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ABSTRACT

Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both

wasted health care resources and patient harm. We present a machine learning method for analyzing the

unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI)

orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning

models – support vector machine, gradient boosting machine, and random forest – to a baseline model that

predicted the most common protocol for all observations in our test set. The gradient boosting machine model

significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of

accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of

automating sequence selection by applying machine learning to MRI orders. Automated sequence selection

has important safety, quality, and financial implications and may facilitate improvements in the quality and

safety of medical imaging service delivery.
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INTRODUCTION

The ultimate goal of medical imaging is to deliver results that convey

the most meaningful clinical information.1 However, even after

determining the most appropriate imaging test, a myriad of compli-

cated choices must be navigated during the course of image acquisi-

tion. The choices that determine how the most effective set of

medical images should be acquired can vary according to factors as

diverse as the institution in which the images are acquired, the body

part being tested, and the manufacturer of the imaging equipment

used. Imaging protocols are the precise instructions that define how

a set of medical images should be acquired. If images are acquired

incorrectly, important clinical findings may be missed, contributing

to wasted health care resources and patient harm.

Computerized clinical decision support systems have been shown

to improve clinical decision-making.2–5 In this work, we demonstrate

how machine learning techniques could be used as the basis of a clini-

cal decision support system designed to predict appropriate magnetic

resonance imaging (MRI) sequence selection.

Use of protocols in clinical care
In medical imaging, the term “protocol” is used to describe the con-

ditions, parameters, and settings for image acquisition and recon-

struction for a requested procedure.6 The imaging protocol may

include instructions for patient preparation, such as administration

of oral or intravenous contrast media, the area of the body to be im-

aged, and the specific imaging modality. In the nonemergent clinical

setting, a referring physician (primary care or specialist) orders a

radiological imaging procedure for a patient (Figure 1). This order

may be completed on a handwritten order form or entered into the

patient’s electronic medical record (EMR). In more sophisticated
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electronic order entry systems, the referring physician may be assis-

ted by decision support software to ensure that the order aligns with

evidence-based appropriateness guidelines.7,8

In some instances, the imaging protocol is obvious from the order.

For example, in the case of a chest X-ray, 2 standard views of the

chest are obtained. However, for more advanced imaging modalities,

no one-to-one correspondence exists between the imaging procedure

ordered and the protocol. Advanced imaging studies, such as com-

puted tomography (CT) and MRI, can have multiple protocols associ-

ated with a single procedure. Selection of the appropriate protocol

then depends on the indication for the exam and the patient history.

For example, a physician may order a brain MRI for a patient, but the

radiology practice may have multiple protocols for imaging the brain,

each designed to address a particular clinical question. In MR imag-

ing, a radiologist must review the clinical history, the indications for

the test, and the requested exam to select the correct imaging sequen-

ces that optimize the amount of information that can be obtained

from each imaging test. An MRI sequence is a computer program that

controls the soft-tissue contrast as well as the spatial orientation and

resolution of the images acquired.9 This step of assigning the appro-

priate imaging parameters is referred to as protocoling and ensures

that the correct protocol with the correct parameters is used.10

Limitations of the current system
One of the biggest limitations of the current protocoling workflow is

that it is time-consuming. In a recent study of the duration and quan-

tity of tasks performed in the radiology reading room, Schemmel

et al.11 found that protocoling and tasks related to image acquisition

make up a significant portion of the workday for most radiologists.

In addition, protocoling tasks disrupt the radiologist’s primary re-

sponsibility – image interpretation. For example, radiologists may be

interrupted while interpreting imaging studies by phone calls from

CT and MRI technologists regarding imaging protocols. A study by

Yu and colleagues12 found that an on-call radiologist could be inter-

rupted as many as 2 or 3 times during the interpretation of a single

CT or MRI scan to attend to responsibilities such as protocoling,

injections, and communicating with referring clinicians. These types

of disruptions divert attention from image interpretation and have

been correlated with interpretative errors and patient harm.13,14

Automated protocol selection
Manual protocoling is inherently inefficient, time-consuming, and

cumbersome. In this study, we extend methods for automated

protocol selection to specific MRI sequences. The primary objective of

this study was to determine whether machine learning techniques can

be used to prescribe specific MRI sequences from data found in MRI

orders. The secondary aim was to employ a distance metric to compare

model results in the application of a multilabel classification problem.

Our machine learning methods performed MRI sequence selec-

tion with a high degree of accuracy and significantly outperformed

the baseline model. We hope this work will contribute to the develop-

ment of systems and policies that reduce the potential for error and

improve the quality and safety of medical imaging service delivery.

METHODS

Data description
Data were supplied by St Michael’s Hospital Department of Medical

Imaging. St Michael’s Hospital is an academic teaching hospital and

level I trauma center in downtown Toronto, Ontario, Canada. Per-

mission to use the dataset was granted by the hospital’s institutional

review board. Using the Montage Search and Analytics platform

(Montage Healthcare Solutions, Philadelphia, PA, USA), radiology

information system (RIS) data were extracted from all MRI brain

examinations performed during an 18-month period from January

1, 2014, to June 30, 2015. The RIS dataset, which contained 7487

observations in .csv format, documented patient demographics,

study type, and the study’s clinical indication. Data from the EMR

and interpretations of prior medical imaging reports were not used

in the present work, but may be included in a future study. All data

analysis was performed using R statistical software (R Foundation

for Statistical Computing, Vienna, Austria).

Features
A training dataset for the models was constructed using traditional

natural language processing techniques.15 An example of the clinical

indication provided by the ordering physician would be the follow-

ing: “Clinical History: Assess acute ischemic stroke versus Todds

paralysis.” Text from the clinical indications stated in MRI orders

was converted to lowercase and stop words were removed. Addi-

tional stop words specific to our narrative data included words such

as “clinical,” “indication,” “history,” “please,” and “assess.”

The processed sentences produced a term-document matrix,

with each word representing a separate column and each row repre-

senting an MRI order. Each word served as a single independent var-

iable in the model. Additional independent variables included

patient age and sex, location, and ordering service.

Training strategy
All models were trained using the dataset from the 18-month obser-

vation period. We randomly divided the dataset into a training set

(70% of the total dataset) and a test set (30% of the total dataset).

In the dataset, each MRI had an associated set of MRI sequences,

which were selected at the time of protocoling by a radiologist.

Radiologists at our institution can choose from 41 different MRI

sequences. The prediction task represents a multilabel classification

problem with 41 classes, each corresponding to an MRI sequence.

Algorithms
To make meaningful comparisons, we defined a baseline method

against which we compared the results of the prediction models.

As our baseline method, we predicted the most commonly occurring

outcome in our dataset for all observations in our test set.

Figure 1. Process of medical imaging exam protocoling.
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Using the caret package in R, support vector machine, gradient

boosting machine (GBM), and random forest models were trained

with the term-document matrix and patient demographic information

to predict the specific MRI sequences for observations in the test set.

Model evaluation
For each machine learning algorithm, we created 41 different binary

classifiers to predict whether or not a specific sequence should be

prescribed to an observation in the test set. We then compared the

algorithm’s results to sequence selections made by our radiologists.

To measure the quality of the model predictions, we calculated accu-

racy, precision, and recall. We also calculated Hamming loss,16

which is a multilabel distance metric that measures the proportion

of misclassifications. The lower the Hamming loss, the lower the

rate of misclassification.

RESULTS

Descriptive statistics of our dataset are presented in Table 1. Over-

all, our dataset consisted of 7487 observations that represent a sin-

gle record of a single study request in the RIS and does not include

the final report. Exploratory data analysis demonstrated that the

dataset was relatively sparse, with label density of 0.147 and cardi-

nality of 6.02. Label density of 0.147 indicates that the average per-

centage of occurrence of each sequence in the dataset is 14.7%.

Label cardinality of 6.02 signifies that each observation has an aver-

age of >6 labels, that is, MRI sequences, associated with it.

The performance of the machine learning models relative to the

baseline is shown in Table 2. All 3 machine learning models outper-

formed the baseline. Of these models, GBM demonstrated the best

performance on all metrics.

DISCUSSION

Selection of MRI sequences is an important task in advanced medi-

cal imaging. A radiologist selects sequences that will provide the

greatest amount of information and enable the interpreter of the

images to answer the clinical question posed by the referring

clinician. However, protocoling workflow can be inefficient and

error-prone.1

Automated sequence selection therefore has important safety,

quality, and financial implications. In the area of safety, these tech-

niques may free radiologists from distraction, allowing them to fo-

cus on image interpretation, and reduce variation in sequence

selection, which often introduces error and waste in radiology work-

flows.17 In the quality and financial areas, this approach may facili-

tate greater efficiency, reducing wait times and improving

accessibility to medical imaging services while improving patient

throughput and revenue for imaging providers.

Here we demonstrate an automated approach to protocoling

MRI brain procedures at the sequence level. Performing predictions

at the level of the MRI sequence takes the problem of protocoling to

a more granular level than previous studies.18 This allows for greater

standardization and a more robust clinical application.19

Our results demonstrate that the baseline model was relatively

accurate (Table 2). This is likely because the fast brain protocol is

commonly used at our institution (Table 1) and the sequences used

in this protocol are shared by other protocols. However, despite this

favorable level of accuracy, the Hamming loss of our baseline is

poor, suggesting that the baseline struggles with edge cases. This po-

tential limitation of the baseline is alluded to by the sparse nature of

the dataset. The machine learning approaches significantly outper-

form the baseline, with GBM demonstrating the best performance.

Despite the high level of accuracy of our machine learning ap-

proach, several limitations are noted. The model was constructed us-

ing data from a single institution. Our hospital has robust neurology

and neurosurgery services, a factor that has implications for the lan-

guage used in imaging orders and the mix of procedures. This may

limit the direct translation of these models to other academic hospi-

tals or community settings that may have less advanced MRI capa-

bilities. In addition, these models did not make use of EMR data. In

practice, radiologists may supplement the history provided in the

Table 1. Dataset characteristics

Characteristics Overall (7487) Training (5239) Testing (2248)

Age (mean [SD]) 50.4 (16.4) 50.4 (16.4) 50.2 (16.3)

Female (%) 60.3 59.2 62.6

No. of wordsa (mean [SD]) 3.9 (2.4) 3.9 (2.4) 3.9 (2.3)

Location (%)

Emergency 1.1 1.1 1.2

Inpatient 19.2 19.3 19.0

Outpatient 79.4 79.4 80.0

Ordering service (%)

Neurology 28.3 28.7 27.4

Neurosurgery 21.0 20.3 22.5

Family medicine 17.6 17.6 17.7

Most common protocols

Fast brain with gadoliniumb 1513 1059 454

Fast brainc 1319 923 396

Sella with gadoliniumd 908 636 272

SD, standard deviation.
aRepresents the mean number of words in the clinical indication per examination.
bConsists of the following sequences: sagittal T1 3D, axial T2 turbo spin echo (TSE), axial T2 fluid-attenuated inversion recovery (FLAIR), axial T2 fast field

echo (FFE), diffusion-weighted imaging (DWI), axial T1, axial T1 with gadolinium, coronal T1 3D with gadolinium.
cConsists of the following sequences: sagittal T1, axial T2 TSE, axial T2 FLAIR, axial T2 FFE, DWI.
dConsists of the following sequences: sagittal T1, coronal T1, coronal T2, sagittal T1 with gadolinium, coronal T1 with gadolinium.
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procedure order with details from the EMR.20 The inclusion of

patient history from the EMR has the potential to significantly im-

prove the results. In future studies we may be able to improve the

performance of our models by employing additional preprocessing

steps, including negation detection, part-of-speech processing, and

assigning to clinical ontologies.21

CONCLUSION

Our results demonstrate the feasibility of using machine learning

techniques to automatically process unstructured, free-text clinical

indications and patient demographics to reliably perform sequence-

level protocol selection in MRI brain procedures. Of the models

tested, the GBM model achieved the highest accuracy (>95%) on

the test set. This method demonstrates the potential application of

machine learning as a foundation for clinical decision support tools

to guide sequence acquisition decisions and potentially improve

efficiency, quality, and cost.
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