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ABSTRACT

Objective: Emergency departments (EDs) are increasingly overcrowded. Forecasting patient visit volume is

challenging. Reliable and accurate forecasting strategies may help improve resource allocation and mitigate the

effects of overcrowding. Patterns related to weather, day of the week, season, and holidays have been previ-

ously used to forecast ED visits. Internet search activity has proven useful for predicting disease trends and

offers a new opportunity to improve ED visit forecasting. This study tests whether Google search data and rele-

vant statistical methods can improve the accuracy of ED volume forecasting compared with traditional data

sources.

Materials and Methods: Seven years of historical daily ED arrivals were collected from Boston Children’s Hospi-

tal. We used data from the public school calendar, National Oceanic and Atmospheric Administration, and Goo-

gle Trends. Multiple linear models using LASSO (least absolute shrinkage and selection operator) for variable

selection were created. The models were trained on 5 years of data and out-of-sample accuracy was judged us-

ing multiple error metrics on the final 2 years.

Results: All data sources added complementary predictive power. Our baseline day-of-the-week model

recorded average percent errors of 10.99%. Autoregressive terms, calendar and weather data reduced errors to

7.71%. Search volume data reduced errors to 7.58% theoretically preventing 4 improperly staffed days.

Discussion: The predictive power provided by the search volume data may stem from the ability to capture

population-level interaction with events, such as winter storms and infectious diseases, that traditional data

sources alone miss.

Conclusions: This study demonstrates that search volume data can meaningfully improve forecasting of ED

visit volume and could help improve quality and reduce cost.

Key words: emergency department visit prediction, emergency medicine, google search, predictive modeling, healthcare big

data analytics

INTRODUCTION

Emergency departments (EDs) in the United States have been grow-

ing increasingly crowded. From 2001 to 2008, ED visit volume grew

roughly twice as fast as the total U.S. population, while the number

of total hospital beds shrank by about 198 000.
1,2 Between 1993

and 2003, the number of EDs in the United States shrank by 425,

while total visit volume increased by 26%.3 Similar trends are being

reported across the world in studies from the United Kingdom,4

Australia,5 Singapore,6 Brazil,7 and South Korea.8 Furthermore, the

responsibilities of EDs have expanded beyond traditional acute care
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to include indigent care, disaster response, observational care, men-

tal health services, and other services traditionally associated with

primary care.9,10 For patients, this increased crowding has been

shown to be associated with longer patient wait times, worsened

quality of care,11,12 worsened health outcomes,13 risks to patient

safety,14 delayed access to life-saving treatment,15,16 and lower pa-

tient satisfaction.17 For staff, crowding is associated with lower job

satisfaction and increased career burnout.18 Improved forecasting of

visit volume could help EDs better manage their staffing and other

resources to accommodate fluctuations and reduce crowding. Addi-

tionally, improved forecasting accuracy could allow for decreased

staffing during times of low demand and reduced departmental costs.

A number of previous studies have examined the relationship of

different variables to ED visits. The majority of previous studies

attempting to predict ED visit volume are descriptive in nature,

assessing correlations among visit volume, calendar variables, and

sometimes historical weather data.19–23 Some of these studies found

weather to be correlated with ED visits, whereas others did not. The

direction and magnitude of these correlations seems to vary by loca-

tion. Many of the studies note patterns in ED visits relating to holi-

days, month of the year, and other special events. Almost all studies

agree that day of the week is one of the strongest trends in ED visits,

while exactly which particular days are busy seems to vary. Special

local events such as flu outbreaks,24 heat waves,25 blackouts,26

sporting events,27 and publicity over Presidential heart surgery28

have also been shown to have effects on local ED visits.

There is a growing body of literature that uses statistical fore-

casting methods to predict daily ED visit counts, testing model accu-

racy on an out-of-sample dataset, with generalizable measures of

accuracy.2–8,29,30 We believe that this is the correct approach to al-

low comparisons across departments, data sources, and modeling

techniques and best simulate the real-world performance of a fore-

casting model. Previous studies represent a diverse collection of EDs

from 7 different countries and average daily visit counts ranging

from 33 to 441. These studies have used a variety of methods such

as linear regression, random forest regression, neural nets, and time

series methods such as SARIMA (seasonal autoregressive integrated

moving average). While these studies make use of weather and cal-

endar variables, none of them take advantage of the growing num-

ber of potential data sources available through the Internet. Ekström

et al31 utilized novel data sources by using internet traffic to a Swed-

ish health department website to predict ED visits in the Stockholm

area. Mean absolute percent error (MAPE), the average percent dif-

ference between the forecast and the actual visit count, is the most

commonly used metric because it allows comparisons across depart-

ments of different sizes. Looking at the results of these previous

studies (Figure 1), we can see that despite the diversity in department

characteristics and statistical methods, many studies achieve similar

overall MAPE. There also appears to be a downward trend with de-

partment size, suggesting that forecasts for larger departments can

achieve a lower MAPE, as would be expected due to the law of large

numbers.

Internet search volume has been seen as a possible additional

data source for public health monitoring. In 2008, Polgreen et al32

used Yahoo searches for influenza surveillance. In 2009, Google re-

leased Google Flu Trends (GFT), a model based on anonymized, ag-

gregated search activity of selected terms that predicts the official

influenza-like illness levels in the United States reported by the Cen-

ters for Disease Control and Protection.33,34 However, GFT’s early

predictive performance was disappointing and led to doubts about

the validity of its original approach.35 A growing body of research

has attempted to expand upon GFT’s results and has demonstrated

noticeable improvements.36–40 Notably, Yang et al41 demonstrated

how LASSO (least absolute shrinkage and selection operator)

variable selection of autoregressive linear regression combined with

dynamic recalibration can yield substantially better influenza-like

illness predictions than can previous approaches.

The methods learned from predicting influenza and other dis-

eases using search volume data42–47 could also be used to improve

forecasts of ED visit volume beyond the accuracy of previous data

sources alone. The techniques used in our study can easily be applied

to other departments to forecast visit volume and potentially im-

prove staffing practices.

MATERIALS AND METHODS

ED visit volume
This study was conducted at the Boston Children’s Hospital (BCH)

ED, an urban pediatric academic level 1 trauma center in Boston,

Massachusetts. The BCH ED treats patients generally 21 years of

age and younger, and handles an average of about 60 000 visits ev-

ery year. The department’s daily arrival counts were collected

from BCH’s electronic data warehouse for the dates of January 1,

2009, to December 31, 2015. The local institutional review board

approved this study. Visits were classified into days based on the

time of arrival as recorded in the electronic medical record. The

model used the actual weather and search volume for the day being

predicted for the purpose of analyzing the additional usefulness of

the search volume data. These data would not be available when

making actual predictions about the future. This was a retrospec-

tive study with the data split into a training set and an out-of-

sample testing set. All models were fit using the training data and

tested for accuracy on the testing set. The data used to train each

of the proposed models included only historical data before Janu-

ary 1, 2014. The out-of-sample model test period included data

from January 2, 2014, to December 31, 2015. We can see in the

visit data in Figure 2 that there are 2 extreme events. In the middle

of 2009, there is a spike in visits associated with the swine flu epi-

demic. In early 2015, there is a drop associated with extreme

snowfall. This explains the differences in the minimum and maxi-

mum values between the training set and test set, as shown in Ta-

ble 1. The swine flu event shapes the expectations of the trained

model and the will models struggle to predict the response to an

unprecedented snow storm.

Autoregressive variables
Lag variables representing the visit count from a specified interval of

days before the present day were created. Figure 3 shows an auto-

correlation function plot of daily ED arrivals from the training set.

A strong weekly pattern in the data is evident from the peaks in the

autocorrelation function plot for lags divisible by 7. There is also a

strong annual trend, with the correlation bottoming out around 182

days in the past and strengthening around 365 days. For the models

predicting next-day visits, we created variables for lags from 1 to

14, 21, 350, 357, and 364, corresponding to periods of high auto-

correlation in the training set.

Calendar variables
Indicator variables were created for each day of the week, as well as

major holidays: New Year’s Day, Presidents’ Day, July 4th, Hallow-

een, Thanksgiving, Christmas, and New Year’s Eve. Referencing the
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Boston Public Schools calendar, indicator variables were created for

summer vacation, winter vacation, first spring vacation, second

spring vacation, holidays, Monday after a long weekend, Tuesday

after a long weekend, other day after a long weekend or vacation,

and early release days. While most previous studies created indicator

variables for each month, we created a sine function with period

365.25 and a cosine function with period 365.25, starting on

January 1, 2009. Due to the properties of trigonometric identities,

regressing a sine and cosine function with the same period will pro-

duce a single sine function with the amplitude and shift that corre-

sponds to the least-squares fit to the outcome variable.

a � sinðxÞ þ b � cosðxÞ ¼ c � sinðxþ dÞ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
d ¼ atan2ða; bÞ

First, the advantage of this approach over the month indica-

tor variable approach is that a maximum of 2 parameters are

Figure 1. Accuracy of previous studies. MAPE: mean absolute percent error.

Figure 2. Daily emergency department arrivals at Boston Children’s Hospital for the whole study period.
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being estimated, instead of up to 11. Second, this method dem-

onstrates continuous change throughout the month and into the

next month, instead of an abrupt change between the last day

of a month and the first day of the next month. One disadvan-

tage is that this model implies a linear relationship between the

outcome variable and the annual cycle, while indicator variables

for months allow for nonlinear relationships with the annual

cycle.

Table 1. Comparison of data in training and test sets

Training set Test set

Mean SD Min Max Mean SD Min Max

ED visits Max 166 24.6 83 281 162.5 23.1 57 260

Temperature Max 60.2 18 13 103 59.1 19.1 14 96

Mean 53.2 17 6 92 51.8 18.3 8 84

Min 45.6 16.4 �2 81 43.8 17.9 �3 74

Barometer Max 30.1 0.2 29.2 30.8 30.1 0.2 29.6 30.9

Mean 30 0.2 29 30.7 30 0.2 29.1 30.8

Min 29.9 0.3 28.7 30.6 29.9 0.2 28.8 30.6

Visibility Max 10 0.5 0 10 9.9 0.6 2 10

Mean 8.8 2.1 0 10 8.9 2 1 10

Min 6.5 4 0 10 6.7 4 0 10

Wind speed Max 20.8 6.2 6 48 20.5 5.9 8 45

Mean 10.7 3.8 2 31 10.6 3.6 3 26

Snowfall Total 0.1 0.5 0 10.8 0.1 1 0 13.6

Fever Vol 2374.1 547.4 798.8 6471.7 2674 517.1 1240.2 4612.4

Flu shot Vol 555.7 933.8 0 16443.1 486.7 558.4 0 3682.5

Flu Vol 3557 8722.6 140.2 163310.8 2169 1477.3 209.5 8462.8

Pneumonia Vol 987.4 399.4 265.2 2960.7 1064 369.9 194.6 2262.4

Bronchitis Vol 554 242 0 2908 537.2 217.4 136.7 1293.2

Snow Vol 9964.8 12114.7 2371.6 214082.3 13351.6 19133.6 2628.8 219681.7

Allergies Vol 920.2 423 166.3 3079.6 982.2 600 186.2 4687.4

Blizzard Vol 930.4 2901.1 152.2 84259.9 1112.2 4133.1 139.6 72836.5

Forecast Vol 6680 3111.1 1207.4 31667.9 7699.6 3803.6 2132.9 33665

Humidifier Vol 612.1 446.7 0 3036 644.1 485.8 121.5 2929.9

Figure 3. Autocorrelation function plot for training range.
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Weather variables
Weather data were downloaded from National Oceanic and Atmo-

spheric Administration48 for the Boston Logan Airport weather sta-

tion. Daily data were collected on minimum, mean, and maximum

temperature, barometer, and visibility. Visibility was measured on a

10-point scale with 10 being the clearest visibility. Daily maximum

and mean wind speeds were also recorded, but not minimum wind

speed, as this was almost always zero. Daily snowfall was also col-

lected. Daily occurrences of weather warnings, watches, and adviso-

ries for blizzards, heat, floods, freezing rain, high wind, hurricanes,

severe thunderstorms, tornadoes, wind chills, winter storms, and

winter weather were represented as binary indicator variables.

Table 1 shows that the weather data were very similar between the

testing and training sets, with the noticeable exception of snowfall.

The average snowfall was more than twice as high in the testing set

as in the training set. Furthermore, the maximum snowfall was al-

most 3 inches higher in the testing set than in the training set. During

January and February of 2015, Boston experienced record levels of

snowfall (colloquially labeled by the locals as “snowmageddon”).

Google search volume
The daily Google search fraction for a set of weather- and health-

related search terms were retrieved through the Google Health ap-

plication programming interface (API). The structure of the dataset

retrieved from the API was the indicator value of the fraction of

daily searches containing each selected term for the Google-defined

Boston metro area (Google search location code: “eUS-MA-506”).

We chose 10 search terms to test in the model: allergies, blizzard,

bronchitis, fever, flu, flu shot, forecast, humidifier, pneumonia, and

snow. We chose to limit the number of terms to 10 so as to not over-

whelm the model selection process. The terms were chosen based on

our theory that disease, symptom, and weather-related terms would

be most predictive. Google Correlate is a publicly available tool that

finds search terms that are most correlated with a weekly time series.

We were unable to use Google Correlate to find terms whose

Boston-area search volume was correlated with the daily ED visit

count at BCH, as Google Correlate is only available for analyzing

search volumes at the national level. We did include humidifier in

our list of search terms because Google Correlate suggested that it

was highly correlated with searches for flu at the national level.

Table 1 shows that the characteristics of the training and testing

sets are broadly similar. The most notable exception appears to be

flu. The average daily search volume for flu is much higher in the

training period, with the maximum indicator value of 163 310

searches on April 30, 2009. This corresponds with the beginning of

the media coverage of the swine flu epidemic of 2009. However, the

number of ED visits during this period is not particularly high, and

the peak number of visits related to flu did not occur until

September 2009. This time period serves as a cautionary note that

local search volume for terms such as flu can sometimes become dis-

connected from the conditions generating the local demand for the

ED. This may reflect the fact that local search activity is not exclu-

sively related to the actual local prevalence of the disease being

searched, but can also reflect general interest in the subject. Some

search terms have much higher volume than others: snow, forecast,

and fever are the 3 highest in the testing period. Search terms with

higher average volumes had lower variance relative to their search

volumes, making it easier to identify potentially predictive signals

compared with terms with lower volume and higher variance rela-

tive to their search volumes. While Yang et al41 found that dynamic

reweighting of search terms was needed to take into account the

changing search behavior, our own modeling experiments showed

that a dynamic reweighting approach did not significantly increase

the forecasting accuracy in comparison to a statically trained model.

To verify that the weather and search volume datasets contain

independent information, we performed pairwise correlations and a

principal component analysis. In Figure 4. the highest correlation is

between recorded snowfall and searches for snow. Searches for

allergies, bronchitis, humidifier, and pneumonia also show positive

and negative correlation with the temperature variables. This is

likely due the seasonal nature of all these variables. However, most

of the variables have little or no pairwise correlation. The principal

component analysis yielded similar results. There is some shared in-

formation in the weather and search volume datasets, but most of

the variables are independent and cannot be reduced.

Accuracy metrics
A number of accuracy metrics were used to evaluate the perfor-

mance of each of the models in our study. The formulas associated

for these quantities can be found in Yang et al,41 such as MAPE, a

metric that reflects the average prediction error in a percent scale.

One hundred percent error suggests over- or underprediction by as

much as the observed quantity and zero percent error suggests a per-

fect prediction. This metric is used frequently and thus, allows for

comparison across different studies and departments. Root mean

squared error is the cost function minimized during the model fitting

process and has the scale of the outcome variable. This metric can-

not be used to compare with other studies conducted in different

EDs with heterogenous daily visits values. R2, or the coefficient of

determination, can be interpreted as the percent of the variance in

the predicted variable explained by the model. This is a useful mea-

sure, as it can be compared across studies and departments. Its limi-

tation is that it does not have a practical application when trying to

understand the magnitude of uncertainty in the forecasts. Finally,

we used an ad hoc metric, namely, the percent absolute percent error

>20%, as a way to measure the percentage of days in which the

model prediction error was >20%. After discussing the staffing

needs with subject matter experts in the ED, we were informed that

on days when staffing was mismatched by >20%, they often had to

bring in extra on-call staff. Therefore, we designed this measure as a

way to assess how our predictions could have affected staffing strat-

egies in the ED.

Formulation of prediction models
For each of our models, we followed a 2-stage approach that included

a variable selection stage and the development of an optimal model.

Variable selection

We used a regularized multivariable linear regression, LASSO, to se-

lect the strongest predictors in our set of input variables, and as a

way to minimize the use of redundant information in our final mod-

els. The benefit of LASSO regression is its ability to zero-out redun-

dant input variables (or predictors), therefore serving as a model

selection tool.
36 With nearly 90 covariates in our full model, LASSO

provides a systematic form of variable selection. Before performing

LASSO regression, all the covariates were normalized so that the

coefficients from the LASSO regression could be interpreted as

reflecting the parameters’ importance in the model. The optimal pa-

rameter was chosen from a series of possible values as the one with

the minimum root mean squared error in 10-fold cross validation on
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the training set. A known downside of using LASSO regression is

that the variable selection may be unstable; thus, zeroing out the

contribution of useful variables in the optimization process.49

Optimal model

To build an optimal model, our second stage consisted of selecting

the variables consistently chosen by LASSO and fitted a standard

linear regression without regularization.

Gradual incorporation of data sources
To test the contribution of each data source, we classified our varia-

bles into 5 groups: day of the week, autoregressive, calendar,

weather, and search volume. We used our modeling approach on all

5 groups, adding each data source sequentially to determine its con-

tribution to the forecasting accuracy. We started with day of the

week as a baseline, since the BCH ED currently uses long-term, day-

of-the-week averages to determine staffing. We then produced retro-

spective predictions using each resulting model for each of the

subsets of data sources. We chose to order the data source categories

according to how commonly they were used in the previous litera-

ture on the subject,
2–8 with the search volume data being tested last.

RESULTS

Retrospective simulated predictions for daily visit counts were pro-

duced for the testing period using all the data available before the

predicted day. Five models were fit on the training set period using

different data sources and tested for accuracy on 4 different metrics,

as shown in Table 2. Each model also included the data sources

listed in the models above it.

Variables from each data source were selected and added to the

model to improve the out-of-sample accuracy without overfitting

the model to the in-sample dataset. Each model with an added data

source performed better across all measures of accuracy than the

models with fewer data sources. Calendar variables appeared to pro-

vide more forecasting improvement in the later models because

more calendar terms were included once the model accounts for pos-

sible confounding due to weather. Weather variables provided a

large improvement in accuracy in an already crowded model reduc-

ing MAPE from 8.41% to 7.71%. Weather variables, such as maxi-

mum temperature and mean visibility, are among the most

important variables in the model.

Even in a model with 66 other covariates, the 7 selected search

variables provided additional out-of-sample forecasting accuracy,

lowering MAPE from 7.71% to 7.58% and root mean squared error

from 12.29 to 12.07 (Figure 5). The meaningful impact of adding

search variables can be assessed with the metric percent absolute

percent error >20%. This corresponds to preventing 2 improperly

staffed days a year in comparison with the full model without search

volume data.

To further compare the relative value of the weather and search

volume datasets, we compared a model using everything but

weather to a model using everything but the search volume data. Re-

markably, these 2 models achieved the exact same MAPE of 7.71%

in the test set. This suggests that the value of these 2 data sources in

very similar even though the search volume dataset only contains 10

terms.

Figure 4. Pairwise correlation of weather and search volume data.
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Among the search terms included in the final model are terms re-

lating to weather, diseases, and specific symptoms. The word snow

was the most important search term (Table 3). Because the outcome

is log transformed, the coefficient can be interpreted the as the per-

cent change in the estimated daily ED visit volume associated with a

1-SD increase in search volume with all other variables held equal.

On January 27, 2015 Boston experienced 19.7 inches of snowfall.

This corresponded to an 18.7-SD increase in search volume relat-

ing to the word snow. Accordingly, the final model lowered its es-

timate by 29.8 visits. While the models without search volume

data also had very high estimates for the effect of snowfall, the

model with search volume data has higher accuracy. We under-

stand that this demonstrates that search volume data measure the

public’s reaction to, and awareness of, these snow storms that

weather data alone cannot capture. On May 10, 2015 during the

height of the spring pollen season, searches containing the word

Figure 5. Observed and predicted values for different models. ED: emergency department; MAPE: mean absolute percent error.
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allergies surged 7.1 SDs above average. Accordingly, the final

model raised its estimate by 7.1 visits. This demonstrates how

search volume data can capture local population level health infor-

mation and translate that into associated estimates of its effect on

ED visits.

DISCUSSION

Based on 5 years of historical data, the forecasting model provides

good accuracy in predicting daily ED visit volume. In addition to

weather data and calendar variables, search volume provides addi-

tional useful information that improves the accuracy of the forecasts.

Search terms related to weather and allergies were the most useful in

our model, suggesting that search volume data provide additional in-

formation that can be used to forecast ED visits than weather and cal-

endar data can alone. Our results suggest that over our 2-year test

period, the best model would have only 24 instances in which the

model was off by more than 20%, probably leading to improperly

staffed days in the ED. This is compared with 28 days in the model

without search volume data and 82 days in our baseline day-of-the-

week model. While in our study we only chose 10 search terms to in-

vestigate, using additional search terms could provide further predic-

tion accuracy. Our side-by-side comparison showed that a model with

search volume data and without weather data performed equally well

as a model with weather data and no search volume data. With the

use of the API, Google search volume data could prove to be easier

and more valuable than weather data for ED volume prediction.

The 2-step modeling approach of using LASSO regression for vari-

able selection and log-linear regression for model fitting can success-

fully handle variable selection and model calibration for datasets of

many variables. This system reliably chose useful variables from se-

quentially added data sources and improved out-of-sample forecasting

accuracy while reducing the change of overfitting to the new data.

This methodology can be applied widely at other EDs to improve

forecasting of patient volumes to improve staff and resource plan-

ning and reduce overcrowding. Any ED could attempt to build a

similar prediction model with any combination of data sources

available. The variables that are important, the relationship between

the variables and the outcome, as well as the accuracy, are likely to

be unique to each location. To implement this procedure a model

would need to be fit on local historical data. This framework can

also be used to fit predictions to any amount of time into the future

that is desired. In the master’s thesis on which much of this article is

based, it was shown that predictions for greater time horizons into

the future led to decreases in accuracy.
50 The number of days into

the future at which the model is calibrated is a choice that each loca-

tion would need to make after considering the trade-off between the

preparation time needed to take meaningful action and the accuracy

of those predictions. Once a model is trained, a data pipeline is

needed to send clean, up-to-date data to the model to make predic-

tions, most likely on a daily basis. Future work should include vali-

dating the methodology at additional diverse sites, incorporating

additional novel sources of data, and prospectively testing the mod-

els in real time.

CONCLUSION

This study demonstrates that Google search volume data can mean-

ingfully improve forecasting of ED visit volume. Additionally, we de-

scribe a broad and flexible methodology that can be used to test at

other departments and other possible data sources. This framework

could be implemented to help EDs with resource planning to help re-

duce problems of overcrowding and improve quality and cost.
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Table 2. Comparison of model accuracy

Model name MAPE (%) RMSE R2 PAPE> 20% (%)

Day of the week 10.99 16.73 0.135 11.23

Calendar 10.05 15.12 0.213 8.36

Autoregressive 8.41 12.93 0.443 5.21

Weather 7.71 12.29 0.551 3.84

Search volume 7.58 12.08 0.569 3.29

MAPE: mean absolute percent error; PAPE: percent absolute percent error;

RMSE: root mean square error.

Table 3. Coefficient estimates and importance rank of search terms

in final model

Search term Coefficient Rank

snow –0.00967 13

allergies 0.00557 23

blizzard –0.00464 28

flu shot 0.00461 29

fever 0.00452 31

forecast –0.00354 41

pneumonia 0.00329 42

flu 0 N/A

bronchitis 0 N/A

humidifier 0 N/A

N/A: not available.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1581

https://github.com/sat157/BCH_ED_Prediction
https://github.com/sat157/BCH_ED_Prediction


REFERENCES

1. Kharbanda AB, Hall M, Shah SS, et al. Variation in resource utilization

across a national sample of pediatric emergency departments. J Pediatr

2013; 163 (1): 230–6.

2. Gonzalez Morganti K, Bauhoff S, Blanchard JC, et al. The Evolving Role

of Emergency Departments in the United States. Santa Monica, CA: Rand

Corporation; 2013.

3. Jones SS, Thomas A, Evans RS, et al. Forecasting daily patient volumes in

the emergency department. Acad Emerg Med 2008; 15 (2): 159–70.

4. Wargon M, Casalino E, Guidet B. From model to forecasting: a multicen-

ter study in emergency departments. Acad Emerg Med 2010; 17 (9):

970–8.

5. Boyle J, Jessup M, Crilly J, et al. Predicting emergency department admis-

sions. Emerg Med J 2012; 29 (5): 358–65.

6. Sun Y, Heng BH, Seow YT, Seow E. Forecasting daily attendance at an

emergency department to aid resource planning. BMC Emerg Med 2009;

9 (1): 1.

7. Marcilio I, Hajat S, Gouveia N. Forecasting daily emergency department

visits using calendar variables and ambient temperature readings. Acad

Emerg Med 2013; 20 (8): 769–77.

8. Kam HJ, Sung JO, Park RW. Prediction of daily patient numbers for a re-

gional emergency medical center using time series analysis. Healthc In-

form Res 2010; 16 (3): 158–65.

9. Moskop JC, Sklar DP, Geiderman JM, et al. Emergency department

crowding, part 1—concept, causes, and moral consequences. Ann Emerg

Med 2009; 53 (5): 605–11.

10. Institute of Medicine. Hospital-Based Emergency Care: At the Breaking

Point. Washington, DC: National Academies Press; 2007.

11. Mir�o O, Antonio MT, Jim�enez S, et al. Decreased health care quality asso-

ciated with emergency department overcrowding. Eur J Emerg Med 1999;

6: 105–7.

12. Pines JM, Hollander JE. Emergency department crowding is associated with

poor care for patients with severe pain. Ann Emerg Med 2008; 51 (1): 1–5.

13. Sun BC, Hsia RY, Weiss RE, et al. Effect of emergency department crowding

on outcomes of admitted patients. Ann Emerg Med 2013; 61 (6): 605–11.

14. Trzeciak S, Rivers EP. Emergency department overcrowding in the United

States: an emerging threat to patient safety and public health. Emerg Med

J 2003; 20 (5): 402–5.

15. McCarthy ML, Zeger SL, Ding R, et al. Crowding delays treatment and

lengthens emergency department length of stay, even among high-acuity

patients. Ann Emerg Med 2009; 54 (4): 492–503.

16. Schull MJ, Vermeulen M, Slaughter G, et al. Emergency department

crowding and thrombolysis delays in acute myocardial infarction. Ann

Emerg Med 2004; 44 (6): 577–85.

17. Pines JM, Iyer S, Disbot M, et al. The effect of emergency department

crowding on patient satisfaction for admitted patients. Acad Emerg Med

2008; 15 (9): 825–31.

18. Rondeau KV, Francescutti LH. Emergency department overcrowding: the

impact of resource scarcity on physician job satisfaction. J Healthc Manag

2005; 50 (5): 327–40.

19. Zibners LM, Bonsu BK, Hayes JR, et al. Local weather effects on emer-

gency department visits: a time series and regression analysis. Pediatr

Emerg Care 2006; 22 (2): 104–6.

20. Friede KA, Osborne MC, Erickson DJ, et al. Predicting trauma admis-

sions: the effect of weather, weekday, and other variables. Minn Med

2009; 92 (11): 47–9.

21. Tai C-C, Lee C-C, Shih C-L, Chen S-C. Effects of ambient temperature on

volume, specialty composition and triage levels of emergency department

visits. Emerg Med J 2007; 24 (9): 641–4.

22. Batal H, Tench J, McMillan S, Adams J, Mehler PS. Predicting patient vis-

its to an urgent care clinic using calendar variables. Acad Emerg Med

2001; 8 (1): 48–53.

23. Attia MW, Edward R. Effect of weather on the number and the nature of

visits to a pediatric ED. Am J Emerg Med 1998; 16 (4): 374–5.

24. Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F.

Monitoring the impact of influenza by age: emergency department fever

and respiratory complaint surveillance in New York City. PLoS Med

2007; 4 (8): e247.

25. Mathes RW, Ito K, Lane K, Matte TD. Real-time surveillance of heat-

related morbidity: Relation to excess mortality associated with extreme

heat. PLoS One 2017; 12 (9): e0184364.

26. Marx MA, Rodriguez CV, Greenko J, et al. Diarrheal illness detected

through syndromic surveillance after a massive power outage: New York

City, August 2003. Am J Public Health 2006; 96 (3): 547–53.

27. Reis BY, Brownstein JS, Mandl KD. Running outside the baseline: Impact

of the 2004 major league baseball postseason on emergency department

use. Ann Emerg Med 2005; 46 (4): 386–7.

28. Mathes RW, Ito K, Matte T. Assessing syndromic surveillance of cardio-

vascular outcomes from emergency department chief complaint data in

New York City. PLoS One 2011; 6 (2): e14677.

29. Xu M, Wong TC, Chin KS. Modeling daily patient arrivals at Emergency De-

partment and quantifying the relative importance of contributing variables us-

ing artificial neural network. Decis Support Syst 2013; 54 (3): 1488–98.

30. Reis BY, Mandl KD. Time series modeling for syndromic surveillance.

BMC Med Inform Decis Mak 2003; 3 (1): 1.

31. Ekström A, Kurland L, Farrokhnia N, Castr�en M, Nordberg M. Forecast-

ing emergency department visits using internet data. Ann Emerg Med

2015; 65 (4): 436–42.

32. Polgreen PM, Chen Y, Pennock DM, Nelson FD. Using internet searches

for influenza surveillance. Clin Infect Dis 2008; 47 (11): 1443–8.

33. Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-

time surveillance of disease outbreaks. Clin Infect Dis 2009; 49 (10):

1557–64.

34. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant

L. Detecting influenza epidemics using search engine query data. Nature

2009; 457 (7232): 1012–4.

35. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google flu:

traps in big data analysis. Science 2014; 343 (6176): 1203–5.

36. Cook S, Conrad C, Fowlkes AL, Mohebbi MH. Assessing google flu

trends performance in the United States during the 2009 influenza virus A

(H1N1) pandemic. PLoS One 2011; 6 (8): e23610.

37. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing

google flu trends data for detection of seasonal and pandemic influenza: a

comparative epidemiological study at three geographic scales. PLoS Com-

put Biol 2013; 9 (10): e1003256.

38. Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital dis-

ease detection learn from (an external revision to) google flu trends? Am J

Prev Med 2014; 47 (3): 341–7.

39. Davidson MW, Haim DA, Radin JM. Using networks to combine “big

data” and traditional surveillance to improve influenza predictions. Sci

Rep 2015; 5: 8154.

40. Stefansen C. Google flu trends gets a brand new engine. Google Research

Blog; 2014. https://ai.googleblog.com/2014/10/google-flu-trends-gets-

brand-new-engine.html Accessed June 21, 2019.

41. Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics

using Google search data via ARGO. Proc Natl Acad Sci U S A 2015; 112

(47): 14473–8.

42. McGough SF, Brownstein JS, Hawkins JB, Santillana M. Forecasting Zika

incidence in the 2016 Latin America outbreak combining traditional dis-

ease surveillance with search, social media, and news report data. PLoS

Negl Trop Dis 2017; 11 (1): e0005295.

43. Yang S, Kou SC, Lu F, Brownstein JS, Brooke N, Santillana M. Advances

in using Internet searches to track dengue. PLoS Comput Biol 2017; 13

(7): e1005607.

44. Lu FS, Hou S, Baltrusaitis K, et al. Accurate influenza monitoring and

forecasting using novel internet data streams: a case study in the Boston

Metropolis. JMIR Public Health Surveill 2018; 4 (1): e4.

45. Lampos V, Miller AC, Crossan S, Stefansen C. Advances in nowcasting

influenza-like illness rates using search query logs. Sci Rep 2015; 5 (1):

12760.

46. Yang S, Santillana M, Brownstein JS, Gray J, Richardson S, Kou SC. Using

electronic health records and Internet search information for accurate in-

fluenza forecasting. BMC Infect Dis 2017; 17 (1): 332.

1582 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12

https://ai.googleblog.com/2014/10/google-flu-trends-gets-brand-new-engine.html
https://ai.googleblog.com/2014/10/google-flu-trends-gets-brand-new-engine.html


47. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein

JS. Combining search, social media, and traditional data sources to im-

prove influenza surveillance. PLoS Comput Biol 2015; 11 (10): e1004513.

48. National Oceanographic and Atmospheric Association. Weather. http://

www.noaa.gov/weather Accessed August, 3, 2016.

49. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc

Series B Stat Methodol 1996; 58 (1): 267–88.

50. Tideman S. Internet Search Query Data Improves Forecasts of Daily

Emergency Department Volume [master’s thesis]. Cambridge, MA, Har-

vard University; 2016.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1583

http://www.noaa.gov/weather
http://www.noaa.gov/weather

	ocz154-TF1
	ocz154-TF2

