P, denoted P = chain(P), if

1. k = min l: ∄j > l and i ≤ l such that Ri, j = c

2. P ⊂ P, |P | = k

3. π(i) = i, i = 1, …, k

• Exposure of P, denoted as exposure(P), is computed as follows:

exposure(P) = chain(P) + 1 if chain(P) ≠ P,
P , otherwise .

Algorithm 3

Function FindPotentialPositionsandlndices(D, P).

Require: D, P return Boolean

 subpatterns ← subk(P) \ prefix(P)

 if subpatterns = ∅ then return False

 end if

 P . p_ids = ∩P ∈ subk(P) P . ids

 if not PotentiallyFrequent(P) then return False

 end if

 for id ∈ P.p_ids do

 P . EV L[id] . pos ∩P ∈ subpatterns P . EV L[id] . pos
 i = 1

 while i ≤ |P.EVL[id].pos| do

 pos = P.EVL[id].pos[i]

 if {j : prefix(P).EVL[id].pos[j] > pos} = ∅ then

 P.EVL[id].pos ← P.EVL[id].pos \ pos

 else

 P.EVL[id].ind[i] = min{j : prefix(P).EVL[id].pos[j] > pos}

 i ← i + 1

 end if

 end while

 if P.EVL[id].pos = ∅ then

 P.p_ids ← P.p_ids \ id

 end if

 end for

 if not PotentiallyFrequent(P) then return False

 end if

 return True

Kocheturov et al. Page 11

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 4

Function Search(P, D, id, ind, positions, exposure).

Require: R D, id, i, positions, exposure return Integer

 i = 1

 while i ≤ |P.EVL[id].pos| do

 if Check accumulated time relationships in D[id] then

 if exposure = 0 then return i

 end if

 pos ← P.EVL[id].pos[i]

 ind ← P.EVL[id].ind[i]

 return Search(prefix(P), D, id, ind, positions ∩ {pos}, exposure − 1)

 end if

 i ← i +1

 end while

 return − 1

In other words, by the smallest starting chain, we mean the smallest nonempty subpattern at

the beginning of P, such that all states of it are strictly before the remaining states of P (see

Figure 3 for an example). For many long patterns, the corresponding smallest starting chain

may be relatively small.

When we check if P is inside an MSS, we need to traverse only the states of chain(P) and the

first state of Pend if any is present because chain(P) may be pattern P itself. It is easy to see

since after we have arrived at the last state of chain(P) by recursive search function

(Algorithm 4) and checked that all time relationship between the states of chain(P) are

satisfied, we need to verify only that all the states of Pchain are before the next state of P after

chain(P) because all the states of chain(P) will be before all the rest of the states of P by

transitivity. Thus, we need to check |chain(P)| + 1 first states of P, if P ≠ chain(P), and all |P|

states of P, otherwise.

5 | COMPUTATIONAL RESULTS

To evaluate the performance of the FTPMwEVL algorithm, we tested it against FTPM on

real-life data sets. The TP was defined as in Definition 2 for both algorithms.

All computations were carried out on a virtual server machine with 100 GB of memory and

20 virtual cores with processor speed equivalent to 2.5 GHz each. Only one core was utilized

for single-thread computations. C++11 was used as a programming language. All

computation times show actual pattern mining time taken by the algorithms after any

preprocessing steps such as loading data and converting it into the abstraction domain.

It is important to state that the returned TPs were entirely identical for both algorithms. It

leaves computational time and memory usage as the only criteria for algorithm comparison.

Kocheturov et al. Page 12

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For both Tables 1 and 2, the following notation was used. In column “max k,” Inf stands for

no upper limit on the size of TPs. In column “mem. ratio,” NA means that the memory ratio

is not available due to the fact that FTPM algorithm was not able to find all FTPs in time

limit.

5.1 | Acute kidney injury data set

The acute kidney injury (AKI) data set consists of n = 5,202 medical records composed of

time series taken during surgical procedures (Korenkevych et al., 2016; Thottakkara et al.,

2016). Each record has an outcome associated with it: 1 if AKI was diagnosed after the

surgery (2,769 records), and 0, otherwise (2,433 records).

Using the University of Florida Integrated Data Repository, we have previously assembled a

single center cohort of perioperative patients by integrating multiple existing clinical and

administrative databases at University of Florida Health (Korenkevych et al., 2016;

Thottakkara et al., 2016). We included all patients admitted to the hospital for longer than 24

hr following any operative procedure between January 1, 2000, and November 30, 2010.

This data set was integrated with the laboratory, the pharmacy, and the blood bank databases

and intraoperative database (Centricity Perioperative Management and Anesthesia, General

Electric Healthcare, Inc.) to create a comprehensive intraoperative database for this cohort.

The study was designed and approved by the Institutional Review Board of the University of

Florida and the University of Florida Privacy Office.

Two time variables were chosen for examination: mean arterial BP and HR. The value

abstractions were used to convert time series from time domain to abstraction domain with

percentile values [0.1, 0.25, 0.75, 0.9] and support threshold θ (see Definition 5) ranging

from 0.5 to 0.9. The comparative data (see Table 1) indicates the superior performance of

FTPMwEVL from the computational time point of view. For θ = 0.7, FTPMwEVL found all

FTPs (there were no FTPs of size more than 18) in 39.58 s using 3,134.2 MB of memory,

whereas FTPM spent 34,280.4 s and 402.31 MB to achieve the same result. Therefore, the

speed-up was of magnitude 866, whereas the new algorithm used only 7.79 times more

memory. We set the computational time limit to 24 h (86,400 s). In this time frame, FTPM

was able to mine all FTPs only for θ ≥ 0.7. For θ = 0.6, FTPMwEVL found all FTPs (no

FTPS of size more than 22), yet FTPM managed to mine FTPs of Size 10 or lower and some

of Size 11. In this case, FTPMwEVL took 50.25 s (not shown in the table) to mine all FTPs

of Size 11 or lower, and the speed-up column reflects ratio 8,6400s/50.25s = 1,719.3. For θ
= 0.5, we limited the maximum FTP size to 12 due to FTPMwEVL memory consumption

considerations. Still, FTPM mined only FTPs of Size 7 or lower and some of Size 8 in

86,400 s.

As can be seen in Figure 4, the EVLs start working significantly better than the regular

vertical lists with increasing FTP size, which happens due to the better indexing strategy that

allows eliminating more candidate TPs and validating that a TP is not an FTP faster. Table 1

demonstrates a phenomenon of exponential growth of computational time and memory

usage with decreasing threshold level that is the main limitation of this pattern mining

paradigm.

Kocheturov et al. Page 13

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 | UCR time series classification archive

The remaining data sets were taken from UCR Time Series Classification Archive (Chen et

al., 2015). Out of 85 data sets available, only those that have two classes were picked what

resulted in 31 data sets. In this archive, each record has only one time series that was

converted into two series of time-interval states using both trend and value abstractions.

Percentiles [0.1, 0.25, 0.75, 0.9] for value abstractions were used to mine patterns in the

UCR data sets, where, for example, all values falling between percentiles 0.1 and 0.25 were

considered as low. For trend abstractions, a segment was considered increasing if the slope

was positive, and nonincreasing, otherwise. The support threshold θ and maximum size k
varied in ranges [0.2, 0.8] and [5, ∞], respectively, depending on the data set complexity:

We pushed the memory consumption of FTPMwEVL to the limit. Therefore, Table 2 reflects

the most difficult cases from FTPMwEVL memory usage point of view.

FTPMwEVL was slower only on three data sets. The most significant speed-up of

magnitude 3,685.85 was achieved on data set “computers.” For this case, FTPMwEVL

found all FTPs up to the predefined maximum size k = 14 (it was set on this level due to

memory considerations) in 446.08 s having used 26,100.1 MB of memory. FTPM mined all

FTPs of Size 8 or lower and some of Size 9 in the time frame of 86,400 s. Similar to the AKI

data set, the speed-up column reflects ratio 86,400s/23.44s = 3,685.85, where 23.44 s is the

running time of FTPMwEVL to find all FTPs of Size 9 or lower. Speed-up of 30 times or

more was achieved on four other data sets: the values in bold font. However, after removing

these outliers, the speed-up was on the level of 2.34 on average for the remaining data sets.

The memory consumption was 4.15 time higher for FTPMwEVL on average. In the worst

case, 35,566.5 MB of memory was allocated to store all FTPs, which is not a concern for

modern computational clusters.

6 | CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

In this paper, a new algorithm for mining FTPs was presented where the concept of EVL

was utilized. It outperformed the existing approach on many real-life data sets in terms of

computational time with minor exceptions. EVL requires more memory to be stored, which

is a typical trade-off in such a type of algorithms. The proof of concept is that server clusters

and personal computers have enough memory nowadays. Moreover, memory is becoming

cheaper significantly faster than CPU, as well as the memory size becomes five times of its

previous size every 2 years (see http://www.jcmit.com/), whereas CPU resources only

double during the same time frame (Moore et al., 1975). Thus, the problem of using large

amounts of memory is becoming less and less critical.

The speed-up was achieved due to EVL that works in two main directions: elimination of

more candidate TPs and faster verification of whether a candidate TP is an FTP or not. The

candidate elimination by EVL works under the assumption that if a pattern is an FTP than

all, its subpatterns are FTPs as well.

For other concepts of TP like recent TP (RTP) in Batal et al. (2016), this assumption does

not hold. Thus, the candidate elimination phase will not work here, and only less efficient

techniques like the vertical data format should be utilized instead. Still, the concept of

Kocheturov et al. Page 14

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jcmit.com/

positions and indices will work for RTPs because the prefix of an RTP is an RTP itself.

Therefore, EVLs can give a partial speed-up for Frequent RTP Mining too. The approach

can be generalized and applied to other domains where the notion of pattern is defined in

other ways.

Testing the applicability of the mined FTPs for classification purposes was out of the scope

of this paper. Therefore, full scale evaluation of the quality of the found FTPs will be

addressed in our future research. Despite the fact that other multivariate time series

classification algorithms are not directly applicable here, there are several feature

engineering strategies, including different distance measures to capture associations in time

series, to compare against the methodology of TP ining.

Presence of noise and high-frequency sampling leads to a large number of state intervals per

MSS and, therefore, to a large number of FTPs. Therefore, the effect of smoothing and noise

reduction strategies is expected to effect the classification performance.

ACKNOWLEDGEMENTS

AB, PP, and PM were supported by grant R01 GM-110240 by the National Institute of General Medical Sciences –
National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

Funding information

National Institute of General Medical Sciences, Grant/Award Number: R01 GM-110240

AUTHOR BIOGRAPHIES

Anton Kocheturov was born in Nizhny Novgorod, Russia. He received his bachelor’s

degree in business informatics from the National Research University Higher School of

Economics in Moscow, Russia, in 2012. He obtained his master’s degree in applied

mathematics and informatics from the same university in 2014. In August 2014, he joined

the PhD program at the Department of Industrial and Systems Engineering at the University

of Florida. He joined Siemens Corporation Corporate Technology in Princeton, NJ, USA, as

a data scientist in September 2018.

Petar Momcilovic is an Associate Professor in the Department of Industrial and Systems

Engineering at Texas A&M University. His research interests are in the domain of stochastic

modeling and applied probability. He received the PhD degree in Electrical Engineering

from Columbia University. His research has been supported by NSF, NIH, and IBM

Research.

Azra Bihorac is a Professor of medicine, surgery, and anesthesiology with career-long

clinical and research interest in critical care medicine, surgery, and nephrology. She has an

abiding interest in the use of rapid analytic techniques and artificial intelligence to optimize

the care of the unstable patient in real-time and advance translational studies linking basic

aspects of critical illness and surgical injury to clinical outcomes. She currently leads

Precision and Intelligence in Medicine (PrismaP), a multidisciplinary research partnership

group of experts in the field of data science, clinical informatics, and precision medicine in

Kocheturov et al. Page 15

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the College of Engineering and Medicine. The strength of this team stems from the unique

proximity between the researchers in engineering, computer science, medicine, and basic

science to implement advances in data science in perioperative and critical care medicine

and nephrology. With the support of NIH and NSG funding, the team has developed and

implemented real-time intelligent systems for predictive analytics and prognostic enrichment

in perioperative medicine. The team is developing machine learning and informatics tool for

real-time risk stratification and annotation of hospital-acquired complications and kidney

disease. Azra Bihorac has led several large clinical trials in AKI biomarkers including the

multicenter FDA validation study for the urinary AKI test and has published extensively

about the epidemiology and outcomes of perioperative AKI.

Panos Pardalos is a Distinguished Professor at the University of Florida and a world

renowned leader in global optimization, mathematical modeling, and data sciences. He is a

Fellow of AAAS, AIMBE, and INFORMS and was awarded the 2013 Constantin

Caratheodory Prize of the International Society of Global Optimization. In addition, Dr

Pardalos has been awarded the 2013 EURO Gold Medal prize bestowed by the Association

for European Operational Research Societies. This medal is the preeminent European award

given to Operations Research (OR) professionals for “scientific contributions that stand the

test of time”. Dr Pardalos has been awarded a prestigious Humboldt Research Award

(2018-2019). The Humboldt Research Award is granted in recognition of a researcher’s

entire achievements to date–fundamental discoveries, new theories, and insights that have

had significant impact on their discipline. Dr Pardalos is also a Member of the Lithuanian

Academy of Sciences, the Royal Academy of Spain, and the National Academy of Sciences

of Ukraine. He is the Founding Editor of Optimization Letters and Energy Systems and Co-

Founder of the International Journal of Global Optimization and Computational

Management Science. He has published over 500 papers, edited/authored over 200 books,

and organized over 80 conferences. He has a google h-index of 97 and has graduated 63 PhD

students so far. Details can be found in www.ise.ufl.edu/pardalos.

REFERENCES

Aggarwal CC, & Han J (2014). Frequent pattern mining: Springer International Publishing, 471.

Aggarwal CC, Ta N, Wang J, Feng J, & Zaki M (2007). Xproj: A framework for projected structural
clustering of xml documents. In Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 46–55.

Agrawal R, Imielinski T, & Swami A (1993a). Database mining: A performance perspective. IEEE
Transactions on Knowledge and Data Engineering, 5(6), 914–925.

Agrawal R, Imieliński T, & Swami A (1993b). Mining association rules between sets of items in large
databases. In ACM SIGMOD Record, 22, pp. 207–216.

Allen JF (1984). Towards a general theory of action and time. Artificial intelligence, 23(2), 123–154.

Ayres J, Flannick J, Gehrke J, & Yiu T (2002). Sequential pattern mining using a bitmap
representation. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, pp. 429–435.

Batal I, Cooper GF, Fradkin D, Harrison J Jr., Moerchen F, & Hauskrecht M (2016). An efficient
pattern mining approach for event detection in multivariate temporal data. Knowledge and
Information Systems, 46(1), 115–150. [PubMed: 26752800]

Kocheturov et al. Page 16

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ise.ufl.edu/pardalos

Batal I, Fradkin D, Harrison J, Moerchen F, & Hauskrecht M (2012). Mining recent temporal patterns
for event detection in multivariate time series data. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Beijing, China, pp. 280–288.

Batal I, Valizadegan H, Cooper GF, & Hauskrecht M (2011). A pattern mining approach for classifying
multivariate temporal data. In 2011 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Atlanta, Georgia, pp. 358–365.

Chen F, Deng P, Wan J, Zhang D, Vasilakos AV, & Rong X (2015). Data mining for the internet of
things: Literature review and challenges. International Journal of Distributed Sensor Networks,
11(8), 431047.

Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, & Batista G (2015). The UCR time series
classification archive. www.cs.ucr.edu/~eamonn/time_series_data/

Deshpande M, Kuramochi M, Wale N, & Karypis G (2005). Frequent substructure-based approaches
for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering,
17(8), 1036–1050.

Hauskrecht M, Visweswaran S, Cooper GF, & Clermont G (2013). Data-driven identification of
unusual clinical actions in the ICU. In Proceedings of the Annual Symposium of the American
Medical Informatics Association, Washington, DC.

Keogh E, Chu S, Hart D, & Pazzani M (2004). Segmenting time series: A survey and novel approach.
Data mining in time series databases, 57, 1–22.

Kocheturov A, & Pardalos P (2018). Frequent temporal pattern mining with extended lists. In Trends
in Biomathematics: Modeling, Optimization and Computational Problems, Cham: Springer, pp.
233–244.

Korenkevych D, Ozrazgat-Baslanti T, Thottakkara P, Hobson CE, Pardalos P, Momcilovic P, &
Bihorac A (2016). The pattern of longitudinal change in serum creatinine and 90-day mortality
after major surgery. Annals of surgery, 263(6), 1219–1227. [PubMed: 26181482]

Kuramochi M, & Karypis G (2001). Frequent subgraph discovery. In ICDM 2001, Proceedings IEEE
International Conference on Data Mining, 2001, IEEE, San Jose, CA, USA, USA, pp. 313–320.

Lee G, & Yun U (2017). A new efficient approach for mining uncertain frequent patterns using
minimum data structure without false positives. Future Generation Computer Systems, 68, 89–110.

Moerchen F (2006). Algorithms for time series knowledge mining. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY,
USA: ACM, pp. 668–673.

Moore GE (1975). Progress in digital integrated electronics. Electron Devices Meeting, 21, 11–13.

Moskovitch R, & Shahar Y (2015). Classification of multivariate time series via temporal abstraction
and time intervals mining. Knowledge and Information Systems, 45(1), 35–74.

Papapetrou P, Kollios G, Sclaroff S, & Gunopulos D (2009). Mining frequent arrangements of
temporal intervals. Knowledge and Information Systems, 21(2), 133.

Patel D, Hsu W, & Lee ML (2008). Mining relationships among interval-based events for
classification. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA: ACM, pp. 393–404.

Seeja K, & Zareapoor M (2014). Fraudminer: A novel credit card fraud detection model based on
frequent itemset mining. The Scientific World Journal, 2014, Article ID 252797, 10 pages.

Srivastava J, Cooley R, Deshpande M, &Tan P-N. (2000). Web usage mining: Discovery and
applications of usage patterns from web data. Acm SIGKDD Explorations Newsletter, 1(2), 12–23.

Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, Rashidi P, Pardalos P, Momcilovic P, & Bihorac A
(2016). Application of machine learning techniques to high-dimensional clinical data to forecast
postoperative complications. PloS one, 11(5), e0155705. [PubMed: 27232332]

Tiple P, Cavique L, &Cavalheiro Marques, N. (2017). Ramex-forum: A tool for displaying and
analyzing complex sequential patterns of financial products. Expert Systems, 34(1), e12174.

Tong Y, Chen L, Cheng Y, & Yu PS (2012). Mining frequent itemsets over uncertain databases.
Proceedings of the VLDB Endowment, 5(11), 1650–1661.

Tsai C-W, Lai C-F, Chiang M-C, & Yang LT (2014). Data mining for internet of things: A survey.
IEEE Communications Surveys and Tutorials, 16(1), 77–97.

Kocheturov et al. Page 17

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cs.ucr.edu/~eamonn/time_series_data/

Winarko E, & Roddick JF (2007). Armada–An algorithm for discovering richer relative temporal
association rules from interval-based data. Data & Knowledge Engineering, 63(1), 76–90.

Wu S-Y, & Chen Y-L (2007). Mining nonambiguous temporal patterns for interval-based events. IEEE
Transactions on Knowledge & Data Engineering, 6, 742–758.

Yun U, Lee G, & Lee K-M (2016). Efficient representative pattern mining based on weight and
maximality conditions. Expert Systems, 33(5), 439–462.

Zaki MJ (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and
Data Engineering, 12(3), 372–390.

Zaki MJ (2001). Spade: An efficient algorithm for mining frequent sequences. Machine learning,
42(1), 31–60.

Zaki MJ (2005). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE
Transactions on Knowledge and data Engineering, 17(8), 1021–1035.

Kocheturov et al. Page 18

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 1.
An example of a multivariate state sequence (MSS) with time variables heart rate (HR) and

blood pressure (BP)

Kocheturov et al. Page 19

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 2.
Temporal pattern (TP) and its subpatterns: (a) an example of a TP, (b) the subpattern without

the last state, (c) the subpattern without the middle state, (d) the prefix (or parent), the

subpattern without the first state

Kocheturov et al. Page 20

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 3.
An example of a temporal pattern (TP) and its smallest starting chain

Kocheturov et al. Page 21

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

FIGURE 4.
Computational time in seconds for Fast Temporal Pattern Mining with Extended Vertical

List (FTPMwEVL) and FTPM on acute kidney injury data set for mining Frequent Temporal

Pattern of sizes from 1 to 18 (there were no FTPs of a size larger than 19), given that all

FTPs of smaller sizes were already found. Threshold θ was set at 0.7. Total computational

time was 3,4280.4 and 39.58 s for FTPM and FTPMwEVL, respectively. Memory usage was

402.31 and 3,134.2 MB. Thus, FTPMwEVL achieved a significant speed-up of magnitude

866 while consuming 7.79 times more memory

Kocheturov et al. Page 22

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kocheturov et al. Page 23

TABLE 1

Computational time comparison of FTPMwEVL and FTPM on AKI data sets

θ Max k

FTPM FTPMwEVL

Speed-up Mem. ratiok Second MB k Second MB

0.9 Inf 7 0.16 1.86 7 0.1 15.8 1.06 8.49

0.8 Inf 12 465.5 24.92 12 2.3 198.5 204.27 7.96

0.7 Inf 18 34,280.4 402.31 18 39.6 3,134.2 866 7.79

0.6 Inf 10 >86400 NA 22 621.1 35,566.1 >1,719.3 NA

0.5 12 7 >86400 NA 12 467.8 28,950.4 >998.93 NA

Abbreviations: AKI, acute kidney injury; FTPMwEVL, Fast Temporal Pattern Mining with Extended Vertical List; NA, not applicable.

Expert Syst. Author manuscript; available in PMC 2020 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kocheturov et al. Page 24

TABLE 2

Computational time comparison of FTPMwEVL and FTPM on UCR data sets

Data set θ Max k

FTPM FTPMwEVL

Speed-up Mem. ratiok Second MB k Second MB

BeetleFly 0.8 8 8 702.0 5,577.2 8 275.5 1,8367.7 2.55 3.29

BirdChicken 0.7 Inf 18 742.9 1,564.4 18 269.9 4,873.5 2.75 3.12

Coffee 0.8 10 10 560.1 4,108.8 10 283.5 13,107.4 1.98 3.19

Computers 0.8 14 8 >86,400 NA 14 446.1 26,100.1 >3,685.8 NA

DistalPhalanx OutlineCorrect 0.7 Inf 16 160.3 1,435.1 16 113.3 5,382.6 1.41 3.75

Earthquakes 0.8 7 7 905.4 923.7 7 220.1 14,340.2 4.11 15.52

ECG200 0.6 Inf 18 2,349.7 3,225.3 18 300.5 11,863.1 7.82 3.68

ECGFiveDays 0.5 Inf 19 336.3 1,181.4 19 226.1 3,509.4 1.49 2.97

FordA 0.8 5 5 214.9 1,462.2 5 113.4 11,068.7 1.90 7.57

FordB 0.8 5 5 125.9 891.0 5 59.9 6,461.7 2.10 7.25

Gun_Point 0.2 Inf 18 35.3 129.6 18 27.0 377.7 1.31 2.91

Ham 0.8 7 7 783.8 5,894.6 7 310.5 26,318.9 2.52 4.46

HandOutlines 0.8 12 12 87.3 2,847.4 12 134.9 9,917.5 0.65 3.48

Herring 0.8 10 10 470.7 3,186.7 10 177.9 10,216.7 2.65 3.21

ItalyPowerDemand 0.2 Inf 13 1.2 16.8 13 1.4 46.4 0.86 2.75

Lighting2 0.8 8 8 50,929.9 6,080.6 8 495.1 35,555.4 102.87 5.85

MiddlePhalanx OutlineCorrect 0.7 Inf 17 301.6 2,689.2 17 184.3 9,633.6 1.64 3.58

MoteStrain 0.2 Inf 20 402.5 1,109.5 20 380.6 2,316.5 1.06 2.09

PhalangesOutlines Correct 0.5 Inf 14 96.6 1,115.3 14 71.9 4,035.1 1.34 3.62

ProximalPhalanx OutlineCorrect 0.4 Inf 19 588.0 4,271.8 19 307.5 15,383.3 1.91 3.60

ShapeletSim 0.8 7 6 >86,400 NA 7 378.1 25,489.8 >228.52 NA

SonyAIBORobot Surface 0.8 10 10 1,387.0 5,255.8 10 474.6 14,650.9 2.92 2.79

SonyAIBORobot SurfaceII 0.8 10 10 2,222.3 6,619.7 10 701.0 21,730.3 3.17 3.28

Strawberry 0.7 Inf 18 200.4 1,701.7 18 105.9 6,042.2 1.89 3.55

ToeSegmenta-tion1 0.8 8 8 754.7 2,904.8 8 181.5 11,128.0 4.16 3.83

ToeSegmenta-tion2 0.8 8 8 845.9 3,076.6 8 188.2 10,987.0 4.49 3.57

TwoLeadECG 0.2 Inf 17 15.1 93.5 17 15.2 2,43.1 0.99 2.60

wafer 0.7 Inf 11 >86,400 NA 29 275.6 10,952.4 >660.73 NA

Wine 0.7 Inf 22 481.8 4,288.6 22 354.8 14,043.6 1.36 3.27

WormsTwoClass 0.8 7 7 5,459.6 2,183.7 7 148.7 11,036.3 36.75 5.05

yoga 0.4 Inf 16 410.3 3,593.7 16 215.6 8,825.3 1.90 2.46

Abbreviations: FTPMwEVL, Fast Temporal Pattern Mining with Extended Vertical List; NA, not applicable.

Expert Syst. Author manuscript; available in PMC 2020 November 06.

	Abstract
	INTRODUCTION
	RELATED WORK
	PROBLEM DEFINITION
	Definition 1.
	Definition 2.
	Definition 3.
	Definition 4.
	Definition 5.

	Algorithm 1
	FREQUENT TEMPORAL PATTERN MINING WITH EXTENDED VERTICAL LISTS
	Definition 6.

	Algorithm 2
	Definition 7.

	Algorithm 3
	Algorithm 4
	COMPUTATIONAL RESULTS
	Acute kidney injury data set
	UCR time series classification archive

	CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	TABLE 1
	TABLE 2

