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Abstract. Arsenic trioxide (ATO) is commonly used to treat 
patients with acute promyelocytic leukemia since it was autho-
rized by the U.S. Food and Drug Administration in the 1970s, 
but its applicability has been limited by its cardiotoxic effects. 
Therefore, the aim of the present study was to investigate the 
cardioprotective effects and underlying mechanism of crocetin 
(CRT), the critical ingredient of saffron. Sprague‑Dawley rats 
were then randomly divided into four groups (n=10/group): 
i) Control group; ii) ATO group, iii) CRT‑low (20 mg/kg) 
group; and iv) CRT‑high (40 mg/kg) group. Rats in the Control 
and ATO groups were intraperitoneally injected with equal 
volumes of 0.9% sodium chloride solution, and CRT groups 
were administered with either 20 and 40 mg/kg CRT. Following 
6 h, all groups except the Control group were intraperitoneally 
injected with 5 mg/kg ATO over 10 days. Cardiotoxicity was 
indicated by changes in electrocardiographic (ECG) patterns, 

morphology and marker enzymes. Histomorphological 
changes in the heart tissue were observed by pathological 
staining. The levels of superoxide dismutase, glutathione 
peroxidase, malondialdehyde and catalase in the serum 
were analyzed using colometric commercial assay kits, and 
the levels of reactive oxygen species in the heart tissue were 
detected using the fluorescent probe dihydroethidium. The 
expression levels of inflammatory factors and activities of 
apoptosis‑related proteins were analyzed using immunohisto-
chemistry. The protein expression levels of silent information 
regulator of transcription 1 were measured using western blot-
ting. Cardiotoxicity was induced in male Sprague‑Dawley rats 
with ATO (5 mg/kg). CRT (20 and 40 mg/kg) and ATO were 
co‑administered to evaluate possible cardioprotective effects. 
CRT significantly reduced the heart rate and J‑point elevation 
induced by ATO in rats. Histological changes were evaluated 
via hematoxylin and eosin staining. CRT decreased the levels 
of creatine kinase and lactate dehydrogenase, increased the 
activities of superoxide dismutase, glutathione‑peroxidase 
and catalase, and decreased the levels of malondialdehyde 
and reactive oxygen species. Moreover, CRT downregulated 
the expression levels of the pro‑inflammatory factors IL‑1, 
TNF‑α, IL‑6, Bax and p65, as well as increased the expression 
of Bcl‑2. It was also identified that CRT enhanced silent infor-
mation regulator of transcription 1 protein expression. Thus, 
the present study demonstrated that CRT treatment effectively 
ameliorated ATO‑induced cardiotoxicity. The protective 
effects of CRT can be attributed to the inhibition of oxidative 
stress, inflammation and apoptosis. Therefore, CRT represents 
a promising therapeutic method for improving the cardiotoxic 
side effects caused by ATO treatment, and additional clinical 
applications are possible, but warrant further investigation.

Introduction

Arsenic trioxide (ATO) is the highly toxic main ingredient 
of arsenic, which is used in Chinese medicine. For instance, 
ATO has been used to successfully treat recurrent and 
refractory acute promyelocytic leukemia (APL) since the 
1970s  (1). The efficacy of ATO is explained by its ability 
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to induce apoptosis and the partial differentiation of APL 
cells (2), and understanding the mechanism of ATO against 
APL has enabled additional breakthroughs in cancer treat-
ment (2). Although well‑established for its therapeutic effects, 
QT  interval (measure of the time between the start of the 
Q wave and the end of the T wave in the heart's electrical 
cycle) prolongation, action potential variation, torsade de 
pointes and sudden cardiac death are associated with ATO 
treatment and have hindered its application (3,4). The major 
cause of cardiotoxicity is the increased oxidative stress 
resulting from arsenic deposition (5), and this likely involves 
a variety of mechanisms, including oxidative DNA damage, 
the production of reactive oxygen species (ROS) in cardio-
myocytes and arsenic accumulation (6). Oxidative stress is 
the most compelling of the numerous mechanisms underlying 
ATO‑induced toxicity, as it is a key driver in apoptosis and 
myocardial injury (7,8). Therefore, antioxidative agents may 
protect against ATO‑induced cardiotoxicity. For example, the 
antioxidant resveratrol protects against ATO‑induced cardio-
toxicity by reducing oxidative stress (7).

The accumulation of ROS causes oxidative damage due 
to an imbalance in the production and elimination of oxygen 
free radicals in cells (9). Free radicals can induce a series of 
oxidation reactions that cause damage from the molecular to 
the organ level (10). Malondialdehyde (MDA), a product of 
lipid peroxidation (LPO), can be used to reflect free radical 
metabolism and the state of cells attacked by free radicals (11). 
Superoxide dismutase (SOD) is an oxygen free radical scav-
enger that protects cells by neutralizing ROS, and SOD levels 
indirectly represent the ability of the cell to protect itself from 
free radicals (12). When the production and neutralization of 
free radicals are in dynamic equilibrium, tissue is not suscep-
tible to damage (13). LPO is caused by the combined effect 
of unsaturated fatty acids and free radicals, resulting in an 
imbalance between the unsaturated fatty acids and proteins in 
membranes (14). This imbalance reduces membrane fluidity 
and permeability, increases the influx of Ca2+ and indirectly 
restricts the action of membrane proteins, which leads to 
cellular swelling and Ca2+ overload (15).

Cytokines are inflammatory mediators involved in immune 
reactions and pro‑inflammatory cytokines, such as IL‑1, IL‑6 
and TNF‑α, contribute to the pathology and progression of 
numerous diseases, such as numerous types of inflammatory 
disease and cancer (16). NF‑κB/p65 regulates genes involved 
in inflammatory responses and can be induced in multiple 
cell types (17). Moreover, arsenic exposure likely increases 
the expression of inflammation molecules, and as a tran-
scriptional master regulator of pro‑inflammatory cytokines, 
NF‑κB/p65 can be stimulated by ATO and trigger inflamma-
tory responses (18).

The primary mechanism underlying the adverse effects 
of arsenic‑induced cardiac injury may be associated with 
the generation of ROS and ROS‑induced apoptosis (19,20). 
Oxidative stress is an important element of ATO‑induced 
mitochondria‑mediated apoptosis (21). Apoptosis is a common 
mechanism of cardiotoxicity, and ATO triggers apoptosis in 
cells (22). However, clinically suitable, cardioprotective thera-
peutics do not protect against arsenic toxicity.

Silent information regulator of transcription (SirT1) is a 
NAD+‑dependent histone deacetylase, which regulates the 

proliferation, apoptosis, differentiation, aging and metabolism 
of cells in a tissue‑specific manner, as well as serves an impor-
tant role in the modulation of angiocardiopathy  (23). The 
overexpression of SirT1, within a certain range, counteracts 
myocardial hypertrophy and aging (24). Furthermore, SirT1 
exerts pro‑survival effects in a variety of cells and tissues due to 
its antioxidative and anti‑apoptotic properties (25), suggesting 
that SirT1 is a promising mediator of the cardioprotective 
effects required to combat ATO‑induced cardiotoxicity.

Crocetin (CRT; C20H24O4; molecular weight, 328; Fig. 1) 
is the critical ingredient of saffron (Crocus  sativus  L) 
and possesses beneficial pharmacological effects  (26). In 
Ayurvedic and other folk medicines, saffron is used for its 
numerous pharmacological properties such as analgesia, 
prostration, renoprotection, memory enhancement and 
anti‑depression (27,28). CRT can also reduce LPO in isch-
emia‑reperfusion‑induced oxidative damage in male albino 
rats and scavenge free radicals (28). CRT is a natural carotenoid 
dicarboxylic acid (29), which possesses a diterpene and has a 
symmetrical structure with alternating trans‑double bonds in 
alkyl chains and four methyl and carboxyl groups at both ends 
of the backbone (30,31). CRT has beneficial cardiovascular 
effects, such as reducing oxidative stress (32) and inhibiting 
the development of insulin resistance (33), atherosclerosis (34), 
hypertension (35) and cardiac hypertrophy (36,37). CRT also 
possesses a broad diversity of pharmacological properties, 
including antioxidative and anti‑inflammatory effects (38,39). 
CRT significantly decreases LPO, enhances glutathione 
peroxidase (GSH‑Px) and SOD activity and improves the 
histopathology of the myocardium in hypertrophic tissue (32). 
Moreover, CRT regulates myocardial enzymes to reduce 
cardiac cytotoxicity and apoptosis levels (32,40). However, it 
is yet to be elucidated whether CRT attenuates ATO‑induced 
cardiotoxicity and reduces arsenic accumulation.

Based on the aforementioned findings, the present study 
aimed to investigate the ameliorative effects and mechanism 
of CRT on ATO‑induced cardiotoxicity in rats. It was hypoth-
esized that CRT could protect against cardiotoxicity, and thus 
an ATO‑induced cardiotoxicity model was established to 
examine CRT. Furthermore, oxidative stress, inflammatory 
cytokines and apoptotic factors were evaluated in rats with 
cardiotoxicity.

Materials and methods

Experimental materials. CRT (98% purity) was purchased 
from Shanghai Yuanye Bio‑Technology Co., Ltd. ATO was 
purchased from Beijing Shuanglu Pharmaceutical Co., Ltd. 
Sodium chloride solution was purchased from Shijiazhuang 
No. 4 Pharmaceutical Co., Ltd. CRT and ATO were dissolved 
in saline and used immediately after preparation. CRT weas 
dissolved to a final concentration of 20 or 40 mg/kg, while 
ATO was dissolved to a final concentration of 5 mg/kg.

Experimental animals. In total, 40 adult male Sprague‑Dawley 
(SD) rats (age, 6‑8 weeks; weight 180‑220 g) were obtained from 
the Laboratory Animal Center of Hebei Medical University. 
Rats were raised in rust‑free cages at 22‑25˚C and 45‑60% 
relative humidity on a 12‑h light‑dark cycle with ad libitum 
intake of granular rat chow and tap water. Veterinarians 
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and researchers monitored the animals' health and behavior 
twice per day at 8:00 and 17:00. All animal experiments were 
approved by the Institutional Animal Experimental Ethics 
Committee of the Hebei University of Chinese Medicine.

Experimental model. After 7 days of adaptive feeding, the rats 
were randomly separated into four groups (n=10): Control (Con), 
ATO, CRT‑L (ATO + low concentration of CRT treatment) and 
CRT‑H (ATO + high concentration of CRT treatment). The 
CRT‑L and CRT‑H groups were given 20 and 40 mg/kg CRT, 
respectively, followed by 5 mg/kg ATO 6 h later. The ATO 
group was given a CRT‑matched amount of 0.9% sodium chlo-
ride solution followed by 5 mg/kg of ATO 6 h later. The Con 
group was given the same amount of 0.9% sodium chloride 
solution followed by an ATO‑matched amount of 0.9% sodium 
chloride solution 6 h later. All treatments were delivered daily 
via intraperitoneal injection for 10 days. After 10 days, the rats 
were anesthetized with 1.0 g/kg ethyl carbamate intraperito-
neally (41,42). An electrocardiogram (ECG) was performed 
in anesthetized rats. Then, the blood (5 ml) was collected by 
exsanguination from the abdominal aorta (43), and the serum 
was isolated via centrifugation at 1,500 x g for 10 min at 4˚C 
and stored at ‑20˚C for further analyses.

The rats were euthanized with intraperitoneal injection 
of sodium pentobarbital (200 mg/kg) (44). Then, hearts were 
quickly dissected out from each animal and the blood was 
removed using cold physiological saline. The heart tissue 
samples were fixed with 4% paraformaldehyde solution at 
room temperature for 24 h or frozen in liquid nitrogen, and 
then stored at ‑20˚C until use.

Electrocardiogram measurement. After the final treatment, 
the rats were deprived of food and water for 12 h. The rats were 
anesthetized, and then three needle electrodes were attached 
to the right arm, left arm and left leg of the rats (45), and the 
ECG patterns were recorded using a RM6240BD Biological 
Signal Collection system (Cheng Yi) to monitor changes in 
ECG heart rate and J‑point elevation.

Histopathological analysis. After rats were euthanized 
via overdose sodium pentobarbital (200 mg/kg), the hearts 
were rapidly excised. Prior to hematoxylin and eosin (H&E) 
staining, the apical myocardium was fixed in 4% parafor-
maldehyde for 24 h at room temperature. The heart tissues 
were removed from the fixing fluid, and were then cleared, 
dehydrated, macerated and embedded in paraffin. The tissue 
samples were sectioned at 5‑µm thickness and were stained 
with hematoxylin for 15 min and eosin for 5 min, both at 
room temperature according to standard procedures (46). The 
samples were visualized under an optical microscope at x400 
magnification (Leica DM4000B; Leica Microsystems GmbH).

Detection of lactate dehydrogenase (LDH) and creatine 
kinase (CK) activities. When the rats were anesthetized, blood 
(5 ml) was collected by exsanguination from the abdominal 
aorta and serum was isolated via centrifugation at 1,500 x g for 
10 min at 4˚C. Then, diagnostic markers for CK (cat. no. A032) 
and LDH (cat. no. A020‑1) were measured using commercially 
available LDH and CK kits (Nanjing Jiancheng Bioengineering 
Institute) according to the manufacturer's instructions.

Detection of ROS. The frozen cardiac tissues were used to 
analyze ROS generation reflected in the fluorescence inten-
sity of dihydroethidium (DHE; cat. no. KGAF019; Nanjing 
KeyGen Biotech Co., Ltd.). After the animals were euthanized 
by overdose of sodium pentobarbital, the hearts were quickly 
excised, embedded in the optimal cutting temperature (OCT) 
compound and flash‑frozen in liquid nitrogen. The unfixed 
frozen samples were sectioned (thickness, 10 µm) at ‑20˚C (47). 
After fixing with 50% OTC at ‑80˚C for 2 h, the sections 
were washed three times with PBS for 5 min each time and 
DHE (50 µM) was applied to each tissue section, which was 
incubated in a light‑protected humidified chamber at 37˚C 
for 30 min. Sections were washed three times with PBS for 
5 min each time (48). Subsequently, the sections were sealed 
with neutral balsam (cat. no. 10004160; Sinopharm Chemical 
Reagent Co., Ltd.), and observed under a fluorescence micro-
scope (magnification, x400; Olympus Corporation) (49). ROS 
production (red staining) was quantified using Image‑Pro Plus 
6.0 software (Media Cybernetics, Inc.).

Detection of catalase (CAT), SOD, GSH‑Px and MDA. Blood 
(5 ml) samples were collected from the abdominal aorta. 
Serum was isolated via centrifugation at 1,500 x g for 10 min 
at 4˚C and the enzymatic activities of CAT (cat. no. A007‑1), 
SOD (cat. no. A001‑1) and GSH‑Px (cat. no. A005‑1), as well as 
the concentration of MDA (cat. no. A003‑1) were determined 
using colorimetric commercially available kits (Nanjing 
Jiancheng Bioengineering Institute) according to the manufac-
turer's instructions.

Immunohistochemistry. Immunohistochemistry was performed 
according to the methods previously described (50‑52). After 
the heart of the rat was removed, samples were fixed in 4% 
paraformaldehyde for 24 h at room temperature and embedded 
in paraffin. Then, the paraffin‑embedded tissue sections (4‑µm 
thick) were deparaffinized, rehydrated in a descending series 
of ethanol (100, 95, 90 and 80%) and immersed in retrieval 
solution. Sections were incubated with 3% methanol‑H2O2 
for 20‑30 min at 37˚C to eliminate endogenous peroxidase 
activity. Non‑specific staining was blocked with 5% I g 
blocking reagent and 5% serum (Shanghai Regal Biological 
Technology Development Co., Ltd.) for 15 min at 37˚C after 
rinsing. Sections were incubated with primary antibodies 
against IL‑1 (1:100; cat. no. 16765‑1‑AP; ProteinTech Group, 
Inc.), IL‑6 (1:100; cat. no. 21865‑1‑AP; ProteinTech Group, 
Inc.), Bax (1:100; cat. no. 50599‑2‑Ig; ProteinTech Group, 
Inc.), TNF‑α (1:100; cat. no. 60291‑1‑Ig; ProteinTech Group, 
Inc.), Bcl‑2 (1:100; cat. no. 26593‑1‑AP; ProteinTech Group, 
Inc.) and p65 (1:100; cat. no. 10745‑1‑AP; ProteinTech Group, 
Inc.) at 4˚C overnight. The following day, the sections were 
maintained at room temperature and washed with PBS three 

Figure 1. Chemical structure of crocetin.
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times for 5 min each time. Next, the sections were incubated 
with HRP‑conjugated anti‑rabbit and anti‑mouse secondary 
antibodies (1:200; cat. nos. PV‑6001 and PV‑6002; OriGene 
Technologies, Inc.) at room temperature for 20 min and then 
washed in PBS three times (5 min each time). The 3,3'diami-
nobenzidine (DAB) dye solution was added onto the sections 
and incubated for 5‑10 sec at room temperature, at which point 
the reaction was stopped using water washes three times. Color 
development was induced with a DAB kit (cat. no. ZLI‑9019; 
OriGene Technologies, Inc.) and counterstained with hema-
toxylin for 2  min at room temperature. The slides were 
subsequently dehydrated with an ascending gradient ethanol 
series (30, 50, 70, 80, 90, 95 and 100%) for 3 min each at room 
temperature. Xylene was used to make the sections transparent 
and these were then sealed. The slices were visualized using 
a digital light microscope (magnification, x400) and the 
resulting images were analyzed using Image‑Pro 6.0 software 
(Media Cybernetics, Inc.).

Western blotting. Frozen heart tissues were removed, homog-
enized and lysed in ice‑cold cell lysis buffer (cat. no. 9803; Cell 
Signaling Technology, Inc.). The proteins were extracted from 
different issues and quantified using the BCA assay. Protein 
samples (50 µg) were subjected to SDS‑PAGE and transferred to 
PVDF membranes (EMD Millipore) (51). The membranes were 
blocked with 5% skim milk in TBS‑0.1% Tween‑20 (TBST) 
buffer at room temperature for 1 h. The cell membranes were 
incubated overnight at 4˚C with primary antibody in blocking 
buffer, including anti‑SirT1 (cat.  no.  60303‑1‑Ig; 1:1,000; 
ProteinTech Group, Inc.) and anti‑β‑actin (cat. no. TA‑09; 

1:1,000; OriGene Technologies, Inc.). Next, the membranes 
were washed three times with TBST and then incubated with 
horseradish peroxidase‑conjugated secondary anti‑rabbit 
and anti‑mouse antibodies (cat. nos. 7074 and 7076; 1:5,000; 
Cell Signaling Technology, Inc.) for 1 h at room temperature. 
Membranes were washed three times and proteins were visual-
ized using the ECL Detection system (TransGen Biotech Co., 
Ltd.) (53), and imaged using Tanon‑1600 Gel Image Analysis 
system (Tanon Science and Technology Co., Ltd.). Bands were 
quantified using Tanon Gis 1D software (Tanon Science and 
Technology Co., Ltd.) (49).

Statistical analysis. All data were statistically analyzed using 
SPSS 20.0 software (IBM Corp.) and graphs were created using 
Origin Pro 9.1 software (Europa Science Ltd.). A single‑factor 
ANOVA was used for multigroup comparisons followed by 
Tukey's test. Data are presented as the mean ± SEM. Each 
experiment was repeated ≥3 times. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Effect of CRT on ECG. Sample tracings of ECG from the 
experimental animals are presented in Fig. 2A. Compared with 
the Con group, the heart rate and J‑point of the rats in the ATO 
group were significantly increased (P<0.01), suggesting that 
the experimental myocardial injury model was successfully 
established (Fig. 2B and C). Moreover, these two indexes were 
significantly lower in the CRT‑L and CRT‑H groups compared 
with the ATO group (P<0.01).

Figure 2. Effects of CRT on ECG. (A) Representative ECG tracings from each group. Statistical analysis of (B) J‑point elevation and (C) heart rate. Data are 
presented as the mean ± SEM for each group, n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. CRT, crocetin; ECG, electrocardiogram; Con, control; 
ATO, arsenic trioxide; CRT‑L, ATO + low concentration of CRT treatment group; CRT‑H, ATO + high concentration of CRT treatment group.
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Effects of CRT on histopathology. The results of the histo-
pathological examination of the myocardial tissues are 
presented in Fig. 3. The H&E‑stained heart sections from the 
Con group had healthy cardiomyocyte structures. However, 
the sections from the ATO‑induced cardiotoxicity group 
contained extensive necrosis, inflammatory cell infiltration, 
cytoplasmic vacuolization, slight fiber swelling, soft intersti-
tial edema and myofiber loss. Compared with the Con group, 
the ATO caused a significant increase in the morphological 
changes (P<0.01; Fig. 3B). It was found that treatment with 
CRT‑L and CRT‑H significantly improved these signs of 
ATO‑induced cardiotoxicity (P<0.01; Fig. 3B), suggesting 
that CRT exerted a potent protective effect in this model of 
cardiac injury.

Effect of CRT on CK and LDH activities. Serum CK and 
LDH activities were significantly increased in the ATO group 
(P<0.01; Fig. 4A and B) compared with the Con group. Relative 
to the ATO group, CRT treatment resulted in a significant 
decrease in CK and LDH activities at 20 mg/kg/day (P<0.01) 
and at 40 mg/kg/day (P<0.01).

Effects of CRT on ROS release. A significant increase in ROS 
generation (red) was observed in the rat hearts from the ATO 
group in comparison with the Con group (Fig. 5). However, 
CRT preconditioning partially eliminated these changes 
(P<0.01), and ROS generation was markedly lower in the 
CRT‑H group compared with the CRT‑L group.

Effects of CRT on SOD, GSH‑Px, MDA and CAT. Compared 
with the Con group, the ATO group had increased myocardial 
MDA activity (P<0.01), but decreased SOD, GSH‑Px and CAT 
activities (P<0.01) (Fig. 6A‑D). Furthermore, CRT administra-
tion (20 and 40 mg/kg/day) led to a dose‑dependent increase 
in SOD, GSH‑Px and CAT activities (P<0.01 or P<0.05), along 
with a concomitant decrease in MDA content compared with 
the ATO group (P<0.01 or P<0.05). Therefore, CRT attenuated 
the oxidative stress associated with ATO‑induced cardiotox-
icity in a dose‑dependent manner (P<0.01).

Effects of CRT on IL‑1, IL‑6 and TNF‑α expression levels. 
The expression levels of IL‑1, IL‑6 and TNF‑α in cardiac 
tissue were assessed using immunohistochemistry (Fig. 7A‑F). 

Figure 3. Effects of CRT on H&E staining in ATO‑induced cardiotoxicity in rats. (A) Myocardial tissue obtained from the Con, ATO, CRT‑L and CRT‑H groups. 
Histopathological changes are indicated by white arrows. (B) Pathological damage scores of the heart tissue in the Con, ATO, CRT-L and CRT-H groups. Scale bar, 
50 µm. Data are presented as the mean ± SEM for each group, n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic 
trioxide; CRT‑L, ATO + low concentration of CRT treatment group; CRT‑H, ATO + high concentration of CRT treatment group; H&E, hematoxylin and eosin.

Figure 4. Effects of CRT on CK and LDH activities in ATO‑induced cardiotoxicity in rats. Serum was collected from the Con, ATO, CRT‑L and CRT‑H groups 
and assayed for (A) CK and (B) LDH enzyme activities using CK and LDH kits. Data are presented as the mean ± SEM for each group, n=10. **P<0.01 vs. 
Con group; ##P<0.01 vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low concentration of CRT treatment group; CRT‑H, 
ATO + high concentration of CRT treatment group; CK, creatine kinase; LDH, lactate dehydrogenase.



ZHAO et al:  CROCETIN AMELIORATES ARSENIC TRIOXIDE-INDUCED CARDIOTOXICITY IN RATS5276

IL‑1, IL‑6, and TNF‑α expression was low in the Con group 
(Fig. 7A‑F) and increased after ATO treatment (P<0.01). The 
immunoreactive area was also more widespread in the ATO 
group compared with the Con group (P<0.01). CRT treatment 
(20 and 40 mg/kg) significantly prevented the large increased 
expression of IL‑1, IL‑6, and TNF‑α and restricted their preva-
lence. These findings demonstrated that CRT attenuated the 
expression levels of IL‑1, IL‑6 and TNF‑α in a dose‑dependent 
manner.

Effects of CRT on p65 expression. The expression of p65 
was higher in the ATO group compared with the Con group 
(P<0.01), while treatment with CRT decreased p65 expres-
sion compared with the ATO group (P<0.01). These results 
demonstrated that CRT treatment could prevent the cascade of 
intracellular signaling (Fig. 8).

Effects of CRT on Bax and Bcl‑2 expression. The expres-
sion levels of Bax and Bcl‑2 were also detected via 

Figure 5. Actions of CRT on ROS in rat heart tissue using the fluorescent probe dihydroethidium. Effect of CRT and ATO on ROS generation in the heart tissue 
of Con, ATO, CRT‑L and CRT‑H animals. Areas with ROS generation are indicated by white arrows. Data are presented as the mean ± SEM for each group, 
n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low concentration of CRT treatment 
group; CRT‑H, ATO + high concentration of CRT treatment group; ROS, reactive oxygen species; IOD. 

Figure 6. Effects of CRT on SOD, GSH‑Px, MDA and CAT levels in ATO‑induced cardiotoxicity in rats. Serum was analyzed for (A) SOD, (B) GSH‑Px, 
(C) MDA and (D) CAT in the Con, ATO, CRT‑L and CRT‑H groups. Data are presented as the mean ± SEM for each group, n=10. **P<0.01 vs. Con group; #P<0.05, 
##P<0.01 vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low concentration of CRT treatment group; CRT‑H, ATO + high 
concentration of CRT treatment group; SOD, superoxide dismutase; GSH‑Px, glutathione peroxidase; MDA, malondialdehyde; CAT, catalase.
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immunohistochemistry of cardiac tissue (Fig. 9A‑D). The 
Bax‑immunoreactive area (Fig.  9A) was increased and 
Bcl‑2‑immunoreactive area (Fig.  9B) was decreased in 
ATO‑treated sections compared with Con group (P<0.01; 
Fig. 9C and D). However, treatment with CRT (20 and 40 mg/kg) 
suppressed Bax upregulation (P<0.01) and increased Bcl‑2 

expression (P<0.01) compared with the ATO group. Thus, it 
was indicated that CRT reduced the expression of Bax and 
increased Bcl‑2 expression.

Effects of CRT on SirT1 expression. The effects of CRT on 
SirT1 protein expression was evaluated via western blot analysis 
(Fig. 10A). The ATO group had decreased SirT1 expression 
compared with the Con group (P<0.01; Fig. 10B). Furthermore, 
SirT1 expression was significantly increased in the CRT‑L and 
CRT‑H groups relative to the ATO group. It was demonstrated 
that CRT treatment caused dose‑dependent increases in SirT1 
expression. Collectively, these results indicated that SirT1 
may be involved in ATO‑induced cardiotoxicity and that the 
protective effects of CRT could be mediated by SirT1.

Discussion

ATO has a beneficial effect on recurrent and refractory 
APL (54). However, ATO causes cardiotoxicity, characterized 
by a drop in antioxidant enzymes that serve as makers of 
ATO‑induced myocardial injury and necrosis (7). Moreover, 
oxidative insults occur in the hearts of SD rats due to increased 
formation of ROS, leading to severe histological alterations, 
including cardiomyocyte necrosis and myocardial hemor-
rhage (55). In the initiation and succession of ATO‑induced 
myocardial injury, the overproduction of ROS and subsequent 

Figure 7. Effects of CRT on the expression levels of IL‑1, IL‑6 and TNF‑α in ATO‑treated rats detected via immunohistochemistry. Anatomical location of 
(A) IL‑1 expression, (B) IL‑6 expression and (C) TNF‑α expression. Immunoreactive IL‑1, IL‑6 and TNF‑α areas are indicated by white arrows. Quantification 
of the % area of (D) IL‑1 expression, (E) IL‑6 expression and (F) TNF‑α expression. Scale bar, 50 µm; magnification, x400. Data are presented as the 
mean ± SEM for each group, n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low 
concentration of CRT treatment group; CRT‑H, ATO + high concentration of CRT treatment group.

Figure 8. Effects of CRT on the expression of p65 in ATO‑induced cardiotox-
icity in rats as detected via immunohistochemistry. Morphological location 
and percent area of p65 expression. p65‑immunoreactive areas are indicated 
by white arrows. Scale bar, 50 µm; magnification, x400. Data are presented 
as the mean ± SEM for each group, n=10. **P<0.01 vs. Con group; ##P<0.01 
vs. ATO group. CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, 
ATO + low concentration of CRT treatment group; CRT‑H, ATO + high 
concentration of CRT treatment group.



ZHAO et al:  CROCETIN AMELIORATES ARSENIC TRIOXIDE-INDUCED CARDIOTOXICITY IN RATS5278

oxidative stress exerts a crucial role (3). However, the cardio-
vascular effects of CRT dampen oxidative stress and inhibit the 
development of insulin resistance, atherosclerosis, hyperten-
sion, cardiac hypertrophy and other related diseases (56). The 
present results suggested that CRT attenuates ATO‑induced 
cardiotoxicity and reduces arsenic accumulation.

CRT is a short carbon chain carotenoid (apocarotenoid 
of C20) with a carboxyl group at each end (Fig. 1). CRT has 
a potential therapeutic benefit, including its cardioprotec-
tive, hepatoprotective, neuroprotective, memory‑enhancing, 
anti‑inf lammatory, anti‑depressant and anxiolytic 
effects  (57,58). Pharmacokinetic studies have reported 
that after oral administration, CRT is rapidly absorbed by 
intestinal cells via passive diffusion (29,59‑61) and is then 
distributed into the liver, heart, lungs, kidneys, spleen, adipose 
tissue and central nervous system (59,61). This absorbed CRT 
is present in an intact form, and as monoglucuronide and 
diglucuronide conjugates in plasma (61), and the half‑life of 
CRT is 2.5‑2.9 h (62). No serious adverse events have observed 
in concentrations up to 40 mg/kg of orally administered CRT 
in rat pharmacokinetic experiments (62). The doses used in the 
present study are based on previous experiments (62,63), and 
no toxic side effects were evident in the current experiments.

ECG is a sensitive method for detecting cardiac abnormali-
ties and identifying altered cardiac electrical activity (64). An 
increase in J‑point and heart rate was observed in ATO‑treated 
rats in the present study, which may be due to ATO‑induced 
myocardial injury; the increase in J‑point and heart rate was 
decreased in the CRT group, indicative of its protective effect.

In the present study, ATO treatment caused CK 
and LDH activities to increase, which is indicative of 
disrupted cardiomyocyte structure and damaged cell 
membranes  (64,65). Thus, the present data suggested that 
CRT treatment (20 and 40 mg/kg) preserved the integrity and 
functionality of cardiomyocytes.

Arsenic cardiotoxicity affects several physiological 
processes including cardiac repolarization, intracellular Ca2+ 
overload, increased Ca2+ currents and elevated intracellular 
ROS (66,67). Exposure to inorganic arsenic leads to cellular 
oxidative stress by generating ROS  (68). Cardiovascular 
diseases such as ischemia‑reperfusion injury, endothelial 
dysfunction and atherosclerosis are associated with the release 
of intracellular ROS (69,70). In the present study, the effects 
of cardiovascular treatments were assessed in rats using an 
ATO‑induced cardiotoxicity model.

Accumulating evidence suggests that oxidative 
stress serves an important role in ATO‑induced cardiac 
damage (71). MDA, a typical product of LPO, is formed 
by the oxidation of polyunsaturated fatty acids caused by 
ROS and serves as a directional biomarker of oxidative 
stress that indirectly reflects the degree of cardiomyocyte 
damage (72). In the present study, ATO raised MDA levels 
in the myocardial tissue, while CRT protected against 
arsenic cardiotoxicity, possibly by inhibiting LPO in cardiac 
tissue. GSH‑Px is the major endogenous antioxidative in 
the body, and its decrease can cause significant damage to 
cells (73,74). SOD and CAT are antioxidant enzymes whose 
reinforced activity inhibits oxidative stress and delays the 
succession of the ATO‑induced cardiotoxicity mediated 
decline in arsenic accumulation (73). Furthermore, CAT, 
SOD and GSH‑Px serve a key role in the regulation of and 
response to intracellular oxidation (75). In the present study, 
treatment with CRT increased the levels of CAT, SOD and 
GSH‑Px in myocardial tissue. Thus, it was suggested that 
CRT relieved ATO‑induced oxidative stress, indicated by 
increased CAT, SOD and GSH‑Px activities and simultane-
ously decreased MDA levels.

In the present study, the mechanism underlying the myocar-
dial protection effect of CRT was investigated by analyzing the 

Figure 9. Effects of CRT on the expression levels of Bax and Bcl‑2 in 
ATO‑induced cardiotoxicity in rats as detected via immunohistochemistry. 
Morphological location of (A)  Bax expression and (B)  Bcl‑2 expres-
sion. Immunoreactive Bax and Bcl‑2 areas are indicated by white arrows. 
Quantification of the % area of (C) Bax expression and (D) Bcl‑2 expression. 
Scale bar, 50 µm; magnification, x400. Data are presented as the mean ± SEM 
for each group, n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. 
CRT, crocetin; Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low 
concentration of CRT treatment group; CRT‑H, ATO + high concentration 
of CRT treatment group.

Figure 10. Effects of CRT on SirT1 expression in ATO‑induced cardiotox-
icity in rats. (A) Protein expression of SirT1 was measured using western 
blotting. (B) Relative intensities of SirT1 were analyzed after normalizing to 
β‑actin. The myocardial tissues were obtained from the Con, ATO, CRT‑L 
and CRT‑H groups. Data are presented as the mean ± SEM for each group, 
n=10. **P<0.01 vs. Con group; ##P<0.01 vs. ATO group. CRT, crocetin; 
Con, control; ATO, arsenic trioxide; CRT‑L, ATO + low concentration of 
CRT treatment group; CRT‑H, ATO + high concentration of CRT treatment 
group; SirT1, silent information regulator of transcription 1.
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expression levels of pro‑inflammatory markers. ATO induced 
a significant increase in myocardial TNF‑α expression, which 
was larger compared with the increase observed in IL‑1 and 
IL‑6 expression levels. Moreover, ATO induced an increase 
in p65 expression. Therefore, the anti‑inflammatory activity 
of CRT was demonstrated by its ability to reduce IL‑1, IL‑6, 
TNF‑α and p65 expression levels, which is consistent with 
previous studies that reported elevated Bax and reduced Bcl‑2 
expression after ATO treatment (76‑78).

The increased expression of Bax in the ATO group and 
simultaneous decrease in Bcl‑2 expression indicated that 
apoptosis occurred in the current rat model of cardiotoxicity. 
Furthermore, CRT decreased the number of apoptotic cells, 
illustrated here as changes to these apoptosis‑related tran-
scripts. These findings are consistent with another previous 
study (79).

In the present study, western blotting results identified 
that SirT1 protein expression was decreased in ATO‑induced 
myocardial tissue. However, this lower expression was 
increased after CRT treatment, which concurs with the results 
of previous studies, whereby cardiotoxicity was ameliorated 
through increasing the SirT1 protein expression levels (80,81). 
Taken together, the present results suggested that treatment 
with CRT enhanced SirT1 activity, thus counteracting the 
cardiomyocyte apoptosis caused by ATO.

Several previous studies have demonstrated that ATO 
could induce morphological changes in the myocardium, 
such as necrosis, swelling and edema (55,82). The morpho-
logical alterations to the myocardium of ATO‑treated rats 
were significantly ameliorated by CRT administration. The 
present histopathological observations provided evidence of 
the protective effect of CRT against ATO‑induced cardiomyo-
cyte necrosis. It was identified that CRT pretreatment prior to 
ATO administration efficiently prevented histopathological 
alterations, which would be particularly beneficial against 
chemotherapy‑induced cardiotoxicity.

In conclusion, the present results suggested that CRT 
protected cardiomyocytes from ATO‑induced cardiotox-
icity. The cardioprotective effect of CRT is attributed to the 
reduction of myocardial oxidative stress, inhibition of inflam-
mation and suppression of apoptosis. Collectively, the present 
results indicated that pretreatment with CRT ameliorated 
ATO‑induced myocardial damage. Therefore, CRT may have 
extensive clinical application value in treating ATO‑induced 
cardiotoxicity.
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