TABLE 4.
Algorithm | cv-AUC (CI) | Algorithm | cv-AUC (CI) |
---|---|---|---|
lasso20,dev | 0.858 (0.842, 0.874) | rForest10 | 0.795 (0.778, 0.811) |
lasso20,auc | 0.855 (0.839, 0.870) | rForest20 | 0.772 (0.756, 0.788) |
lasso10,auc | 0.853 (0.836, 0.868) | glm50,pre | 0.758 (0.743, 0.773) |
lasso10,dev | 0.849 (0.833, 0.865) | svm50,pre | 0.746 (0.731, 0.760) |
ridge20,dev | 0.839 (0.824, 0.854) | glmStep50 | 0.743 (0.729, 0.758) |
ridge10,dev | 0.839 (0.823, 0.854) | glm50,wt | 0.742 (0.728, 0.757) |
SL | 0.836 (0.822, 0.851) | ||
ridge10,auc | 0.836 (0.821, 0.851) | glm20,pre | 0.742 (0.728, 0.757) |
ridge20,auc | 0.831 (0.816, 0.846) | glmStep50,pre | 0.737 (0.723, 0.751) |
lasso10,pre,auc | 0.828 (0.812, 0.845) | glm10 | 0.736 (0.721, 0.751) |
lasso10,pre,dev | 0.826 (0.810, 0.842) | glm50 | 0.707 (0.693, 0.722) |
lasso20,pre,dev | 0.821 (0.805, 0.837) | rForest50 | 0.679 (0.666, 0.693) |
lasso20,pre,auc | 0.821 (0.805, 0.837) | glm20,wt | 0.651 (0.638, 0.664) |
lasso20,pre,dev | 0.818 (0.801, 0.834) | rForest20,pre | 0.594 (0.587, 0.601) |
glm10,pre | 0.814 (0.796, 0.830) | rForest10,pre | 0.591 (0.584, 0.598) |
ridge10,pre,auc | 0.812 (0.796, 0.827) | rForest50,pre | 0.588 (0.581, 0.596) |
ridge10,pre,dev | 0.811 (0.794, 0.826) | glm10,wt | 0.552 (0.540, 0.564) |
ridge20,pre,auc | 0.809 (0.793, 0.825) | nnet10,5h,pre | 0.5 (0.490, 0.510) |
glm20 | 0.807 (0.790, 0.823) | nnet10,10h,pre | 0.5 (0.490, 0.510) |
glm50,pre,wt | 0.805 (0.789, 0.821) | nnet20,5h,pre | 0.5 (0.490, 0.510) |
glm20,pre,wt | 0.802 (0.785, 0.817) | nnet20,10h,pre | 0.5 (0.490, 0.510) |
glm10,pre,wt | 0.799 (0.782, 0.815) | svm50 | 0.424 (0.399, 0.449) |
Subscript key: (50, 20,10): # controls per case, pre: 23 pre-selected covariates, auc: neg AUC loss.
dev: deviance loss, wt: weighted regression, 5h, 10h: # nodes in hidden layer.
95% confidence intervals calculated using method of LeDell et al (2015).