Skip to main content
. Author manuscript; available in PMC: 2020 Nov 6.
Published in final edited form as: Stat Med. 2020 Jun 24;39(23):3059–3073. doi: 10.1002/sim.8591

TABLE 5.

Cross-validated area under the receiver-operating curve and 95% confidence interval (CI) for gradient boosted (xgb) and neural network (nn) algorithms in the augmented super learner library

Algorithm cv-AUC (CI) Algorithm cv-AUC (CI) Algorithm cv-AUC (CI)
xgb10,2,10 0.844 (0.828, 0.859) xgb20,2,25 0.836 (0.819, 0.853) nn20,1 0.787 (0.772, 0.802)
xgb50,4,50 0.842 (0.823, 0.861) xgb20,4,50 0.834 (0.816, 0.852) nn10,1 0.773 (0.758, 0.788)
xgb50,2,25 0.839 (0.823, 0.856) xgb50,4,25 0.832 (0.814, 0.849) nn10,2 0.773 (0.758, 0.787)
xgb20,2,10 0.839 (0.823, 0.855) xgb20,2,50 0.832 (0.815, 0.848) nn20,5 0.733 (0.717, 0.749)
xgb10,4,25 0.838 (0.821, 0.855) xgb50,2,10 0.831 (0.815, 0.847) nn50,5 0.711 (0.693, 0.729)
xgb50,2,50 0.837 (0.819, 0.856) xgb10,2,50 0.831 (0.813, 0.848) nn50,1 0.708 (0.693, 0.724)
xgb10,4,50 0.837 (0.820, 0.854) xgb20,4,10 0.819 (0.803, 0.836) nn50,2 0.5 (0.490, 0.510)
xgb20,4,25 0.837 (0.819, 0.854) xgb10,4,10 0.816 (0.800, 0.832) nn10,5 0.5 (0.490, 0.510)
xgb10,2,25 0.836 (0.819, 0.853) xgb50,4,10 0.799 (0.782, 0.815) nn20,2 0.5 (0.490, 0.510)

xgb subscript key: (a, b, c): a = # controls per case, b=depth, c = min obs per node.

nn subscript key: (a, b): a = # controls per case, b= # nodes in hidden layer.

95% confidence intervals calculated using method of LeDell et al (2015).